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ABSTRACT 12 

Fishing spiders (Dolomedes spp.) make an interesting model to predict the impact of global 13 

changes because they are generalist, opportunistic predators, whose distribution is driven 14 

mostly by abiotic factors. Yet, the two European species are expected to react differently to 15 

forthcoming environmental changes, because of habitat specialization and initial range. We 16 

used an original combination of habitat and dispersal data to revisit these predictions under 17 

various climatic scenarios. We used the future range of suitable habitat, predicted with 18 

habitat variables only, as a base layer to further predict the range or reachable habitat by 19 

accounting for both dispersal ability and landscape connectivity. Our results confirm the 20 

northward shift in range and indicate that the area of co-occurrences should also increase. 21 

However, reachable habitat should expand less than suitable habitat, especially when 22 

accounting for landscape connectivity. In addition, the potential range expansion was further 23 

limited for the red-listed D. plantarius, which is more habitat-specialist and has a lower ability 24 

to disperse. This study highlights the importance of looking beyond habitat variables to 25 

produce more accurate predictions for the future of arthropods populations. 26 

Keywords: Fishing spiders, Pisauridae, Climate change, Dispersal limitation, Hybrid SDM  27 
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Introduction 28 

Climate change, which is now threatening all ecosystems worldwide (Bellard et al. 2012), is 29 

a multi-factor problem that goes beyond raising temperatures only (Pereira et al. 2010, 30 

Garcia et al. 2014). Tackling this complexity requires that ecologists obtain realistic 31 

predictions of how species distributions will change in response to global change. In recent 32 

years, species distribution models (SDMs) proved to be an important tool to for this. SDMs 33 

are particularly useful to predict geographic distributions by correlating species occupancy 34 

to environmental variables (Miller 2010). Applications include conservation planning (Guisan 35 

et al. 2013), potential invasion range (Bellard et al. 2013), or forecasting in time (Hijmans 36 

and Graham 2006). SDMs were successfully applied to a large variety of terrestrial (see Hao 37 

et al. 2019 for a review) and marine organisms (see Melo-Merino et al. 2020 for a review).  38 

The accuracy of predictions produced by SDMs varies from algorithm to algorithm, even 39 

when considering that the MaxENT algorithm is most often used (Qiao et al. 2015). This 40 

variation in accuracy can be alleviated with ensemble models, which combine algorithms and 41 

produce consensual predictions (Arauja and New 2007, Thuiller 2004). Of course, input data 42 

also influence the predictions (Thuiller et al. 2019), and while most SDMs use only climatic 43 

variables, including other variables such as land-use might improve predictions (Titeux et al. 44 

2016). In order to make projections in time, it is fundamental to carefully select the right 45 

climatic scenario (Thuiller et al. 2019). Right now, the ones produced and updated by the 46 

Intergovernmental Panel on Climate Change (IPCC 2007) are the most widely recognized 47 

and used climatic scenarios. 48 

SDMs assume that the species and its environment are at equilibrium (Guisan and Thuiller 49 

2005), so that all suitable locations are occupied. SDMs also assume that the ecological 50 

niche is stable, i.e. that the same factors limit the species in space and time (Richmond et 51 

al. 2010). Under these assumptions, SDMs are used to define habitat suitability, which is the 52 
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range of physical locations where one species can live (Kearney 2006). However, a properly 53 

constructed and calibrated SDM can provide information about the specie’s realized niche, 54 

ie a combination of habitat with other biotic and abiotic factors (Guisan and Thuiller 2005, 55 

Soberon and Peterson 2005).The gold standard of SDMs would be fully mechanistic models 56 

which were used, for example to study seed dispersal in birds (Merow et al 2011) or 57 

population dynamics and evolution of dispersal trait (Bocedi et al. 2017). However, these 58 

models are very data-demanding, and simpler hybrid mechanistic-correlative models are 59 

often more suitable for less well-studied taxa. In particular these hybrid models allow 60 

including active biological processes such as dispersal (Briscoe et al. 2019). Examples 61 

include making predictions under full /no dispersal (Thuiller et al. 2009) or using a buffer of 62 

dispersal around each presence (Mammola and Isaia 2017). 63 

As generalist predators, spiders are relatively independent of a specific prey community, and 64 

their assemblage and distribution is mostly influenced by habitat and land use (Lafage et al. 65 

