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ABSTRACT (175) 

 

miRNAs are considered important players in oncogenesis, serving either as oncomiRs or 

suppressormiRs. Although the accumulation of somatic alterations is an intrinsic aspect of 

cancer development and many important cancer-driving mutations have been identified in 

protein-coding genes, the area of functional somatic mutations in miRNA genes is heavily 

understudied. Here, based on analysis of the whole-exome sequencing of over 10,000 

cancer/normal sample pairs deposited within the TCGA repository, we identified and 

characterized over 10,000 somatic mutations in miRNA genes and showed that some of the 

genes are overmutated in Pan-Cancer and/or specific cancers. Nonrandom occurrence of 

the identified mutations was confirmed by a strong association of overmutated miRNA genes 

with KEGG pathways, most of which were related to specific cancer types or cancer-related 

processes. Additionally, we showed that mutations in some of the overmutated genes 

correlate with miRNA expression, cancer staging, and patient survival. Our results may also 

be the first step (form the basis and provide the resources) in the development of 

computational and/or statistical approaches/tools dedicated to the identification of cancer-

driver miRNA genes. 
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Introduction 

Cancer encompasses a broad spectrum of heterogeneous diseases whose development 

(i.e., initiation, promotion, and progression) is associated with the accumulation of numerous 

genetic alterations in the cancer genome, which is the hallmark of all cancers. Although most 

of these alterations are neutral, some of the randomly occurring mutations are functional, 

providing a growth advantage to a neoplastic cell 1. As a result of clonal selection of the 

fastest dividing cells, functional (driver) mutations often recur in genes playing an important 

role in cancer development (driver genes) and therefore may serve as indicators of such 

genes. Numerous large cancer genome sequencing studies (mostly whole-exome 

sequencing, WES) have been performed, and hundreds of cancer-driving genes and 

thousands of cancer-driving mutations have been detected. Some of these genes/mutations, 

e.g., EGFR, BRAF, and JAK2, serve as important biomarkers for cancer-targeted therapies. 

As the overwhelming majority of the cancer genome studies have focused on protein-coding 

genes, the most identified cancer-driver mutations are in protein-coding sequences, which 

encompass barely 2% of the genome. The spectacular exception are TERT promoter 

mutations, which occur most frequently in melanoma, brain, and bladder cancers but have 

also been identified in other cancers 2–4. 

On the other hand, a growing body of evidence indicates that miRNAs, a class of short (~21 

nt long) single-stranded noncoding RNAs, play an important role in cancer, and it was shown 

that particular miRNAs can either drive (oncomiRs, often upregulated in cancer) or suppress 

(suppressormiRs, often downregulated in cancer) oncogenesis. It was also proposed that 

miRNAs have great potential as cancer biomarkers and/or targets of cancer therapies 5–8. 

Among the most intensively studied miRNAs whose function in cancer is best documented 

are the let-7 family, miR-17-92 cluster (oncomiR-1), miR-21, and miR-205 (reviewed in 9). 

Although the global level of miRNA is generally downregulated in cancer, many miRNAs are 

consistently either upregulated or downregulated in particular cancer types or specific cancer 

conditions. It was also shown that miRNA genes frequently show copy number alterations 

(either amplification or deletion) in cancer 10,11. The cancer-related processes that are 

regulated by miRNAs include cell proliferation, epithelial-mesenchymal transformation 

(EMT), migration, angiogenesis, inflammation, apoptosis, and response to cancer treatment 

(reviewed in 12–15). 

Despite the great interest in the role of miRNA in cancer, very little (close to nothing) is 

known about somatic mutations in miRNA genes (defined here as sequences coding for the 

most crucial part of miRNA precursors) occurring in cancer. Considering subsequent steps 
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of miRNA biogenesis and the mechanism of miRNA posttranscriptional gene regulation, 

mutations may be expected to affect different attributes of miRNA genes. In addition to the 

most obvious consequences of mutations in seed sequences that affect the pivotal function 

of miRNAs, i.e., the ability to recognize and downregulate their specific targets, mutations in 

any part of the miRNA precursor may affect the effectiveness or precision of miRNA 

biogenesis by altering/destabilizing the hairpin structure of the miRNA precursor, by altering 

DROSHA or DICER1 cleavage sites, or by altering protein-interacting or other regulatory 

sequences/structure motifs 16–19. Additionally, mutations destabilizing one of the miRNA 

duplex ends may alter 5p/3p miRNA preference. Despite the scarcity of identified miRNA 

gene mutations, the individual examples of SNPs, germline or somatic mutations provide 

proof, at least for some of the scenarios listed above. Examples include (i) the mutation in 

the seed sequence of miR-204-5p, affecting target recognition, that causes inherited retinal 

dystrophy 20; (ii) the mutation in the passenger strand of hsa-miR-96 that destabilizes the 

structure of the miRNA precursor, affects its processing, and decreases the miR-96-5p level, 

eventually resulting in the same phenotypic effect as mutations in the seed sequence of the 

guide strand, i.e., nonsyndromic inherited hearing loss 21,22; (iii) the G>C substitution (SNP 

rs138166791) in the penultimate position of the 3p passenger strand of hsa-miR-890 that 

significantly lowers the cleavage efficiency by DROSHA and consequently decreases the 

levels of both mature miR-890-5p and passenger miR-890-3p 23; (iv) the G>C substitution 

(SNP rs2910164) located in the 3p passenger strand of hsa-miR-146a that is associated 

with an increased risk of papillary thyroid carcinoma, where it was shown that the C allele of 

the SNP alters the structure of the precursor, decreases expression of the mature miRNA 

and activates the passenger strand, which becomes the second mature miRNA modulating 

many genes involved in the regulation of apoptosis 24; (v) interesting example is a mutation 

in the seed sequence of miR-184-3p, causing familial keratoconus, whose effect is not the 

disruption of miR-184-3p target recognition but the inability to mask overlapping targets for 

miR-205 in INPPL1 and ITGB4 25; (vi) mutations in hsa-miR-30c-1 and hsa-miR-17 that 

affect the precursor structure and thereby increase the levels of mature miRNAs, 

downregulating BRCA1 in familial breast cancer cases without BRCA1/2 mutations 26; and 

finally, (vii) two different somatic mutations in the seed sequence of miR-142-3p, found in 

acute myeloid leukemia (AML) samples, that were shown to decrease both miR-142-5p and 

miR-142-3p levels and reverse the miR-5p/3p ratio (in favor of miR-3p) 27 (more details and 

references on mutations in hsa-miR-142 in the subsequent sections). An additional 

indication of miRNA gene sensitivity to genetic alteration is their general high conservation 

and the decreased density of common SNPs in miRNA hairpin sequences 28–30, which 

resembles the commonly known phenomenon of the decreased level of nonsynonymous 

SNPs in protein-coding sequences. In our recent analysis of somatic mutations in lung 
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cancers, we confirmed that seed mutations affect the vast majority of the predicted targets 

and showed that mutations in miRNA genes often alter the predicted structure of miRNA 

precursors 31. miRNAs in cancers were also considered in the context of somatic mutations 

found in mRNAs that affect mRNA-miRNA and competing endogenous RNA (ceRNA)-

miRNA interactions 32,33. As we consider sequence variations in mRNAs that may affect 

miRNA function, the same should apply to the sequence variations in the miRNA genes 

themselves. 

Several multicenter projects have led to gathering data on somatic mutations from hundreds 

of cancers. One of the projects, The Cancer Genome Atlas (TCGA), covers over 10,000 

samples from 33 types of cancers, including the most common human cancers. Importantly, 

the TCGA consortium works on standardized pipelines of data analysis 34, enabling 

comparisons across different cancer types (within the so-called Pan-Cancer set). 

In the current study, we took advantage of data gathered by the TCGA consortium to 

analyze somatic mutations occurring in miRNA genes. As a result, we identified thousands 

of mutations in all subregions of miRNA genes and identified many Pan-Cancer or cancer-

specific overmutated miRNA genes. We showed that mutations in some of the overmutated 

genes correlate with miRNA expression, cancer staging, and patient survival. Although the 

functionality of individual mutations or groups of mutations needs to be verified in 

independent functional studies, the strong association of the overmutated miRNA genes with 

cancer-related pathways indicates that miRNA gene mutations are not only random events 

and that at least some of them play a role in cancer.  

Methods 

Data resources 

We used molecular and clinical data (Level 2) generated and deposited in the TCGA 

repository (http://cancergenome.nih.gov). These data included the results of somatic 

mutation calls in WES datasets preprocessed through the standard TCGA pipeline. We took 

advantage of somatic mutation data generated with four mutation caller algorithms (Mutect2, 

Muse, Varscan, and SomaticSnipper) and deposited as vcf.gz files. We analyzed the 

annotated somatic mutations with corresponding clinical information 35 and miRNA 

expression data 36. 
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Data processing 

We analyzed somatic mutations in 1918 miRNA gene regions (Supplementary Table 1) 

annotated in the miRBase v.22.1 database. The miRNA genes were defined as pre-miRNA-

coding sequences, extended upstream and downstream by 25 nucleotides. The pre-miRNA-

coding sequences were reconstructed based on 5p and 3p mature miRNA sequences 

defined in miRBase (in cases when only one miRNA strand was indicated, the other pre-

miRNA end was reconstructed assuming the pre-miRNA hairpin structure with a 2-nt 3p 

overhang). According to the number of reads reported for the particular pre-miRNA arm 

(miRBase), the analyzed precursors were classified into one of 3 categories: (i) generating 

mature miRNA predominantly from the 5p arm (≥90% of reads from the 5p arm); (ii) 

generating mature miRNA predominantly from the 3p arm (≥90% of reads from the 3p arm); 

and (iii) balanced (>10% of reads from each arm). As high-confidence miRNA genes, we 

considered genes coding for miRNA precursors annotated as “high confidence” in miRBase 

and/or deposited in MiRGeneDB v2.0. The precursors deposited in MiRGeneDB are defined 

based on criteria that include careful annotation of the mature versus passenger miRNA 

strands and evaluation of evolutionary hierarchy; therefore, they are much more credible 

than those in miRBase 37,38. 