2015), which makes them good study cases for SDMs. Fennoscandia is a potential climatic 66 

refugium for spider populations against the current global warming (Leroy et al. 2014). 67 

Refugia can mitigate the effects of climate change by providing suitable conditions for 68 

species persistence through time (Keppel and Wardell-Johnson 2012). Dolomedes 69 

plantarius could presumably use Fennoscandia as a refugium, but the ability of the species 70 

to effectively spread northward has not been accounted for in previous predictions (Leroy et 71 

al. 2013, 2014). Moreover, fishing spiders are threatened by the decrease of range and 72 

quality of their wetland and fenland habitats, which are declining globally (Finlayson et al. 73 

2019). The other European fishing spider, Dolomedes fimbriatus, also occurs in 74 

Fennoscandia. Co-occurrence of both Dolomedes, was considered impossible due to 75 

different habitat requirements (van Helsdingen 1993). Syntopy is possible though, as the two 76 

species can live close to each other (Duffey 2012), for example around the same lake (Ivanov 77 
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et al. 2017), or in the ecotone habitat between bogs and ponds (Holec 2000). D. fimbriatus 78 

has a larger ecological niche: the species is more drought and shade tolerant (Duffey 1995), 79 

and is less sensitive to water quality (Duffey, 2012). Consequently, D. fimbriatus could 80 

become a competitor to D. plantarius in syntopic sites if global change brings more frequent 81 

drought events  82 

Here, we compare the potential range spread of D. plantarius and D. fimbriatus, and their 83 

ability to use Fennoscandia as a refugium. We aim to provide more conservative predictions 84 

for Fennoscandia than previously predicted at the European scale by Leroy et al (2013). To 85 

do so, we developed hybrid species distribution models including climate and land-use 86 

variables, as well as dispersal and landscape connectivity (figure 1). We expected that: 87 

1)  The distribution of both fishing spiders should expand northward (Parmesan and 88 

Yohe 2003, Parmesan 2006). A larger expansion is expected under more intense 89 

climate change. 90 

2) Since D. fimbriatus is a habitat generalist, the range of habitat it can reach should be 91 

larger and occupied faster, than for D. plantarius (Hill et al. 1999).  92 

3) The area of sympatry between the two species should increase with the range 93 

expansion of the two species. 94 

Methods 95 

Occurrence data 96 

We downloaded records of presence for both spider species from the GBIF (GBIF: The 97 

Global Biodiversity Information Facility 2019) via the rgbif package (citations for R packages 98 

are provided in Supplementary material, Appendix 1) in R (R Core Team 2019). The GBIF 99 

database gathers volunteer-based naturalist observations (Supplementary material 100 

Appendix 2), which often require a quality check. We used the package CoordinateCleaner  101 
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(Supplementary material Appendix 1) to remove null or duplicate coordinates, and to flag the 102 

records requiring a subjective decision, such as ol records or records located in urban areas, 103 

or at the centroid of a county. Urban records were not necessarily false presence, and we 104 

used aerial photography (ESRI 2009) accessed with packages leaflet and mapedit 105 

(Supplementary material Appendix 1) to decide whether to keep these records or not. We 106 

visually checked, for instance, if a record was not in a recently modified areas in a city. Some 107 

records suggesting co-occurrence of the two species were checked in the field during 108 

summer 2018 and 2019 (25 locations, including four actually syntopic locations). We retained 109 

775 records for Dolomedes fimbriatus and 181 records for Dolomedes plantarius (Figure 2), 110 

reflecting the GBIF data available until October 2019 in Fennoscandia. When several records 111 

fell in the same raster cell, we kept only one. 112 

Species distribution modelling 113 

Predictor variables 114 

For the climatic component of the ecological niche, we included variables which were 115 

biologically relevant for spiders, and not too correlated (Braunisch et al. 2013). Using a 116 

correlation coefficient threshold of 0.7 (Dormann et al. 2012), we selected mean and 117 

maximum annual temperature, mean diurnal temperature range, mean temperature of the 118 

wettest quarter, and annual precipitation, which we extracted from the WorldClim database 119 

(Fick and Hijmans 2017) at a spatial resolution of 30 arc-seconds (Supplementary material 120 

Appendix 4, Tab. A1). 121 

To predict the future distribution of Dolomedes spiders in Fennoscandia, we used IPCC 122 

projections for 2050 and 2070, under multi-factors “representative concentration pathways” 123 

(RCP) 4.5 and 8.5 (van Vuuren et al. 2011). RCP4.5 corresponds to medium-low greenhouse 124 

gas emissions and air pollution, whereas RCP8.5 considers high greenhouse gas emission, 125 

medium air pollution, and an increase in carbon dioxide (van Vuuren et al. 2011). we 126 
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downloaded these climatic projections from Wordclim (Hijmans et al. 2005) at a spatial 127 

resolution of 30 arc-seconds.  128 

For the habitat component of the ecological niche, we integrated information on ground 129 

wetness, which is an important community driver for the semi-aquatic fishing spiders (Lafage 130 

et al. 2015, Lafage and Pétillon 2016). We also incorporated forest and grassland density, 131 

because the presence of fishing spiders seems to be influenced by the surrounding 132 

landscape (unpublished data). We downloaded the corresponding geographic layers from 133 

the Copernicus Land Monitoring Service at 100-metres resolution (EEA 2018), and upscaled 134 

them to 30 arc-seconds resolution to match the bioclimatic data. The forest layer represents 135 

the density of the tree cover (from 0 to 100 %) in 2015. The ‘Water and Wetness’ layer 136 

represents the occurrence of wet surfaces from 2009 to 2015, using a water and wetness 137 

probability index, indicating the degree of physical wetness, independently of the vegetation 138 

cover. Finally, the grassland layer represents the percentage of grassland per pixel. We 139 

estimated the change in land use between current and future times with a model which 140 

harmonises scenarios from different integrated assessment models, namely MESSAGE for 141 

RCP8.5 and GCAM for RCP4.5 (Hurtt et al. 2011).  142 

Calibration area and pseudo-absences 143 

To use presence-absence models with the presence-only GBIF data, we used a random 144 

sampling procedure with environmental profiling (RSEP; Senay et al. 2013), which creates a 145 

background of absence records for each algorithm. We generated the pseudo-absences in 146 

a different calibration area for each species. D. plantarius is a lowland species, so its 147 

calibration area was at low altitude <1000m. For D. fimbriatus, we excluded areas >1500m. 148 

Model validation 149 

Although there are many SDMs, none stands out as better than the others (Qiao et al. 2015). 150 

To improve the predictions, we therefore used an ensemble forecast approach, which 151 
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combines several models weighted by their predictive accuracy (Buisson et al. 2010, 152 

Grenouillet et al. 2011).  153 

Following recommendations in Barbet-Massin et al. (2012), we built our ensemble model 154 

with 10 runs of gradient boosting models (GBMs), generalized additive models (GAMs) and 155 

Maxent. We used 1000 pseudo-absences for the GBMs, and as many pseudo-absences as 156 

presences for the GAMs. We used 80% of the data for training the ensemble model and 157 

testing the single run of model, and 20% for validation. Each model was cross-validated with 158 

a 5-fold procedure in package biomod2 (Supplementary material Appendix 1), thus leading 159 

to 5 fits for each type of model and each pseudo-absences run. We then evaluated the 160 

predictive accuracy of individual models with the true skill statistic (TSS) and the area under 161 

the receiving operating curve (AUROC). The TSS metric represents the ratio of hit rate to 162 

false alarm rate and varies from -1 to +1 (Allouche et al. 2006). We used a threshold of TSS 163 