From the vcf.gz files, we extracted somatic mutation calls with PASS annotation. The 

extraction was performed with a set of in-house Python scripts 

(https://github.com/martynaut/pancancer_mirnome), an updated version of scripts used in 

our earlier research 31. To avoid duplicating mutations detected in multiple sequencing 

experiments in the same cancer patient, we combined files summing reads associated with 

particular mutations. Next, the lists of mutations detected by different algorithms were 

merged, removing multiple calls of the same mutations. To further increase the reliability of 

the identified mutations, we removed mutations that did not fulfill the following criteria: (i) at 

least two mutation-supporting reads in a tumor sample (if no mutation-supporting read was 

detected in the corresponding normal sample); (ii) at least 5× higher frequency of mutation-

supporting reads in the tumor sample than in the corresponding normal sample; (iii) somatic 

score parameter (SSC) > 30 (for VarScan2 and SomaticSniper); and (iv) base quality (BQ) 

parameter for mutation-supporting reads in the tumor sample > 20 (for MuSE and MuTect2). 

We excluded hypermutated samples, defined as samples with > 10,000 mutations in the 

exome. 

Target predictions for normal and mutant seed sequences were performed with the use of 

TargetScan Custom (release 4.2) 39, and secondary structure prediction was performed 
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using mfold software (default parameters) 40. 3D pre-miRNA structures were predicted using 

RNAComposer software with default parameters 41 and visualized with PyMOL (Schrödinger, 

LLC, New York, NY, USA). Changes in motifs within miRNA precursors recognized by RNA-

binding proteins were analyzed with a Python script based on miRNAmotif software 42. 

Statistics 

Unless stated otherwise, all statistical analyses were performed with statistical functions 

from the Python module scipy.stats. Particular statistical tests are indicated in the text, and 

unless stated otherwise, a p-value < 0.05 was considered significant. If necessary, p-values 

were corrected for multiple tests with the Benjamini-Hochberg procedure. 

Hotspot miRNA genes were identified based on the probability of occurrence of the observed 

number of mutations, which was calculated with the use of the 2-tailed binomial distribution, 

assuming a background random occurrence of identified mutations in all analyzed miRNA 

genes and considering the miRNA gene length. To further evaluate the reliability of the 

identified hotspot miRNA genes, we recalculated the mutation enrichment significance, 

weighting the mutation occurrences by the following factors: 2×, mutations in seeds (guide 

strand only); 1.5×, mutations in miRNAs (miRNA duplex), mutations affecting the functional 

motifs (identified by miRNAmotif) or +/-1 positions of DROSHA/DICER1 cleavage sites; and 

1×, other mutations. Weight correction was not used to search for hotspot positions within 

miRNA genes. 

For patient survival analyses, we used a log-rank test (from lifelines library 43) for specific 

cancers or a stratified version of the test for the Pan-Cancer cohort (survdiff function from 

statsmodels library 44). To determine the direction of mutation effects on survival, we used 

Cox’s proportional hazard model. Survival plots were created using KaplanMeierFitter from 

the lifelines library. 

Results 

Overview of miRNome mutations in TCGA cancers 

To investigate the occurrence of somatic mutations in miRNA genes (miRNome), we took 

advantage of the WES datasets of 10,369 tumor/control sample pairs representing 33 

different cancer types collected and analyzed by the TCGA project. The list of all cancer 

types and their abbreviations is provided in Table 1 [to avoid confusion, we will use the 

abbreviations only for the TCGA sample sets but not generally for particular types of cancer; 
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in the latter case, we will use full cancer type names or alternative abbreviations indicated in 

the text]. We defined miRNome as 1918 miRNA genes (Supplementary Table 1) 

encompassing ~100 nt long fragments of genomic DNA coding for all pre-miRNAs (with 25 

nt flanks) defined in miRBase v22.1, including 537 high-confidence pre-miRNAs annotated 

by miRBase and 466 knowledge-based expert-curated pre-miRNAs annotated in 

MirGeneDB v.2.0. It should be noted, however, that not all miRNA genes were covered by 

TCGA WES. In total, we found 10,588 mutations in miRNA genes; however, as the number 

of miRNome mutations in hypermutated samples (samples with >10,000 mutations in the 

whole exome) was highly correlated with the general mutation burden in these samples (Fig. 

1a, Supplementary Fig. 1) and therefore is likely highly enriched in randomly occurring 

nonfunctional mutations, we decided to remove the hypermutated samples (114, ~1% 

samples; 3,478, ~33% mutations) from further analysis. The remaining 7,110 mutations 

(Supplementary Table 2), including 6,312 substitutions, 198 insertions, and 600 deletions, 

were found in 1,179 distinct miRNA genes. At the Pan-Cancer level, 3,370/10,255 (33%) 

samples had at least one miRNome mutation. This number was the highest in SKCM 

(298/460, 65%), DLBC (22/37, 59%), LUSC (285/497, 57%), and ESCA (99/181, 55%) and 

the lowest in PCPG (14/164, 9%), PRAD (39/497, 8%), and THCA (20/495, 4%) (Fig. 1c, 

Table 1). It should be noted, however, that the occurrence of mutations in miRNome is 

consistent with the general burden of mutations in particular cancer types (Fig. 1a,b, 

Supplementary Fig. 1). Additionally, as shown in Fig. 1d, there is a substantial fraction of 

samples with more than one mutation in miRNome. It is also noteworthy that some cancers, 

including COAD, STAD, and UCEC, have substantially heightened numbers of indel 

mutations (Table 1), which is consistent with known cancerous mechanisms, including DNA 

repair defects, associated with those cancers 45–47. 

Localization of mutations within miRNA genes 

For a closer examination of the localization of sequence variants in subregions of miRNA 

precursors, we superimposed the identified variants on the consensus miRNA precursor 

structure and categorized them according to localization in the miRNA gene subregions (Fig. 

2a). The analysis shows that mutations occur in all regions of the miRNA gene, and in 

general, there is no strong imbalance in mutation localization within the miRNA precursor 

(Fig. 2b). A similar mutation distribution was observed when precursors of predominantly 5p- 

and 3p-miRNAs were analyzed separately (Fig. 2b, lower panels) and when the analysis 

was narrowed only to the high-confidence miRNA genes defined either by miRBase or 

miRGeneDB (Supplementary Fig. 2) or performed separately for individual cancer types 

(data not shown). We observed only a slightly decreased mutation rate in the 5p flanking 
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region (Table 2); however, this effect may result from lower sequencing coverage in the 

flanking regions. 

Significantly overmutated miRNA genes 

In the next step, we searched for miRNA genes overburdened with mutations. The most 

frequently mutated miRNA genes are presented in Fig. 3a. We examined the numbers of 

mutations occurring in particular miRNA genes and the overall frequency of mutations in 

miRNome with the use of a binomial distribution test (p-value < 0.01) and showed that 81 of 

the recurrently mutated genes are significantly overmutated in Pan-Cancer (Table 3, 

Supplementary Table 3a). As mutations may not be randomly distributed in the genome and 

to consider the enrichment of functional variants, we next performed functionally weighted 

analysis, increasing the value of mutations located in most likely functional sequences 

including seed regions, DROSHA/DICER1 cleavage sites, miRNA duplexes, and protein 

binding motifs (see Materials and Methods section). The weighted analysis revealed 108 

significantly overmutated miRNA genes, of which a substantial fraction overlapped with the 

genes identified in the ordinary binomial analysis (Table 3, Supplementary Table 3b). Two 

main types of overmutated miRNA genes can be distinguished based on mutation 

occurrence in various cancer types: one shows a somewhat sample-number dependent 

distribution of mutations across various cancer types (e.g., hsa-miR-1324, hsa-miR-6891, 

hsa-miR-3675), and the other shows an overrepresentation of mutations in one or two 

cancer types (e.g., hsa-miR-1303 for STAD, hsa-miR-890 for LUAD, hsa-miR-519e for OV). 

As some mutations were unevenly distributed across cancer types, we also performed 

mutation enrichment analysis for individual cancers. This analysis revealed 55 and 80 

additional miRNA genes overmutated in individual cancers in the ordinary binomial and 

functionally weighted analyses, respectively (Table 3, Supplementary Table 3). These lists 

included 8 and 12 cancer-specific overmutated genes, respectively, i.e., genes enriched in 

mutations in one or more cancers but not in Pan-Cancer. Among the most striking examples 

of the cancer-specific overmutated genes are (i) hsa-miR-3613 with 7 mutations in UCEC 

but also with 1 mutation in CHOL and 1 in ESCA, (ii) hsa-miR-135a-2 with 8 mutations in 

SKCM and 2 in UCEC, and (iii) hsa-miR-664b with 6 mutations in LUAD and 1 or 2 in UCEC, 

STAD, SKCM, and CESC. The highest overlap of overmutated miRNAs was observed 

between STAD and UCEC, which shared 4 out of 6 and 11 miRNA genes, respectively, 

according to functionally weighted analysis. The highest number of overmutated miRNA 

genes per cancer was found for SKCM (20) and UCEC (11). Some cancer types had no 

overmutated miRNA genes. As cancer type groups consisted of very different numbers of 
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samples, in Fig. 3b and Supplementary Table 4, we visualized the occurrence of mutations 

in overmutated genes as a percentage of patients in the individual cancers and Pan-Cancer. 

As shown in Fig. 3b, the highest frequency of mutations belonged to hsa-miR-142 in DLBC, 

but other overmutated genes often exceeded a frequency of 2% or even 5% in individual 

cancers, e.g., hsa-miR-1303 in STAD (6%) and hsa-miR-3132 in CHOL (4,5%). For reasons 

explained in the next section, we do not comment here on mutations in hsa-miR-1324. The 

localization of mutations in each of the overmutated genes is graphically illustrated in 

Supplementary Fig. 3. 

The area of somatic mutations in miRNA genes is scarcely researched; therefore, it is 

difficult to compare our results directly to those of other studies. However, among the 

cancer-specific overmutated miRNA genes, we identified hsa-miR-142, in which somatic 

mutations were found before in several studies (for details see below). We also confirmed 

the recurrence of mutations in hsa-miR-21 as previously identified with the Annotative 

Database of miRNA Elements (ADmiRe) 48. Not surprisingly, the current results overlap 

almost perfectly with our earlier results obtained for LUAD and LUSC 31. Minor discrepancies 

result from some differences in the technical approach (see Materials and Methods). 

Significantly overrepresented recurring point mutations. 