= 0.4 to include models into the ensemble forecast (Allouche et al. 2006). The AUROC is a 164 

measure of "separability", which represents the true positive rates graphically against the 165 

true negative rates. Following Fawcett (Fawcett 2006), we retained models with AUC>0.7 for 166 

the ensemble model. Finally, we converted the probabilities of presence predicted by the 167 

ensemble model into a binary presence/absence, with a cut point based on predictions which 168 

maximized the TSS (Supplementary material Appendix 1). In package biomod2, the relative 169 

variable contribution is assessed based on the correlation between the prediction of a model 170 

including a given variable and the model where this variable was dropped.  171 

We built one model with bioclimatic variables only (model Bioc), and one with bioclimatic and 172 

land-use variables (model BLU). We then included dispersal to predict the range of suitable, 173 

but unreachable habitat (model Disp). Finally, we accounted for landscape connectivity into 174 

model dispCS. The framework is summarized in figure 1 (additional details in Supplementary 175 

material Appendix 4, Tab. A1). 176 
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Including dispersal into SDM  177 

Although they differ in their general dispersal ability, the two species of fishing spider disperse 178 

mostly through ballooning and rappelling, where they catch the wind with a thread of silk, 179 

and passively fly. Laboratory tests suggested that few individuals exhibit long-distance 180 

dispersal behaviour on the water surface (unpublished data). We recorded this behaviour 181 

only in Dolomedes fimbriatus through sailing (when spider raised its body and/or abdomen 182 

and/or the legs to catch the wind). However, juveniles of D. fimbriatus are generally found in 183 

the surrounding vegetation rather than on the water (Duffey 2012), which makes aquatic 184 

dispersion unlikely.  185 

We modelled dispersal ability via the MigClim package (Supplementary material Appendix 186 

1), based on the predicted map of the BLU model. For each species, the MigClim model 187 

evaluates if suitable cells of the raster could become accessible between current time and 188 

2050/2070. The package uses a dispersal kernel, i.e., a vector of probabilities of dispersal, 189 

to simulate the dispersal of the species (Supplementary material Appendix 3, Tab. A1). We 190 

used an imperviousness map (EEA 2018) to locate areas where the species settlement is 191 

highly unlikely. Since both fishing spiders are water-dependent, impervious regions where 192 

the soil seals, are barrier to settlement. Part of the MigClim modelling process is random 193 

(Engler and Guisan 2009), so we replicated each model 30 times and model-averaged the 194 

estimates. 195 

In experimental settings, aerial dispersal (ballooning) is usually characterized when the 196 

spider is observed tiptoeing in response to a controlled wind. However, not all tiptoeing 197 

spiders end up ballooning (Bonte et al. 2009, Lee et al. 2015). The distance covered by aerial 198 

dispersal is less than 5 kilometres on average and is not correlated with the duration of the 199 

tiptoeing behaviour (Reynolds et al. 2007). We parametrized the MigClim model with values 200 

from the literature on aerial dispersal distance in spiders (Thomas et al. 2003, Reynolds et 201 
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al. 2007). We weighed these values by the proportion of individuals we observed rappelling 202 

in our laboratory experiments (Monsimet et al. in prep), namely, 76.6% of D. fimbriatus and 203 

59% D. plantarius. For long-distance dispersal, we used the proportion of individuals 204 

observed ballooning (D. fimbriatus: 14%, D. plantarius: 2.9%) for 2019. We considered that 205 

the probability of a settlement was similar for both species. Also, we hypothesized that it 206 

takes two years for a newly colonized area to produce new propagules, based on the >2-207 

year lifespan of spiders in Northern Europe (Duffey 2012).  208 

Accounting for landscape connectivity 209 

We used the Circuitscape software (Shah and McRae 2008) to predict the potential dispersal 210 

corridors that Dolomedes could use to colonize their suitable habitat. Circuit theory estimates 211 

multiple pathways based on the resistance and conductance of the landscape (McRae et al. 212 

2008). We used the habitat suitability prediction map from our BLU model to define the 213 

resistance map used by Circuitscape. We transformed the estimates of habitat suitability 214 

according to recommendations in Keeley (Keeley et al. 2017; see also Supplementary 215 

material Appendix 3).  216 

We used a "wall-to-wall" approach (Pelletier et al. 2014, Febbraro et al. 2019) which 217 

estimates the conductivity of the landscape from South to North, and from West to East. A 218 

consensus map was produced by multiplying the resistance layers of different directions. 219 

This consensus map was an estimation of the landscape connectivity for the two species. 220 

The consensus map was binarized by considering conductance higher than mean 221 

conductance plus standard deviation as corridors (Febbraro et al. 2019). Areas outside 222 

corridors were then considered as a barrier to short-distance dispersal in Migclim. Migclim 223 

was parametrized as for the model Disp but accounting for the landscape connectivity barrier 224 

to make predictions for model DispCS. 225 
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Range expansion and geographic overlap in time 226 

We compared suitable habitat predicted across species, models, and scenarios. To estimate 227 

the range expansion or reduction in the future, we used the biomod2 package in R. We 228 

compared the direction of the shift in suitable habitat by calculating the centre of gravity of 229 

the suitable range with the SDMTools package (Supplementary material Appendix 1). To 230 

estimate the overlap of suitable habitat range between species for each time/scenario 231 

combination, we used the Schoeners’ D overlap metric (Warren et al. 2008), which ranges 232 

from 0 for no overlap to 1 for full overlap (Rödder and Engler 2011). We estimated the suitable 233 

habitat range overlap and not the full niche overlap here. We calculated D with the ENMtools 234 

package (Supplementary material Appendix 1). 235 

Results 236 

Modelling and model validation 237 

The predictive performance of both Bioc and BLU models was higher than the threshold with 238 

either the ROC (>0.7) or the TSS (>0.4) metric (Supplementary material Appendix 4, Tab. 239 

A2). The relative contribution of predictors was the same across models and species, with 240 

mean annual temperature the most important variable with a contribution higher than 60%. 241 

For Bioc, mean temperature of the warmest month was also important, with a higher 242 

contribution for D. fimbriatus than for D. plantarius (33% and 11%, respectively). Mean 243 

temperature of the wettest quarter, annual precipitation and mean diurnal range contributed 244 

less than 10% to both models. Forest and ground wetness contributed more than grassland 245 

in the BLU models, but their relative contribution was less than 16%. 246 

Range expansion and geographic overlap in time 247 

The size of the predicted / projected range was similar for both Bioc and BLU models. 248 

However, range expansion was predicted to be more restricted when also acccounting for 249 

land use (BLU) than when considering only climatic variables (Bioc). Indeed, adding land 250 
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use variables contracted the suitable habitat at the limit of the range. Suitable range was 251 

also smaller for RCP4.5 than for RCP8.5, with similar patterns in time, except for D.fimbriatus 252 

where the range was reduced in 2070 compared to current under model BLU (figure 3). 253 

Under RCP4.5 scenario, the suitable range was predicted to increase for both species in 254 

2070 with the BLU model (14% for D. fimbriatus and 161% for D. plantarius). With model 255 

Disp, the range should decrease in 2050 for D. fimbriatus (20% decrease) and for D. 256 

plantarius (66% decrease; figure 3). Both species should be able to fill the suitable range 257 

towards 2070, but both should have a limited spread on the range of suitable habitat under 258 

Disp (figure 3 and 4; 14% increase under BLU and 4% under Disp for D. fimbriatus; 161% 259 

and 16%, respectively, for D. plantarius). The range of both species should shrink under 260 

DispCS (81% in 2050 and 76% in 2070, compared to current suitable habitat for D. 261 

fimbriatus; 88% and 53%, respectively, for D. plantarius). 262 

The southern part of the suitable range should shrink, especially in Sweden and, to a lesser 263 

extent, in Finland. This range should expand in northern Fennoscandia (figure 4). According 264 

to model dispCS, tis shift should occur towards the North-Est, with a limited spread in 265 

southern Finland (figure 3). Similarly, the range of suitable habitat for D. plantarius should 266 

also increase towards the North-East under model Disp (figure 5). The shift of the centre of 267 

gravity is at a higher distance for the models which exclude Dispersal (Bioc and BLU) than 268 

model including dispersal (Disp and DispCS). The centre of gravity shifts farther without 269 

dispersal (models Bioc and BLU) than with dispersal (models Disp and DispCS).  270 