In the next step, we tested which recurrently mutated nucleotide residues are significant 

hotspots, i.e., positions mutated more frequently than expected by chance, taking into 

account overall mutation frequency and the number of samples in a particular cancer or the 

Pan-Cancer dataset. As such analysis may be strongly affected by the uneven occurrence of 

mutations in different genomic regions and different sequence contexts, to minimize false-

positive results, we set a very stringent threshold of significance, an adjusted p-

value<0.0001. The analysis showed 62 hotspots in Pan-Cancer and 69 in individual cancers, 

including 5 cancer-specific hotspots, 1 for DLBC, 2 for OV, and 2 for SKCM (Table 4, 

Supplementary Table 5). The two most frequently recurring point mutations were found in 

hsa-miR-1324 (chr3:75630855T>C[+] and chr3:375630794C>G[+], Fig. 3c). Other 

interesting hotspot mutations include hsa-miR-142 (chr17:58331260A>G[-] in the seed 

sequence of miR-142-3p) found in DLBC (3 mutations) and hsa-miR-519e 

(chr19:53679964G>A/T[+] and chr19:53679965G>A[+]) found in Pan-Cancer and OV. 

Please note that mutation occurring in a miRNA gene encoded on the minus chromosome 

strand in the sequence of a miRNA precursor occurs in reverse/complementary orientation; 

therefore, to avoid, confusion, a [+] or [-] sign indicates the orientation of the affected gene. 

As the recurrence of some mutations may be artifacts of not efficient filtering of germline 
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variants, we checked the overlap of hotspot positions with the positions of SNPs. Although, 

due to the very large number of currently annotated SNPs, some of the SNPs coincide with 

the detected mutations, the very low population frequency of the SNPs or their type preclude 

confusing the SNPs with the recurrent mutations (Supplementary Table 5). 

Examples of overmutated miRNA genes 

Hsa-miR-142 

Hsa-miR-142 is, to the best of our knowledge, the only miRNA gene convincingly shown to 

be recurrently mutated in several neoplasms, which include acute myeloid leukemia (AML) 

49,50 and different types of B-cell lymphoma 51,52, chronic lymphocytic leukemia (CLL) 53 and 

diffuse large-cell B-cell lymphoma 54–57. Additionally, in our sequencing analysis performed 

within the framework of other projects, we found also one mutation in the seed region of hsa-

miR-142 (chr17:58331263C>T[-]) in the Raji Burkitt lymphoma cell line (out of 5 Burkitt’s 

lymphoma cell lines tested) (Fig. 4a). The occurrence of hsa-miR-142 mutations in 

hematological cancers may be consistent with the high abundance of miR-142-3p in mature 

hematologic cells 58,59 and with the observation that loss of the miRNA impairs the 

development and function of different hematologic lineages 60–62. 

In this study, we found 16 mutations in hsa-miR-142. Consistent with previous studies, we 

identified the highest number of mutations in DLBC (10 mutations, including 3 in one 

sample) and LAML (2 mutations), but we also found 4 mutations in solid tumors, i.e., in 

UCEC, BLCA, GBM, and BRCA, in which the hsa-miR-142 have not been found before. Five 

of the mutations in DLBC are located in the seed sequence of miR-142-3p, three in the 7th 

nucleotide (significantly recurring position chr17:58331260A>G[-]) and two in the 6th 

nucleotide (chr17:58331261C>G/T[-]) of the seed. Additionally, one mutation 

(chr17:58331264T>C[-]) was detected in the 3rd seed nucleotide in LAML. To better 

understand the distribution of mutations in hsa-miR-142, we combined the mutations 

detected in our study with the mutations detected previously (Fig. 4a, Supplementary Table 

6). The distribution of mutations shows pronounced clustering of the mutations in the miR-

142-3p seed region, with chr17:58331260A[-] being the most frequently mutated nucleotide, 

substituted with either G[-] (n=8) or T[-] (n=1). Nonetheless, a substantial fraction of the 

mutations is dispersed in other parts of the gene, including two recurring mutations in two 

subsequent positions of the loop. This result may suggest that the miRNA hairpin precursor 

is quite a fragile structure, and therefore, almost any mutation may be deleterious for the 

gene, either by disturbing the structure of the precursor or by disruption of the seed 

sequence. A recent functional study of two seed mutations, i.e., chr17:58331264T>C[-] and 
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chr17:58331261C>G[-], showed that even though the mutations are located in miR-142-3p, 

they result in a decrease in both miR-142-3p and miR-142-5p levels and reverse the miR-

5p:3p ratio (in favor of miR-3p) 27. The functional consequences of the mutations are (i) 

aberration of hematopoietic differentiation, enhancing the myeloid and suppressing the 

lymphoid potential of hematopoietic progenitors, and (ii) inefficient repression of ASH1L, 

resulting in increased levels of HOXA9 and A10 (positively regulated by ASH1L) and 

ultimately leukemic transformation 27. Although the effects of other mutations were not 

directly tested, it is likely that they are also deleterious mutations, resulting in similar 

functional consequences to the two functionally validated mutations. Otherwise, it would be 

difficult to explain their recurrence in specific cancers, especially in relatively low-mutation 

hematologic neoplasms. The question remains whether mutations in solid tumors, in which 

miR-142-3p acts predominantly as a tumor suppressor, among others targeting and 

downregulating TGFB1R and HMGB1 63,64, may also have functional consequences. It was 

shown that miR-142-3p plays a role in different solid tumors (e.g., breast 65,66, ovarian 67, 

colorectal 68,69, and lung cancer 70–72). Hsa-miR-142 constitutes an example showing that 

cancer-specific enrichment of mutations may be a strong indicator of their functional 

relevance for cancer. 

Hsa-miR-205 

Among the highly mutated miRNA genes, several encode miRNAs with an important and 

well-documented role in cancer. These genes include hsa-miR-205, whose miR-205-5p acts 

predominantly as a suppressormiR but also, depending on a tumor context and/or 

expression profile, as an oncomiR (reviewed in 73), among others in breast, prostate, and 

lung cancer. miR-205 is a highly conserved and well-validated miRNA. We found that hsa-

miR-205 was overmutated in Pan-Cancer (in total, 15 mutations) with mutations in SKCM (5 

mutations), CESC (3), LUSC (2), BLCA (2), COAD, ESCA, and THYM. Five of the mutations 

are located in a single hotspot position (chr1:209432167C>T[+]) that is the first position of 

the seed sequence of miR-205-5p (guide miRNA). As we have shown before, the mutation 

may substantially affect target recognition, disrupting 250/288 (87%) predicted miR-205-5p 

targets and creating 471 new targets 31. The disrupted targets include many validated miR-

205-5p targets, including the oncogenes VEGFA (mediator of angiogenesis) and E2F1 

(transcription factor controlling cell cycle), whose less effective downregulation may trigger 

tumor progression, invasion and/or metastasis 74,75. The other disrupted validated targets 

include MED1, ERBB3, and PTEN 73. On the other hand, the recurrence of a specific 

mutation may suggest its gain-of-function character, such as the creation of a new 

seed/miRNA targeting the gene, whose downregulation may be beneficial for cancer. 
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Examples of predicted targets (TargetScan) of mutated miR-205-5p include proapoptotic 

TP53BP2 76, suppressor gene ARID1A 77, and DLC1 78. The other hsa-miR-205 mutations 

are dispersed alongside the miRNA duplex, hairpin loop, and flanking sequences. The 

mutations may affect the structure of the miRNA precursor and consequently its processing 

and effective miRNA biogenesis. An example of a mutation seriously affecting the structure 

is chr1:209432226G>A[+] transition, which disrupts the structure in the DROSHA cleavage 

site (Fig. 4b). 

Hsa-let-7d 

Another highly mutated miRNA gene playing a role in cancer is hsa-let-7d, which is located 

in a let-7a-1/let-7f-1/let-7d cluster and belonging to the let-7 family, one of the most 

extensively studied miRNA families in cancer. The let-7 miRNAs were found to be 

downregulated in many cancers. They act as suppressormiRs, among other roles, directly 

targeting RAS oncogenes, HMGA2, and other genes playing a key role in processes such as 

the cell cycle, proliferation, and apoptosis 79,80. More specifically, it was shown that let-7d 

targets genes such as KRAS, LIN28, and MYC (reviewed in 81). Hsa-let-7d is a highly 

conserved and well-validated miRNA gene. We found that hsa-let-7d was overmutated in 

Pan-Cancer (in total 23 mutations) and UCEC (16 mutations) but was also recurrently 

mutated in STAD (3) and COAD (2). All the mutations are indels of the poly-A10 tract 

(chr9:94178817[+] delA (20), delAA (1), and insA (2)) located in a 5p flanking sequence of 

the let-7d precursor (Fig. 4c). Although the mutation does not directly affect the sequence of 

mature let-7d, it may still affect miRNA processing. It should be noted, however, that indels 

in the polynucleotide tract, such as those observed in hsa-let-7d, may result from 

microsatellite instability (MSI), which often occurs in different cancers associated with 

impairment of DNA mismatch repair mechanisms. This is consistent with the 

overrepresentation of the hsa-let-7d indels in cancers such as UCEC, STAD, and COAD, in 

which MSI is especially frequent 47. On the other hand, it was suggested that MSI-associated 

mutations may constitute genuine functional variants 82. 

Hsa-miR-411 

Hsa-miR-411 is overmutated in Pan-Cancer (19 mutations) and GBM (5 mutations) and is 

also recurrently mutated in SKCM (3) and ESCA (2). All mutations in hsa-miR-411 are 

substitutions and are generally dispersed over the gene without clustering in any specific 

region or hotspot (Fig. 4d), resembling a pattern of loss-of-function mutations, usually 

characteristic of tumor suppressor genes. This finding may be consistent with a 

predominantly tumor suppressor role and downregulation of miR-411-5p and miR-411-3p in 
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different cancers, including glioblastoma, breast cancer, ovarian cancer, lung 

adenocarcinoma, bladder cancer and renal cell carcinoma 83–87. For example, miR-411-5p 

suppresses cell growth, migration, and invasion, and its downregulation correlates with 

lymph node metastasis in breast cancer 84 and contributes to chemoresistance in ovarian 

cancer 88. Consistent with the potential function of the hsa-miR-411 mutation in GBM, miR-

411-5p is considered a brain-enriched miRNA and was previously associated with 

neurological and neuropsychiatric disorders 89,90. Interestingly, miR-411-5p is 

posttranscriptionally modified (substitution A>I (inosine) in the 5th position of miR-411-5p 

seed) in both normal brain and glioblastoma multiforme tissues 87,91. The precise function of 

this modification is not known; however, in vitro analyses revealed that pri-miRNA editing is 

likely to interfere with miRNA processing 92. Additionally, as modification occurs in the seed 

sequence, it may also influence the recognition of miRNA targets 92. It is likely that, at least 

in some cases, although the observed mutations do not correspond precisely with the 

position of the A>I modification, the mutations may mimic the transient effect of the 

modification. Mutation-induced imprecise processing of the precursor may also influence 

5p/3p strand dominance and the generation of 5p heterogeneity of miR-411-5p, which were 

shown to differentiate normal brain and glioblastoma tissues 87. 