The predicted distribution overlap between species was higher when considering only 271 

climatic variables than when accounting for land use at current time (Bioc model). Under the 272 

BLU model, the overlap should increase through time and is more important for the scenario 273 

SRCRCP8.5 than the 4.5 one (Schoener’s D values ranging from 0.55 at current time to 0.62 274 

in 2070 for RCP4.5, it reached 0.68 under 8.5). The overlap should mainly occur at the 275 
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Southern range of Dolomedes fimbriatus distribution (figure 6; Supplementary material 276 

Appendix 4, Tab. A4). 277 

Discussion 278 

Using species distribution models (SDM), we highlighted different range expansions and 279 

shifts of two closely related fishing spiders species in Fennoscandia. According to our 280 

predictions, the range of suitable habitat should spread for both D. fimbriatus and D. 281 

plantarius. Our climatic and habitat models (Bioc and BLU) confirmed the expansion of D. 282 

plantarius in Fennoscandia predicted by Leroy et al. (2013, 2014). In contrast, our hybrid 283 

models including dispersal and landscape connectivity (Disp and DispCS) predicted a more 284 

limited expansion.  285 

Northward range expansion of both Dolomedes species 286 

A northward expansion in Fennoscandia is expected for the two species under both Bioc and 287 

BLU models. The range of suitable habitat should increase with the intensity of the climate 288 

change for D. plantarius and for D. fimbriatus in 2050. This northward expansion s also 289 

predicted in other taxa, as climate change promote an expansion of the range at the colder 290 

margin (Parmesan and Yohe 2003, Parmesan 2006). An increase in annual mean 291 

temperature and in temperature of the warmest month, which are the most important 292 

variables for both models, could impact the lifespan of the two spider species, and affect their 293 

distribution. Higher temperatures could increase the suitable period to produce juveniles, 294 

which could in turn increase the number of juveniles dispersing. The temperature 295 

encountered by juveniles also influences the dispersal ability and mode (ie, long vs short 296 

distance dispersal; Bonte et al. 2008b). Moreover, latitude and climate affect the time at 297 

which the Dolomedes reach maturity (Duffey 2012). This could increase the frequency of a 298 

second brood, which we already observed in September (unpublished data). Such an 299 

increase in temperature could, in turn, influence the speed of colonization of new habitats. 300 
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The inclusion of land use in BLU models shrinks the range of suitable habitat, which confirms 301 

results from other, similar studies (Eskildsen et al. 2013) 302 

Under the Disp model, suitable habitat should be less reachable for D. plantarius than for D. 303 

fimbriatus. The size of the area reached under the Disp model should be smaller than the 304 

current area for both species. In 2070, D. fimbriatus should have a range slightly equivalent 305 

to the suitable habitat estimated under BLU, whereas it should be smaller for D. plantarius. 306 

The limited expansion of D. plantarius is explained mainly by dispersal ability. Indeed, we 307 

observe fewer spiderlings of D. plantarius showing dispersal behaviours, including long-308 

distance dispersal through ballooning (unpublished data). Non-filling the suitable range is 309 

usually explained by either or both past and current limited dispersal, as exemplified by trees 310 

species (Svenning and Skov 2004). Some species are trapped in their geographical range, 311 

species which distribution has not changed since the last glaciation. Under a changing 312 

climate, species answer whether through microevolution or adaptive phenotypic plasticity 313 

(Radchuk et al. 2019). Some species are not yet able to adjust their phenology and 314 

physiology to changes induced by climate change. The importance of short-distance 315 

dispersal in fishing spiders should nonetheless maintain genetic exchange, or avoid genetic 316 

drift, at a smaller scale (Bell et al. 2005). A possible prevalence of this behaviour might also 317 

reinforce the importance of shorter dispersal as climate change and other factors like the 318 

increase of habitat fragmentation decrease long-distance dispersal of spiders (Bonte et al. 319 

2006). 320 

Geographic range overlap and coexistence 321 

The geographic and climatic niche of D. plantarius are included in the realised niche of D. 322 

fimbriatus. The first is a habitat specialist, the last is a generalist species living in a wider 323 

variety of environmental conditions over its range. Climate change increases the chance of 324 

overlap between these two sister species. However, we did not make predictions at a meso- 325 
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or microhabitat scale, which would be too fine for SDMs. Yet, field observations suggest that 326 

both Dolomedes species also co-occur at finer spatial scales (Duffey 2012). The discrete 327 

nature and propensity to hide and dive of D. plantarius (van Helsdingen 1993), together with 328 

possible misidentification (Bellvert et al. 2013, Ivanov et al. 2017) might explain the small 329 

number of records and of co-occurrences. In North America, closely related species of 330 

Dolomedes like D. trition and D. vittatus were reported to co-occur at small spatial scales 331 

(Carico 1973). 332 

Usually, closely related species co-occur less often than moderately related species 333 

(Weinstein et al. 2017). One one hand, an increase in co-occurrence might limit the 334 

distribution by segregation at the landscape scale. Indeed, the number of interactions 335 

between species in the ecosystem increases with climate change (Montoya and Raffaelli 336 

2010), which generates a spatial separation between generalist and specialist species. 337 

Sympatric sister species usually diverge ecologically (Losos 2008), Dolomedes species differ 338 

in terms of habitat use (Duffey 2012). D. plantarius needs open habitat with slow-flowing 339 

water and water all year, while these factors do not seem to restrict D. fimbriatus 340 

(unpublished data). On the other hand, spatial segregation might occur at the micro-habitat 341 

scale. For instance, a study on Tetragnatha spiders showed that one of two co-existing spider 342 

species builds nursery webs higher in the vegetation when they co-occur (Williams et al. 343 

1995). Finally, an increase in co-occurrence might lead to phenological shift in co-existence 344 

sites. Our observation in two Swedish locations of D. fimbriatus females with juveniles in the 345 

nursery while D. plantarius still carried egg sacs could support this. Other closely related wolf 346 

spider species (Lycosidae) also show differences in the timing of their breeding season to 347 

avoid intraguild predation (Balfour et al. 2003). 348 
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Intrinsic limits of hybrid SDMs 349 

Ideally, a mechanistic model should account for all phases of dispersal, ie, emigration, 350 

transfer, settlement, (Travis et al. 2012, 2013). The SDM accounting for dispersal which we 351 

used here it not a mechanistic model but is rather based on assumptions concerning the 352 

three stages of passive dispersal. Further studies should consider factors which influence 353 

individuals’ dispersal such as food availability (Bonte et al. 2008a), presence of 354 

endosymbionts (Goodacre et al. 2009), presence of conspecific in the short-long distance 355 

dispersal allocation (De Meester and Bonte 2010), or genetically inherited boldness (Bonte 356 

and Lens 2007). Since dispersal is not homogeneous within and among species (Clobert et 357 

al. 2009), a more realistic model should include information on dispersal and population size 358 

for each presence observation. The sampling of all sites is necessary to collect this 359 

information. There is a considerable gap between the theory and actual applications of data-360 

demanding mechanistic SDMs (Briscoe et al. 2019). Knowing that the most used habitat is 361 

not necessarily the most suitable for the fitness of the species (Titeux et al. 2019), we used 362 

a hybrid model based on the lack of sufficient data for a full mechanistic model. 363 

Less snow cover leads to less insulation, and thus, to colder subnivean habitat, where fishing 364 

spiders overwinter (Slatyer et al. 2017). Accounting for thermal niche information is possible 365 

with mechanistic models (Ceia-Hasse et al. 2014; Sinervo et al. 2010). However, the current 366 

knowledge of eco-physiological responses of fishing spiders to climate change is too scarce 367 

to allow fully mechanistic models. 368 

Conservation of fishing spiders 369 

Fennoscandia may become a climatic refugium for D. plantarius as its range in continental 370 