Hsa-miR-519e 

With 33 identified mutations, hsa-miR-519e is overmutated in Pan-Cancer and two female-

specific cancers, OV (16) and BRCA (6). The majority of the mutations are located in two 

subsequent hotspot positions, i.e., the 12th and 13th nucleotides (chr19:53679964G>A/T[+] 

and chr19:53679965G>A[+]) of the miR-519e-5p (passenger) strand (Fig. 4e), which are 

mutated predominantly in OV. Hsa-miR-519e belongs to the large (>50) miR-515 family 

coded in a cluster on 19q13.42. It is not a highly validated miRNA gene and is not well 

recognized as a cancer-related miRNA; however, it was shown to have decreased levels in 

epithelial ovarian cancer, increased levels in ovarian cancer 93, and decreased levels upon 

17-estradiol (E2) treatment in the MCF-7 breast cancer cell line 94 and was shown in a cell 

line experiment to influence anticancer drug chemosensitivity 95. 

Hsa-miR-664b 

Hsa-miR-664b is significantly overmutated in LUAD, with 6 mutations found in this cancer 

and 6 in other cancer types, including UCEC, STAD, SKCM, and CESC. The mutations were 

dispersed throughout the entire gene, with 5 mutations located in the mature miRNA 

sequences (Fig. 4f). Hsa-miR-664b is a highly validated (miRBase) and moderately 

conserved miRNA gene that substantially overlaps with the SNORA36A H/ACA box small 
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nuclear RNA (snoRNA; snoRNABase) playing a role in the pseudouridylation of rRNAs and 

snRNAs; therefore, all mutations may also affect the function of snoRNA. In our previous 

study, we showed that some of the mutations, especially chrX:154768615G>T[+] and 

chrX:154768652C>A[+], cause serious structural aberrations 31. miR-664b-5p was also 

recently shown to act as a cancer suppressor in hepatocellular cancer cell lines 96. The 

downregulated miR-664b-5p was associated with lower overall survival in cervical cancer 97, 

the proliferation of cutaneous malignant melanoma cells 98, and the progression of breast 

cancer 99. The role of the miRNA is associated with the downregulation of AKT2 96. 

Hsa-miR-496 

Hsa-miR-496 was overmutated in the Pan-Cancer cohort with 15 mutations. Additionally, it 

was overmutated in SKCM with 7 mutations, 3 of which were located at a single position 

(chr14:101060649C>T[+]) in the DROSHA cleavage site (Fig. 4g), which may affect both the 

efficiency and precision of miRNA excision. Other mutated cancers include LUSC (2 

mutations), HNC (2 mutations) and OV, UCEC, LUAD, and GBM (with single mutations). 

Hsa-miR-496 is a conserved miRNA gene located in a large cluster (~40 miRNA genes) at 

ch14q31.31. It was shown that miR-496-3p plays a role in the regulation of the mTOR 

pathway 100 and Wnt pathway-mediated tumor metastasis in colorectal cancer 101. 

Hsa-miR-1302-3 

Hsa-miR-1302-3 is an example of a cancer-specific overmutated miRNA gene that is 

overmutated only in LIHC (5 mutations). Other mutated cancers include STAD (2 mutations) 

and ESCA, LUSC, CESC, and BRCA (with single mutations). Most of the mutations occur in 

two positions in the 5' arm of the precursor, one of which is a hotspot mutation 

(chr2:113583038A>C[-]) significantly recurrent in LIHC and PAN-Cancer, localized within the 

passenger miRNA strand (Fig. 4h). The mutation replaces a U with G in a U:C mismatch and 

thus replaces the mismatch with a Watson-Crick pair G:C, greatly stabilizing the hairpin 

structure of the precursor (ddG=-6 kcal/mol; RNA mfold). miR-1302-3p has not been broadly 

researched, but its upregulation is associated with the recurrence and metastasis of prostate 

cancer 102. It is also connected with infertility and potentially with breast cancer through the 

regulation of the CGA gene 103,104. 

Hsa-miR-1324 

Finally, hsa-miR-1324 is the most commonly mutated gene, with a total of 166 mutations in 

Pan-Cancer, greatly exceeding the other highly mutated genes. The vast majority of the 
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mutations (n=146) were located in just two positions (i.e., chr3:75630855T>C[+] and 

chr3:375630794C>G[+]), which are also the two most highly mutated hotspots 

(Supplementary Fig. 3). We observed similar high frequency and a similar pattern of 

mutations in hsa-miR-1324 in a relatively small panel of diffuse large B-cell lymphoma and 

Hodgkin lymphoma cell lines sequenced in our laboratory with the conventional Sanger 

sequencing method (data not shown). However, the analysis of the genomic location of hsa-

miR-1324 revealed that it is embedded in a large (>10 kb) segmentally duplicated region 

highly similar (>>95%) to at least 4 other sequences in the genome and likely variable in 

copy number 29,105,106. The detailed comparison of the hsa-miR-1324 sequence with its 

paralog counterparts revealed that the substitutions differentiating paralogs correspond 

(position and type of substitution) with the identified mutations. This indicates that the hsa-

miR-1324 mutations are most likely artifacts of the sequencing procedures and/or 

computational analyses (e.g., mapping). The additional facts arguing against the 

genuineness of the hsa-miR-1324 mutations are (a) relatively low fraction of an alternative 

allele, (ii) relatively high presence of the mutated reads in the reference noncancerous 

samples, (iii) frequent identification of the mutations by only one mutation caller algorithm, 

and (iv) observation of similar sequence anomalies in our own NGS experiments both in 

cancer and noncancerous samples. Additionally, miR-1324 is a low-confidence miRNA with 

only 48 confirming reads (miRBase, Mar 17, 2020) and is not annotated in MirGeneDB. In 

summary, based on the above facts, we concluded that the hsa-miR-1324 alterations are not 

credible somatic mutations, and therefore, we did not pursue further analysis of miR-1324. 

Effect of the mutations on the expression of the affected miRNA genes 

To check whether mutations may affect miRNA expression, we compared the levels of 

miRNAs in samples with mutations vs. samples without mutations in genes either 

overmutated or with hotspot mutations in a particular cancer type or Pan-Cancer. To level 

the between-cancer expression differences, prior to Pan-Cancer analysis, we normalized the 

level of each miRNA to make its median level (equal to 0) and variation comparable between 

cancer types. We took into account only miRNAs whose level was >0 in at least 70% of the 

analyzed samples. Notably, not all miRNAs were covered in the TCGA miRNA expression 

data. As a result of the analysis, we identified 10 miRNA genes whose miRNA levels were 

downregulated in mutated samples, including hsa-miR-134, for which both miR-134-5p and 

miR-134-3p were downregulated in Pan-Cancer (Supplementary Table 7, and Fig. 5a). 

Additionally, we found 2 miRNAs whose levels were downregulated by particular hotspot 

mutations (Fig. 5a). No miRNA was upregulated by the mutations. The striking excess of 

downregulated miRNAs is consistent with the notion that most mutations are loss-of-function 
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mutations for particular miRNA genes. It should be noted, however, that due to a low number 

of mutations, especially in the hotspots, the analysis is of relatively low statistical power, and 

most results are only nominally significant (p<0.05; Supplementary Table 7). 

Association of mutations in miRNA genes with patient survival and cancer aggressiveness 

Changes in miRNA expression, processing, and target specificity may influence various 

cancer-related processes, including cell proliferation, metastasis, progression, and/or drug 

resistance. These changes may result in disease progression and treatment outcomes 

affecting patient survival. Multiple metrics associated with patient survival have been 

gathered within the TCGA project, including overall survival (OS), disease-specific survival 

(DSS), disease-free interval (DFI), and progression-free interval (PFI), although not all are 

optimal for all cancers 35. 

According to the recommendations in Liu et al. 35, we used PFI as a metric because it was 

permissible and most informative (had the highest statistical power) for the majority of TCGA 

cancer types. As survival metrics, including PFI, differ substantially between cancers, Pan-

Cancer comparisons of survival in patients with mutations vs. patients without mutations may 

be affected by the fact that mutations are not equally distributed between cancer types. To 

overcome this effect, we used a stratified version of the log-rank test. We found 22 

significant associations between mutations in the overmutated miRNA genes or hotspot 

positions and the PFI of cancer patients (either specific cancers or PAN-Cancer). The 

associations were linked with mutations in 12 distinct miRNA genes (Fig. 5b). Interesting 

examples may be (i) hsa-miR-1244-2, in which hotspot mutations chr5:118974595C>T[+] 

are associated with decreased PFI in both OV and Pan-Cancer and total mutations decrease 

PFI in Pan-Cancer; (ii) hsa-miR-519e, in which total mutations are associated with 

decreased PFI in OV and hotspot mutations (chr19:53679964G>A/T[+], 

chr19:53679965G>A[+]) decrease PFI in OV and Pan-Cancer; and (iii) hsa-miR-602, in 

which hotspot mutations (chr9:137838508GC>G[+]) decrease PFI in COAD and total 

mutations decrease PFI in Pan-Cancer and UCEC (Fig. 5b). Additionally, we observed that 

mutations in hsa-miR-411 that was overmutated only in ordinary binomial analysis in GBM 

were associated with a decrease in PFI in GBM (p-value <0.001, data not shown). As shown 

in the left panel of Fig. 5b, mutations of particular miRNA genes associated with PFI are also 

frequently associated with other measures of survival (DFI, OS, DSS), which were analyzed 

as appropriate for particular cancers 35. 
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A profound excess mutations associated with decreased survival may suggest a 

predominant tumor suppressor role of miRNAs, which is also consistent with the global 

decrease in miRNA levels observed in many cancers. 

Next, we compared the occurrence of mutations in miRNA genes with cancer stages. The 

analysis showed 25 statistically significant associations of mutations, predominantly with 

lower cancer stages (Cochran–Mantel–Haenszel test for Pan-Cancer and Fisher exact test 

for specific cancers, p-value <0.05, Supplementary Table 9, Fig. 5c). In two cases, i.e., hsa-

miR-320b-2 and hsa-miR-517b, the association of the mutations with lower cancer stages 

corresponded with their positive effect on patient survival. However, due to the low number 

of identified mutations in particular miRNA genes or hotspots, the abovementioned 

associations with survival and cancer stages are of very low statistical power (not corrected 

for multiple comparisons) and therefore must be interpreted cautiously and cannot be 

generalized without further experimental validation. 

KEGG pathways associated with miRNA gene mutations 

Finally, to identify pathways/processes enriched in the genes regulated by the most 

frequently mutated miRNA genes, we used miRPath v3.0 to perform KEGG pathway 

enrichment analysis. As shown in Supplementary Table 10 and Fig. 6, the vast majority of 

the associated (adjusted p<0.01) KEGG pathways are related to different cancers or cancer-

related processes, such as the cell cycle, proliferation, or apoptosis. For example, the top 

ten most significant associations (p<0.000005) include the following terms: Proteoglycans in 

cancer, Signaling pathways regulating pluripotency of stem cells, Renal cell carcinoma, 

Glioma, ErbB signaling pathway, Hippo signaling pathway, FoxO signaling pathway, and 

Wnt signaling pathway (Supplementary Table 10, Fig. 6). 

Discussion 

Multiple functional somatic mutations with roles in cancer are known in the coding portion of 

the genome. In this study, we identified 7,110 mutations in miRNA genes across 33 cancer 

types based on data available in the TCGA repository. Most of the mutations were 

substitutions (~89%), with indels overrepresented within a couple of analyzed cancer types 

(COAD, STAD, and UCEC). Overall, approximately 33% of Pan-Cancer samples have at 

least one mutation in miRNA genes, with percentages substantially differing among cancer 

types, similar to what is observed for mutations in other genomic regions. The mutations 

were in general evenly distributed across miRNA gene functional subregions. This could be 
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attributed to the fact that the majority of detected sequence variants are spontaneous 

mutations randomly accumulating in the cancer genome. 

Among the identified mutations, we found ones located in miRNA genes playing an 

important and well-recognized role in cancer (e.g., hsa-let-7 family, hsa-miR-205 and hsa-

miR-142) as well as miRNAs that were not yet investigated broadly in relation to cancer. In 

total, we identified 108 overmutated miRNA genes within the Pan-Cancer cohort and 80 

overmutated miRNA genes within individual cancer types. In particular, we found multiple 

mutations in hsa-miR-142, hsa-miR-205, hsa-let-7d, hsa-miR-411, hsa-miR-519e, hsa-miR-

664b, hsa-miR-585, hsa-miR-496, and hsa-miR-1302-3. Although the frequency of mutations 

in overmutated miRNA genes is lower than in commonly mutated drivers such as TP53, 

CDKN2A, or KRAS, it is comparable to the cancer-specific frequencies of mutations in many 

other protein-coding driver genes that are generally much longer than miRNA genes, e.g., 

MET (7%), RB1 (4%), and RIT1 (2%) in LUAD 107, HRAS (4%), PTEN, RB1, NF1 (<1%) in 

PTC 108 or DRD5 (3%), and BRAF (2%) in GBM 109. 

Additionally, we identified 62 hotspot positions in Pan-Cancer and 69 in individual cancers, 

including 5 cancer-specific hotspots. One group of recurring mutations covers primarily 

insertions and deletions in short repeats. The mutations were identified predominantly in 

STAD and UCEC cancers known to be associated with MSI. It was previously suggested 

that simple repeats in human miRNA genes are relatively rare and preserved from mutations 

due to MSI 110. Only three such mutations were identified in hsa-miR-1303, hsa-miR-567, 

and hsa-miR-1273. In our study, we identified indels associated with MSI in numerous 

miRNA genes (e.g., hsa-miR-320c-1, hsa-miR-320b-2, and hsa-miR-1249), including 

previously observed ones. Many MSI-associated mutations are recurrently mutated 

hotspots; for example, hsa-let-7d (chr9:94178817delAA[+]) in UCEC, COAD, and Pan-

Cancer (Fig. 4c), hsa-miR-1303 (chr5:154685821TTA>T[+]) in STAD, UCEC, and Pan-

Cancer and hsa-miR-567 (chr3:112112876TA/TAAA>T[+]) in UCEC and Pan-Cancer. This 

result shows that the idea of the involvement of MSI in mutations within miRNA genes 

should be revisited, especially as those mutations may also be functional 111,112. 

As mentioned earlier, depending on localization within the miRNA gene, mutations can have 

multiple effects on miRNA functionality, including changes in targets (mutations within 

seeds) or processing (mutations that change structure or are located in the 

DROSHA/DICER1 cleavage site), resulting in changed miRNA levels and/or strand balance. 

In our study, we detected 536 mutations and 7 recurrently mutated hotspots in seed 

sequences of different miRNAs, including miRNAs with defined roles in cancer. As shown 
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before, in our previous study, such mutations affect the vast majority of predicted miRNA 

targets. An example of a seed hotspot mutation is chr1:209432167C>T[+] in miR-205-5p, 

which affects most of the predicted miRNA targets. Consistent with the putative effect of 

mutations on the effectiveness of miRNA biogenesis, we identified many associations of 

recurrently mutated genes with the level of the corresponding miRNA, predominantly 

resulting in decreased (e.g., miR-664b-3p, miR-134-5p) levels of the affected miRNAs. 

Although probably not all of the observed miRNA aberrations play any relevant functional 

role in cancer, a vast excess of downregulated miRNAs confirms that mutations in miRNA 

genes have mostly destructive effects on the structure or stability of the miRNA precursors, 

making them less optimal substrates for the miRNA biogenesis process. Changes in miRNA 

levels are a known aspect of cancer characteristics; however, they are usually attributed to 

other mechanisms, and the effect of somatic mutations on miRNA expression has not been 

systematically studied before. 

Subsequent analyses of available clinical data, including patient survival and cancer stage, 

showed that mutations in 12 miRNA genes were associated with different metrics of patient 

survival (predominantly with decreases in survival), and mutations in 18 miRNA genes were 

associated with cancer stage. This observation further confirms the potential functionality of 

the miRNA gene mutations acting directly (e.g., a mutation in seed), by changes in miRNA 

levels, or by other secondary effects. Although we tested only the effects of overmutated 

miRNA genes, we cannot exclude the possibility that some of the individual mutations also 

affect miRNA biogenesis/function and/or cancer. On the other hand, the identified 

associations do not prove the functionality of the particular mutations or groups of mutations 

in cancer. To provide such proof, independent functional analyses are needed, in which the 

results presented in our study may serve as a starting point or support. Such analyses will 

often have to be performed in the context of a particular cancer type or condition. On the 

other hand, globally, the nonrandom character of the identified mutations was confirmed by a 

strong association of overmutated miRNA genes with KEGG pathways, of which the vast 

majority were specific to particular cancers or cancer-related processes. 

Many approaches have been developed to discover and evaluate cancer-driver mutations in 

protein-coding sequences, e.g., MutSig2CV, HotSpot 3D, CLUMPS, and PARADIGM-SHIFT 

113–116, and numerous cancer-driving mutations and genes have been identified by taking 

advantage of these tools. The majority of these approaches take into account (i) well-known 

and easy to predict consequences of mutations in protein-coding sequences, i.e., 

distinguishing frameshift, nonsense, missense, splicing or synonymous mutations, (ii) the 

predicted effects of the mutations on the AA properties and/or tolerance of AA change in 
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particular protein domains and/or the effect of AA change on protein structure, and (iii) the 

conservation of the particular AA residue or particular protein. These factors allow estimation 

of the excess of deleterious functionally relevant mutations over neutral variants, which is 

one of the most important components of models identifying signals of cancer-driven 

selection. Unfortunately, such tools cannot be utilized for the identification of drivers in 

noncoding regions, including sequences encoding “noncoding” RNA. Recognizing this 

limitation, several approaches dedicated to the identification of drivers in noncoding 

sequences or with added functionalities for this purpose have been proposed (e.g., 

oncodriveFML, MutSigNC, ncDriver, and LARVA) 52,55,117,118. It was also recognized that due 

to different roles and functionalities, e.g., promoters, 5' and 3' untranslated regions (5' and 3' 

UTRs), introns, long noncoding RNAs, and miRNAs, different noncoding elements have to 

be analyzed with separate approaches or assumptions 55. Nonetheless, among the available 

tools, the functionality of noncoding mutations is mostly recognized by two factors: impact on 

protein (e.g., transcription factor) binding properties and impact on RNA structure. 

Sometimes, for specific ncRNA regions, additional factors are taken into account, such as 

the impact on miRNA binding sites in 3’UTRs. Although the structure is an important factor of 

miRNA biogenesis/functionality, the impact on RNA structure (e.g., the RNAsnp score) is 

inferred based on structures predicted for standardized tailing RNA fragments not 

corresponding to the size and coordinates of miRNA precursors. Therefore, at present, there 

is no approach/algorithm dedicated to recognize driving selection signals in miRNA genes. 

To overcome this limitation, in addition to evaluating the excess of the mutation in particular 

genes, we also weighted the mutations based on our proposed functionally related factors, 

with higher scores for mutations within the seed sequence, mature miRNAs, 

DROSHA/DICER1 cleavage sites, and disrupting protein binding motifs. Our results, 

together with recently published insights on mutations occurring in noncoding regions 48,52, 

may provide a basis for the development of new tools focused on miRNA cancer drivers 

based on described potentially functional mutations. 

As there is no list of previously defined miRNA driver genes, we could not formally validate 

our approach; however, among the top-scored overmutated miRNA genes, we identified 

hsa-miR-142, which is the only miRNA gene in which mutations were identified in several 

hematologic neoplasms in several studies 49–53,56,57, and their cancer relevance was 

functionally confirmed 27. Our analysis confirmed the recurrence of hsa-miR-142 mutations in 

hematologic neoplasms, i.e., LAML, DLBC, and also the newly identified mutation in the 

Burkitt lymphoma Raji cell line, but also showed mutations in several solid tumors, i.e., 

UCEC, BLCA, GBM, and BRCA. Additionally, thanks to the large number of mutations 

identified in our study and the cumulative analysis of previously detected mutations, we 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 6, 2020. ; https://doi.org/10.1101/2020.06.05.136036doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136036
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

could illustrate for the first time the distribution of mutations in the gene. This result showed 

that mutations may occur in any part of the gene, not only in the seed sequence, which 

indicates their loss-of-function character, acting most likely by destabilizing the precursor 

structure and impairing miRNA biogenesis. This observation may also have the more 

general intriguing implication that miRNA precursors are overall quite fragile structures that 

may be affected by almost any mutation within the hairpin-coding sequence. Such 

hypotheses may be tested by the functional analysis of a higher number of randomly 

selected mutations in different miRNA genes. 