Europe is expected to decrease (Leroy et al. 2013, 2014). The stronger the climate is, the 371 

more likely Fennoscandia will act as a refugium. The overlap between the two Dolomedes 372 

species should also increase with the climate change intensity. Arthropods conservation is 373 
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challenging because of the fine-grain level needed as compared to vertebrates, the low 374 

empathy towards invertebrates, and the lowest number of conservation specialists available 375 

(Cardoso et al. 2020, Samways et al. 2020). Nonetheless, spiders have already been used 376 

as bio-indicators (Marc et al. 1999, Prieto-Benítez and Méndez 2011). Our models suggest 377 

that the conservation of both species is necessary as the reachable range size should 378 

drastically decrease in the future when accounting for dispersal and landscape connectivity. 379 

Conservation of preserved sites in a stepping-stones scheme is an alternative for species 380 

that are not able to use corridors (Noss and Daly 2006). Maintaining interconnected suitable 381 

sites in the first five kilometres around sites with known presence should help conserve 382 

current sites and promote expansion. With respect to fishing spiders, priority should be given 383 

to sites in southern Finland and central Sweden, where there is limited connectivity, and the 384 

spread of Dolomedes species is limited. Since D. fimbriatus has higher dispersal abilities, 385 

improving the connectivity in the North of the suitable range to make it reachable should 386 

improve the future range.  387 

This work, together with other studies on Dolomedes, could be used to update the now 388 

outdated range assessment of D. plantarius (World Conservation Monitoring Centre 1996). 389 

The species’ conservation would benefit from such an update.  390 
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Figures 616 

Figure 1: Flowchart of the framework used to study the future distribution of the two European 617 

fishing spiders (Bioc: bioclimatic only model, BLU: bioclimatic and land use model, Disp: 618 

dispersal model, DispCS: dispersal and landscape connectivity model).  619 
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Figure 2: Dolomedes plantarius (green triangles) and Dolomedes fimbriatus (purple dots) 620 

records in Fennoscandia as of October 2019. Data were extracted from the GBIF database 621 

and supplemented by field samplings.  622 
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Figure 3: Range size in number of cells of suitable habitat predicted by the different SDMs 623 

in time per species and scenarios. (dark purple: Bioc model: bioclimatic variables only; dark 624 

blue: BLU model, bioclimatic + land use; Turquoise: Disp model with dispersal; green: 625 

DispCS model: dispersal and landscape connectivity).  626 
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Figure 4: Map of the forecasted suitable habitat with an estimation of the reachable range 627 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 6, 2020. ; https://doi.org/10.1101/2020.06.05.136044doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136044
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

33 

predicted by the dispersion model (Disp) and reachable area from the connectivity model 628 

(DispCS) under the RCP4.5 scenario (RCP: Representative Concentration Pathway; in dark 629 

brown the reachable habitat for D. plantarius under Disp (a and b) and DispCS (c and d); in 630 

dark blue the reachable for D. fimbriatus under Disp (e and f) and DispCS (g and h); in black: 631 

unsuitable habitat; in grey: previously occupied habitat lost; in light brown and light blue: 632 

suitable but non reachable habitat).  633 
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Figure 5: Shift in the centre of gravity of the two species distributions predicted by the four 634 

SDMs; solid lines: shift from current to 2070; dashed lines: shift from current time to 2050 635 

and from 2050 to 2070. Dark purple: Bioc model; dark blue: BLU model; turquoise: Disp 636 

model; green: DispCS model.  637 
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Figure 6: Range overlap predicted by model BLU from current time to 2070 under scenario 638 

RCP4.5. In addition to overlap of suitable range, suitable habitat for each species is 639 

represented.dark purple: suitable habitat for D. fimbriatus; green: suitable habitat for D. 640 

plantarius; yellow: suitable habitat overlapping between the 2 species. 641 
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