There are several limitations of computational analyses such as the one presented in our 

study. First, further functional analyses of the identified recurring mutations are needed to 

verify their role in particular cancers. Second, not all known (miRBase) miRNA genes were 

covered by TCGA WES experiments. Additionally, due to different versions of WES systems 

used in different TCGA projects, the sequencing of some miRNA genes may not be equal in 

all samples. Third, even working with over 10,000 samples, the statistical power of some 

analyses is not sufficient, and further analyses with even larger cohorts of particular cancers 

or groups of cancers are awaited. Forth, some of the TCGA cancer type cohorts are quite 

heterogeneous, consisting of samples of different genetic background. Finally, the analyses 

of mutations involved in cancers would also benefit from a better understanding of the 

structure of miRNA genes, including more complete information about the full sequence of 

miRNA transcriptional units (full pri-miRNA sequences) and their regulatory elements 119 and 

better functional validation/annotation of the known miRNA genes, as proposed, e.g., in the 

miRGeneDB database 38. 

In summary, we present the first comprehensive Pan-Cancer study of somatic mutations in 

miRNA genes in a large cohort of cancer samples. As a result, we detected thousands of 

different mutations located in different functionally relevant parts of miRNA genes, and many 

miRNA genes were overmutated either in Pan-Cancer or in specific cancer types. The 

frequency of the mutations in some of the overmutated miRNA genes corresponds to that 

observed in some validated protein-coding driver genes. Subsequent analyses (miRNA 

expression, survival analyses, and functional pathway associations) suggest that at least 

some of the overmutated miRNA genes or hotspots in miRNA genes may be driven by 

cancer-positive selection and therefore may play a role in cancer. Nonetheless, the 

functionality of particular mutations needs to be experimentally validated with the use of 

appropriate functional tests. Our results are also the first step (form the basis and provide 

the resources) for the development of computational and/or statistical approaches and tools 

dedicated to the identification of cancer-driver miRNA genes. 
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Tables 

 

Table 1 Summary of patients and mutations in miRNome per cancer type within the 

Pan-Cancer cohort. 

TCGA 

project 

(cancer 

type) 

Full TCGA project 

name 

No. of 

samples 

without (and 

with) 

hypermutate

d samples 

No. (%) of 

samples 

with at 

least one 

mutation 

in 

miRNome 

No. of 

mutated 

miRNA 

genes 

No. of 

mutations 

No. (%) of 

substitutions 

No. (%) of 

insertions 

No. (%) 

of 

deletions 

ACC Adrenocortical 

carcinoma 

92 (92) 29 (31.5) 49 63 55 (87.3) 3 (4.8) 5 (7.9) 

BLCA Bladder Urothelial 
Carcinoma 

411 (412) 194 (47.2) 283 372 354 (95.2) 5 (1.3) 13 (3.5) 

BRCA Breast invasive 

carcinoma 

1040 (1044) 272 (26.1) 297 415 371 (89.4) 16 (3.9) 28 (6.7) 

CESC Cervical squamous 
cell carcinoma and 

endocervical 

adenocarcinoma 

304 (305) 132 (43.4) 251 299 277 (92.6) 6 (2.0) 16 (5.4) 

CHOL Cholangiocarcinoma 44 (44) 12 (27.3) 27 29 22 (75.9) 0 (0.0) 7 (24.1) 

COAD Colon 
adenocarcinoma 

411 (432) 202 (49.1) 390 604 482 (79.8) 21 (3.5) 101 (16.7) 

DLBC Lymphoid Neoplasm 

Diffuse Large B-cell 
Lymphoma 

37 (37) 22 (59.5) 22 36 35 (97.2) 1 (2.8) 0 (0.0) 

ESCA Esophageal 
carcinoma 

181 (182) 99 (54.7) 158 190 178 (93.7) 0 (0.0) 12 (6.3) 

GBM Glioblastoma 
multiforme 

394 (396) 125 (31.7) 207 269 246 (91.4) 12 (4.5) 11 (4.1) 

HNSC Head and Neck 
Squamous Cell 

Carcinoma 

510 (510) 153 (30.0) 199 248 228 (91.9) 7 (2.8) 13 (5.2) 

KICH Kidney 
Chromophobe 

66 (66) 8 (12.1) 6 10 9 (90.0) 1 (10.0) 0 (0.0) 

KIRC Kidney renal clear 

cell carcinoma 

339 (339) 65 (19.2) 85 95 81 (85.3) 6 (6.3) 8 (8.4) 

KIRP Kidney renal 
papillary cell 

carcinoma 

288 (288) 62 (21.5) 78 85 73 (85.9) 5 (5.9) 7 (8.2) 

LAML Acute Myeloid 

Leukemia 

149 (149) 23 (15.4) 36 39 33 (84.6) 5 (12.8) 1 (2.6) 

LGG Brain Lower Grade 
Glioma 

512 (513) 62 (12.1) 69 77 69 (89.6) 3 (3.9) 5 (6.5) 

LIHC Liver Hepatocellular 

Carcinoma 

375 (375) 146 (38.9) 172 214 198 (92.5) 7 (3.3) 9 (4.2) 

LUAD Lung 
adenocarcinoma 

567 (569) 271 (47.8) 356 561 536 (95.5) 8 (1.4) 17 (3.0) 

LUSC Lung squamous cell 

carcinoma 

497 (497) 285 (57.3) 365 576 554 (96.2) 9 (1.6) 13 (2.3) 

MESO Mesothelioma 82 (82) 20 (24.4) 38 41 36 (87.8) 0 (0.0) 5 (12.2) 

OV Ovarian serous 
cystadenocarcinoma 

443 (443) 162 (36.6) 191 274 243 (88.7) 18 (6.6) 13 (4.7) 

PAAD Pancreatic 

adenocarcinoma 

182 (183) 29 (15.9) 30 36 34 (94.4) 2 (5.6) 0 (0.0) 

PCPG Pheochromocytoma 
and Paraganglioma 

164 (164) 14 (8.5) 15 15 15 (100.0) 0 (0.0) 0 (0.0) 
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PRAD Prostate 

adenocarcinoma 

497 (498) 39 (7.8) 48 50 47 (94.0) 0 (0.0) 3 (6.0) 

READ Rectum 
adenocarcinoma 

146 (150) 55 (37.7) 69 83 77 (92.8) 4 (4.8) 2 (2.4) 

SARC Sarcoma 240 (240) 71 (29.6) 98 120 112 (93.3) 3 (2.5) 5 (4.2) 

SKCM Skin Cutaneous 

Melanoma 

460 (470) 298 (64.8) 453 925 912 (98.6) 7 (0.8) 6 (0.6) 

STAD Stomach 
adenocarcinoma 

435 (441) 195 (44.8) 327 528 396 (75.0) 16 (3.0) 116 (22.0) 

TGCT Testicular Germ Cell 

Tumors 

150 (150) 20 (13.3) 19 22 21 (95.5) 0 (0.0) 1 (4.5) 

THCA Thyroid carcinoma 495 (496) 20 (4.0) 20 21 19 (90.5) 1 (4.8) 1 (4.8) 

THYM Thymoma 123 (123) 19 (15.4) 20 32 26 (81.2) 1 (3.1) 5 (15.6) 

UCEC Uterine Corpus 
Endometrial 

Carcinoma 

485 (542) 242 (49.9) 469 746 541 (72.5) 31 (4.2) 174 (23.3) 

UCS Uterine 
Carcinosarcoma 

56 (57) 13 (23.2) 18 19 17 (89.5) 0 (0.0) 2 (10.5) 

UVM Uveal Melanoma 80 (80) 11 (13.7) 14 16 15 (93.8) 0 (0.0) 1 (6.2) 

Pan-Cancer - 10255 

(10369) 

3370 (32.9) 1179 7110 6312 (88.8) 198 (2.8) 600 (8.4) 
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Table 2 Distribution of somatic mutations within miRNA precursors. 

miRNA genes Subregion No. of mutations Mut/Mbp Fold change P-value 
(binomial) 

all 

total 7110 3.24 1.00  

5'flanking 1355 2.76 0.85 4.26E-12 

3'flanking 1746 3.55 1.09 2.12E-05 

loop 1187 3.30 1.02 5.01E-01 

passenger strand 1179 3.36 1.04 1.85E-01 

guide 1607 3.35 1.03 1.25E-01 

seed 536 3.45 1.06 1.33E-01 

High Confidence (miRBase) 

total 3508 4.66 1.00  

5'flanking 687 4.07 0.87 3.65E-05 

3'flanking 823 4.87 1.04 1.57E-01 

loop 519 4.41 0.95 1.78E-01 

passenger strand 527 5.02 1.08 6.76E-02 

guide 952 4.97 1.06 2.59E-02 

seed 325 5.32 1.14 1.46E-02 

MirGeneDB 

total 3594 5.99 1.00  

5'flanking 692 5.08 0.85 6.93E-07 

3'flanking 857 6.30 1.05 9.43E-02 

loop 497 5.61 0.94 1.26E-01 

passenger strand 644 6.60 1.10 7.64E-03 

guide 904 6.37 1.06 3.40E-02 

seed 277 6.13 1.02 6.58E-01 
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Table 3 Summary of overmutated miRNA genes in Pan-Cancer and individual cancer 
types identified in ordinary binomial and functionally weighted mutation enrichment 
analysis. 

Cancer 
type 

Overmutated miRNA genes - ordinary 
binomial analysis (# mutations) 

No. of 
genes 

Overmutated miRNA genes - functionally 
weighted analysis (# mutations) 

No. of 
genes 

Pan-
Cancer 

let-7d (23); 105-1 (22); 1208 (18); 124-2 (20); 
1249 (16); 1251 (17); 1269a (20); 1277 (15); 

128-2 (16); 1283-2 (18); 1297 (15); 1303 (51); 
1324! (166); 142 (16); 204 (15); 205 (15); 
218-1 (20); 3132 (17); 320a (17); 320b-2 (20); 

320c-1 (17); 320d-1 (16); 323a (15); 329-1 
(15); 329-2 (15); 3675 (22); 3690-1 (17); 
376a-2 (26); 376c (22); 379 (20); 409 (19); 

411 (19); 412 (18); 4271 (15); 4315-1 (20); 
4329 (15); 4668 (41); 487b (16); 489 (16); 490 
(22); 496 (15); 509-2 (17); 509-3 (25); 510 

(15); 512-1 (15); 512-2 (17); 515-1 (17); 515-2 
(16); 516b-1 (17); 517a (21); 517c (18); 518b 
(15); 518d (17); 5196 (16); 519a-1 (21); 519b 

(24); 519e (33); 520a (20); 520b (21); 522 
(24); 524 (20); 525 (36); 527 (21); 541 (16); 
543 (31); 548f-1 (18); 585 (17); 587 (16); 592 

(21); 602 (25); 633 (15); 646 (16); 6742 (16); 
6811 (16); 6859-4 (25); 6870 (20); 6891 (27); 
758 (17); 887 (18); 890 (22); 892a (15) 

81 let-7d (23); 105-1 (22); 1208 (18); 124-2 (20); 
1244-2 (15); 1249 (16); 1251 (17); 1252 (13); 

1269a (20); 1277 (15); 128-2 (16); 1283-2 (18); 
1297 (15); 1303 (51); 1324! (166); 134 (14); 142 
(16); 154 (13); 204 (15); 205 (15); 21 (14); 218-1 

(20); 299 (12); 300 (14); 3132 (17); 320a (17); 
320b-2 (20); 320c-1 (17); 323a (15); 325 (14); 328 
(13); 329-1 (15); 329-2 (15); 342 (12); 3675 (22); 

369 (14); 3690-1 (17); 376a-2 (26); 376c (22); 379 
(20); 3940 (11); 409 (19); 411 (19); 412 (18); 4271 
(15); 4315-1 (20); 452 (13); 4668 (41); 487b (16); 

489 (16); 490 (22); 496 (15); 498 (13); 508 (14); 
509-2 (17); 509-3 (25); 510 (15); 512-1 (15); 512-
2 (17); 515-1 (17); 515-2 (16); 516b-1 (17); 517a 

(21); 517b (12); 517c (18); 518a-1 (14); 518a-2 
(13); 518b (15); 518c (13); 518d (17); 518e (14); 
5196 (16); 519a-1 (21); 519b (24); 519d (14); 

519e (33); 520a (20); 520b (21); 520d (14); 520h 
(14); 521-1 (14); 521-2 (13); 522 (24); 523 (14); 
524 (20); 525 (36); 527 (21); 541 (16); 543 (31); 

548f-1 (18); 550a-3 (14); 585 (17); 587 (16); 592 
(21); 602 (25); 646 (16); 6811 (16); 6859-4 (25); 
6870 (20); 6891 (27); 758 (17); 8078 (12); 887 

(18); 890 (22); 891a (14); 891b (14); 892a (15); 
892b (12) 

108 

ACC 1324! (8) 1 1324! (8); 509-2 (3) 2 

BRCA 1324! (19); 3690-1 (7); 519e (6) 3 1324! (19); 3690-1 (7); 519e (6); 6859-4 (5) 4 

CESC 1324! (10); 6891 (7) 2 1324! (10); 6891 (7) 2 

CHOL  0 3132 (3) 1 

COAD 1324! (19) 1 1324! (19); 518a-2 (4); 885* (5) 3 

DLBC 1324! (6); 142 (10) 2 1324! (6); 142 (10) 2 

ESCA 1324! (18) 1 1324! (18) 1 

GBM 411 (5); 489 (5); 516b-1 (5) 3 489 (5); 516b-1 (5) 2 

HNSC  0 105-1 (4) 1 

KICH 1324! (5) 1 1324! (5) 1 

KIRP 1324! (5) 1 1324! (5) 1 

LAML  0 142 (2) 1 

LIHC 1302-3* (5); 1324! (16) 2 1302-3* (5); 1324! (16) 2 

LUAD 1297 (6); 379 (6); 664b* (6); 890 (7); 892a (6) 5 1297 (6); 1324! (6); 379 (6); 509-3 (5); 664b* (6); 
890 (7); 892a (6) 

7 

LUSC  0 518e (4); 527 (6) 2 

OV 376a-2 (7); 376c (5); 4315-1 (6); 519e (16) 4 3132 (4); 376a-2 (7); 376c (5); 4315-1 (6); 519e 
(16) 

5 

PAAD 8078* (4) 1 8078 (4) 1 

READ 1324! (5) 1 1324! (5) 1 

SARC 1324! (9) 1 1324! (9) 1 

SKCM 1252* (8); 1283-2 (7); 1324! (10); 135a-2* (8); 

329-1 (8); 329-2 (7); 487b (10); 496 (7); 520a 
(10); 525 (8); 543 (7); 587 (8); 646 (8) 

13 1252 (8); 1283-2 (7); 1324! (10); 134 (6); 135a-2* 

(8); 205 (5); 329-1 (8); 329-2 (7); 382* (6); 487b 
(10); 496 (7); 520a (10); 520b (6); 522 (6); 525 
(8); 543 (7); 548f-2* (6); 587 (8); 646 (8); 665* (5) 

20 

STAD 1303 (32); 454* (6); 4668 (12); 543 (6); 602 

(9) 

5 1303 (32); 296* (5); 4668 (12); 518b (5); 543 (6); 

602 (9) 

6 

THYM 1324! (11) 1 1324! (11) 1 

UCEC let-7d (16); 1249 (8); 1277 (7); 1303 (7); 
320d-1 (9); 3613* (7); 4329 (12); 4668 (19); 

602 (7) 

9 let-7d (16); 105-1 (4); 1249 (8); 1277 (7); 1303 
(7); 320d-1* (9); 3613* (7); 4329* (12); 4668 (19); 

543 (5); 602 (7) 

11 
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UCS  0 8078 (2) 1 

UVM 199b* (3) 1 199b* (3) 1 

* cancer-specific miRNA gene (not overmutated in Pan-Cancer); bold indicates genes identified in both (ordinary binomial and 

functionally weighted) analyses; ! note the comment on mutations in hsa-miR-1324 at the end of the section Examples of 

overmutated miRNA genes. To simplify the table, we omitted the prefix hsa-miR in the gene IDs. 
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Table 4 Summary of hotspot positions found in miRNA genes in Pan-Cancer and 

individual cancer types identified in the binomial analysis. 

Cancer type Significant hotspots (# mutations) No. of 

hotspots 

Pan-Cancer let-7d chr9:94178817 (23); 1208 chr8:128150186 (7); 1244-2 chr5:118974595 (7); 1249 

chr22:45200964 (14); 1277 chrX:118386402 (7); 1302-3 chr2:113583038 (5); 1302-7 

chr8:141786250 (5); 1303 chr5:154685809 (6); 1303 chr5:154685819 (8); 1303 chr5:154685820 

(12); 1303 chr5:154685821 (12); 1324 chr3:75630794! (69); 1324 chr3:75630855! (77); 1324 

chr3:75630860 (5); 15a chr13:50049206 (5); 205 chr1:209432167 (5); 296 chr20:58817670 (6); 

320b-2 chr1:224257035 (16); 320c-1 chr18:21683580 (8); 320d-1 chr13:40727811 (15); 320e 

chr19:46709336 (5); 328 chr16:67202382 (6); 3652 chr12:103930488 (8); 3658 chr1:165907957 (7); 

3663 chr10:117167687 (5); 3675 chr1:16858942 (5); 3675 chr1:16859005 (10); 3690-1 

chrX:1294009 (14); 4271 chr3:49274155 (8); 4313 chr15:75762211 (5); 4315-1 chr17:45475446 

(11); 4329 chrX:112780749 (14); 454 chr17:59137873 (8); 4668 chr9:111932103 (31); 487b 

chr14:101046508 (5); 489 chr7:93483953 (6); 512-1 chr19:53666774 (6); 512-2 chr19:53669258 

(6); 519e chr19:53679964 (11); 519e chr19:53679965 (7); 520b chr19:53701276 (5); 525 

chr19:53697575 (13); 525 chr19:53697594 (5); 543 chr14:101032009 (6); 548f-1 chr10:54607963 

(6); 550a-3 chr7:29680788 (11); 567 chr3:112112876 (6); 570 chr3:195699434 (5); 602 

chr9:137838508 (17); 624 chr14:31014652 (8); 629 chr15:70079384 (10); 633 chr17:62944311 (13); 

6742 chr1:228397112 (14); 6811 chr2:237510924 (5); 6821 chr22:49962899 (5); 6859-4 

chr16:17058 (9); 6859-4 chr16:17089 (6); 6870 chr20:10649696 (13); 6875 chr7:100868123 (5); 

6891 chr6:31355224 (5); 6891 chr6:31355262 (6); 8078 chr18:112283 (10) 

62 

ACC 1324 chr3:75630794! (4); 1324 chr3:75630855! (3) 2 

BRCA 1324 chr3:75630794! (8); 1324 chr3:75630855! (9); 3690-1 chrX:1294009 (6) 3 

CESC 1324 chr3:75630794! (5); 1324 chr3:75630855! (5); 629 chr15:70079384 (4); 6891 chr6:31355224 

(5) 

4 

COAD 1324 chr3:75630794! (8); 1324 chr3:75630855! (10); 320b-2 chr1:224257035 (5); 320c-1 

chr18:21683580 (4); 320d-1 chr13:40727811 (5); 525 chr19:53697575 (5); 602 chr9:137838508 (4); 

633 chr17:62944311 (4) 

8 

DLBC 1324 chr3:75630794! (3); 1324 chr3:75630855! (3); 142 chr17:58331260* (3) 3 

ESCA 1324 chr3:75630794! (8); 1324 chr3:75630855! (9); 624 chr14:31014652 (3) 3 

KICH 1324 chr3:75630855! (3) 1 

KIRP 1324 chr3:75630794! (3) 1 

LIHC 1302-3 chr2:113583038 (5); 1324 chr3:75630794! (7); 1324 chr3:75630855! (7) 3 

OV 1244-2 chr5:118974595 (3); 376a-2 chr14:101040083* (3); 376c chr14:101039694* (3); 4315-1 

chr17:45475446 (6); 519e chr19:53679964 (7); 519e chr19:53679965 (4) 

6 

READ 1324 chr3:75630855! (3) 1 

SARC 1324 chr3:75630794! (3); 1324 chr3:75630855! (5) 2 

SKCM 1324 chr3:75630794! (4); 329-1 chr14:101026832* (4); 487b chr14:101046508 (5); 524 

chr19:53711049* (4); 525 chr19:53697594 (5) 

5 

STAD 1208 chr8:128150186 (4); 1303 chr5:154685809 (4); 1303 chr5:154685819 (8); 1303 

chr5:154685820 (11); 1303 chr5:154685821 (8); 296 chr20:58817670 (5); 454 chr17:59137873 (6); 

4668 chr9:111932103 (12); 602 chr9:137838508 (7); 6742 chr1:228397112 (5) 

10 

THYM 1324 chr3:75630794! (4); 1324 chr3:75630855! (7) 2 

UCEC let-7d chr9:94178817 (16); 1249 chr22:45200964 (8); 1277 chrX:118386402 (7); 1303 

chr5:154685821 (4); 320b-2 chr1:224257035 (6); 320c-1 chr18:21683580 (4); 320d-1 

chr13:40727811 (8); 3658 chr1:165907957 (5); 4271 chr3:49274155 (6); 4329 chrX:112780749 

(12); 4668 chr9:111932103 (16); 602 chr9:137838508 (6); 633 chr17:62944311 (4); 6742 

chr1:228397112 (5); 6870 chr20:10649696 (5) 

15 

* cancer-specific hotspots (not overmutated in Pan-Cancer); ! note the comment on mutations in hsa-miR-1324 at the end of 

the section Examples of overmutated miRNA genes. To simplify the table, we omitted the prefix hsa-miR in the gene IDs. 
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Figures 

 

Figure 1: Summary of mutations identified in miRNome in TCGA cancer types. (a) The 

number of mutations in the exome (x-axis, log10 scale) and miRNome (y-axis, linear scale) 

per sample in Pan-Cancer. Each dot represents a single sample. Black dots represent 

hypermutated (>10k somatic mutations in exome) samples. (b) The average number of 

mutations in the exome (x-axis, linear scale) and miRNome per cancer type (y-axis, linear 

scale). Each dot represents a single cancer type. Hypermutated samples were excluded 

prior to the analysis. (c) Percentage of patients with at least one somatic mutation detected 

in miRNA genes. (d) The number of mutations in miRNA genes per patient. Each dot 

represents a single patient. Patients are ranked by the number of mutations in miRNA 

genes. Scale is linear (values 0-10) and log10 (values 10+). 
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Figure 2: Localization of somatic mutations in miRNA precursors in Pan-Cancer. (a) 

An overview of a primary miRNA transcript with the indicated subregions considered in the 

study. The miRNA duplex is indicated in blue, and representative sequence consensus 

motifs recognized as enhancers of miRNA biogenesis are represented by green circles. (b) 

Localization of all detected mutations in the Pan-Cancer cohort. miRNA duplex positions are 

indicated in blue, seed regions in dark blue, and flanking regions and terminal positions of 

the apical loop in gray. The numbers in the lower-right corner represent the number of 

plotted mutations (upper) and the number of mutated miRNA genes (lower). If present, 

sequence variants localized beyond position 22 in longer mature miRNAs are shown 

cumulatively at position 22. The plot shows mutations within six positions of the loop (first 3 

and last 3 nucleotides). The number of remaining mutations is indicated within the loop. 

Analyses were also performed in narrowed groups of miRNAs that release the guide miRNA 

strand predominantly from the 5p or 3p arm (lower panels). 
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Figure 3: Most frequently mutated miRNA genes and hotspots in Pan-Cancer. (a) 

miRNA genes with at least 20 somatic mutations in Pan-Cancer. Each color represents a 

distinct cancer type. (b) Heatmap showing the percentage of mutations in miRNA genes 

overmutated (according to functionally weighted analysis) in Pan-Cancer and in specific 

cancers. Framed squares indicate cancer types in which gene enrichment reached statistical 

significance (adjusted p-value<0.01). Specific values of mutation frequencies are shown in 

Supplementary Table 4. (c) Hotspot positions in miRNA genes with at least 10 somatic 

mutations in Pan-Cancer (color legend as in panel a). To simplify the figure, we omitted the 

prefix hsa-miR in the gene IDs; * note the comment on mutations in hsa-miR-1324 at the end 

of the section Examples of overmutated miRNA genes. 
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Figure 4: Localization of mutations in the selected overmutated miRNA genes. In each 

panel, on the left, mutations identified in the study in the TCGA samples (black arrowheads) 

are shown on mfold-predicted 2D structures of the miRNA precursors. Mature miRNA and 
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seed sequences are indicated in light blue and dark blue, respectively. On the right, a 

screenshots from the UCSC genome browser, showing (from the top) a custom track with 

positions of the TCGA mutations detected in the study, conservation of the genomic region, 

and position of short noncoding RNAs, including pre-miRNAs (red bar; according to 

miRbase) and snoRNAs (green bar). For selected seed mutations, Venn-diagrams indicate 

the number of predicted targets for the wild-type (pink circle) and mutated (green circle) 

seeds. Genomic positions of the most significant hotspots are indicated next to mutations 

symbol. (a) Mutations found in hsa-miR-142. Green arrowheads indicate mutations detected 

in previous studies 49–53,55–57 (for details see Supplementary Table 6); red arrowhead 

indicates the mutation identified by us in the Burkitt’s lymphoma (Raji) cell line. * indicates 

the mutations tested functionally 27. (b) Mutations found in hsa-miR-205 (above). Below: (i) 

the corresponding 2D structure of the precursor with the chr1:209432226G>A[+] mutation 

(drawn in green) and (ii) superimposed 3D structures of the wild-type (black) and mutant 

(green) precursors are shown. The position of the mutation and the mutant allele are marked 

in pink. (c-h) Mutations found in hsa-let-7d, hsa-miR-411, hsa-miR-519e, hsa-miR-664b, 

hsa-miR-496, and hsa-miR-1302-3, respectively. 
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Figure 5: Association of miRNA gene mutations with miRNA expression, patient 

survival, and cancer stage. (a) Heatmap (on the left) shows miRNAs whose levels are 

significantly changed in samples mutated in the indicated genes or hotspots. Orange 
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indicates that all miRNAs were downregulated by mutations in their genes. Box plots (on the 

right) show representative examples of miRNAs whose levels were changed in samples with 

mutations (mut) vs. samples without mutations (no-mut) in the corresponding gene. For Pan-

Cancer analysis, miRNA levels were normalized to allow comparison between cancer types. 

(b) Heatmap (on the left) shows the miRNA genes or hotspot mutations significantly 

associated with PFI (green - positively, red - negatively). In the next columns, associations of 

the genes/hotspots with the other survival metrics (DFI, DSS, and OS) are also shown. 

Example survival plots comparing mut and no-mut samples are shown on the right. (c) 

Heatmap (on the left) shows miRNA genes or hotspot mutations associated with cancer 

stages. Red and green colors indicate associations of samples bearing mutations with higher 

and lower cancer stages, respectively. Examples of associations of mutation with the 

distribution of cancer stages are shown on the right. To simplify the figure, we omitted the 

prefix hsa-miR in the gene IDs. 
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Figure 6: Functional association of overmutated miRNA genes with KEGG pathways. 

The graph shows the top 20 pathways (y-axis) enriched in protein-coding genes regulated by 

miRNAs (x-axis) encoded by overmutated miRNA genes. Dot size indicates the number of 

protein-coding genes; dot color depicts an adjusted p-value of association. The enrichment 

analysis was performed with the use of miRPath v3.0 and encompassed the top 100 miRNA 

genes enriched in the functionally weighted test. The full list of enriched pathways is shown 

in Supplementary Table 10. 
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Supplementary Materials 

 

Supplementary Table 1. Coordinates of 1918 miRNA genes used in the study. 

 

Supplementary Table 2. All mutations identified in miRNome in the Pan-Cancer cohort 

with detailed characteristics. 
Each mutation within the miRNA gene is characterized by position in the genome, including strand orientation, patient TCGA 

ID, reference/alternative alleles detected with read-count within normal and cancer samples, mutation type and type of 

substitution if applicable, algorithms that detected the mutation, location of the mutation within pre-miRNA, cancer type, the 

balance of the miRNA strands, miRBase ‘high confidence’ label, miRGeneDB id and values used for weighted analysis 

(mutation within DROSHA/DICER1 cleavage region, mutation within duplex, mutation in seed, mutation disrupting protein-

interacting motif). Only mutations from non-hypermutated samples are included. 

 

Supplementary Table 3. Lists and characteristics of overmutated miRNA genes 

identified in Pan-Cancer and particular cancer types by (A) ordinary binomial and (B) 

functionally weighted mutation distribution analysis. 

 

Supplementary Table 4. Percentage of mutations in overmutated miRNA genes in 

individual cancer types and Pan-Cancer. 
The table shows the exact values of the frequencies visualized in Figure 3B. 

 

Supplementary Table 5. List and characteristics of significant hotspots in miRNA 

genes identified in Pan-Cancer and in particular cancer types. 

 

Supplementary Table 6. List of mutations detected in hsa-miR-142 in previous studies. 
Hg38 genome positions were assigned regardless of what genome version was used in a study.  

 

Supplementary Table 7. List and characteristics of miRNAs whose expression levels 

are associated with mutations in the corresponding miRNA genes. 
MW - Mann-Whitney test. 

 

Supplementary Table 8. List and characteristics of overmutated miRNA genes 

associated with patient survival (PFI, DFI, DSS, and OS). 

 

Supplementary Table 9. List and characteristics of overmutated miRNA genes 

associated with cancer stage. 

 

Supplementary Table 10. Significantly enriched KEGG pathways for the top mutated 

miRNA genes in Pan-Cancer analyzed with miRPath v3.0. 
The analysis was performed for 100 mature miRNAs encoded by the most significantly overmutated miRNA genes based on 

the functionally weighted analysis. 
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Supplementary Figure 1: The number of mutations in the exome (x-axis, log10 scale) and 

miRNome (y-axis, linear scale) per sample in each of the analyzed cancer types. The X-axis 

was unified for all plots. Each dot represents a single sample. Black dots represent 

hypermutated (>10k somatic mutations in exome) samples. 
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Supplementary Figure 2: Localization of somatic mutations in miRNA genes 

annotated as (a) ‘high confidence’ in miRBase and (b) mirGeneDB. The scheme of the 

figure is as shown in Fig. 2. 
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Supplementary Figure 3: Localization of mutations in the miRNA genes (136) either 

overmutated or containing hotspot mutations. B and F indicate ordinary binomial and 

functionally weighted analyses, respectively. The numbers in the right lower corner indicate 

the total number of mutations. (continued on next pages) 
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