
Cryo-electron microscopy (cryo-EM) enables macromolec-
ular structure determination in vitro and in situ. In addi-
tion to aligning individual particles, accurate registration 
of sample motion and 3D deformation during exposures 
is crucial for achieving high resolution. Here we describe 
M, a software tool that establishes a reference-based, 
multi-particle refinement framework for cryo-EM data 
and improves the results of structure determination. M 
provides a unified optimization framework for both in 
vitro frame series and in situ tomographic tilt series data. 
We show that tilt series data can provide the same resolu-
tion as frame series, indicating that the alignment step no 
longer limits the resolution obtainable from tomographic 
data. In combination with Warp and RELION, M improves 
upon previous methods, and resolves a 70S ribosome 
bound to an antibiotic inside bacterial cells at a nominal 
resolution of 3.7 Å. Thus, computational tools are now 
available to resolve structures from tomographic in situ 
cryo-EM data at residue level.

INTRODUCTION
Single-particle analysis1 (SPA) is the image analysis technique 
that established cryo-electron microscopy2 (cryo-EM) as a wide-
ly used method for macromolecular structure determination3, 4. 
In the SPA workflow, many noisy 2D observations of macromo-
lecular particles made in a transmission electron microscope 
(TEM) are iteratively aligned, classified and averaged to recon-
struct high-resolution 3D maps of the macromolecules’ Cou-
lomb potential1. A central assumption in SPA is that each image 
shows a single particle in isolation, and can thus be analyzed in-
dependently of other particles.

Typical cryo-EM micrographs capture a multitude of macro-
molecular particles embedded in a layer of amorphous ice. As 
the sample is irradiated with electrons, mechanical instrument 
instabilities and beam-induced motion (BIM) lead to changes 
in particle positions and orientations throughout the exposure5. 
If left uncorrected, these changes decrease the apparent image 
quality and limit the map resolution. Exposure fractionation into 
multiple frames captures the particles at several steps along their 
trajectories. At fine enough fractionation and accurate motion 
registration, the detrimental effects of sample movement can be 
reversed to obtain better maps6, 7. Unfortunately, the granularity 
of the motion model is limited by the low signal per particle. Al-
though each particle’s trajectory is unique, correlations between 
particles exist on a local scale and can be used to regularize the 
motion model6, 8. It is thus beneficial to treat the contents of a mi-
crograph as a physically connected multi-particle system rather 
than isolated particles.

Two types of cryo-EM data are typically analyzed to obtain 
high-resolution maps: First, in vitro samples of proteins are pre-

pared at concentrations where individual particles can be distin-
guished in 2D projections, and fractionated exposures at con-
stant stage orientation (“frame series”) are acquired. Second, in 
situ samples that capture portions of crowded cellular environ-
ments, or samples containing multiple particles in close proximi-
ty and/or stacked along the projection axis, require a tomograph-
ic approach to distinguish the particles in 3D. To achieve this, 
the microscope stage is tilted to different angles between sub-ex-
posures (“tilt series”). Within one tilt series, each sub-exposure 
usually also comprises a frame series (called here a “tilt movie”). 
Mechanical instability requires the stage position and orienta-
tion at each angle to be introduced as additional variables during 
processing. Thus, frame series can be treated as a special case of 
tilt series, and approaches designed for tilt series can be used for 
frame series as well. Map refinement from tilt series data is often 
called “sub-tomogram averaging” due to its use of intermediate 
3D reconstructions for each particle9, 10 instead of 2D images. Be-
cause the refinement of both data types falls conceptually under 
the SPA umbrella, and because the approach we introduce does 
not use sub-tomograms, we use “SPA” for both cases here.

At the data pre-processing stage, when no particle positions 
and reference maps are available, the sample motion model can 
be fitted based on raw data alone using reference-free approach-
es6, 7, 11-13. Frame series are aligned and averaged in 2D, whereas 
tilt series are aligned and used to reconstruct tomograms. The re-
sults are fed into an SPA pipeline to obtain 3D references. A ref-
erence-based algorithm can then be used to improve the motion 
model accuracy by aligning individual particle frames or tilts to 
high-resolution reference projections. Such algorithms exist for 
both frame and tilt series data8, 14, 15, and most of them improve 
the accuracy by enforcing local smoothness between particle tra-
jectories on different spatio-temporal scales. Although most mo-
tion registration algorithms exploit the multi-particle nature of 
the data in some way, their implementations remain different for 
frame and tilt series data, and limited to only one reference spe-
cies even in highly heterogeneous data sets. Furthermore, they 
are decoupled from other parts of the refinement process, such 
as rotational alignment and contrast transfer function (CTF) fit-
ting. This leads to a fragmented workflow and decreased conver-
gence speed, potentially limiting the final map resolution.

Here we present M, a software tool that integrates refer-
ence-based refinement of particle motion trajectories with 
other parts of the SPA pipeline in a user-friendly manner. We 
formulate our approach explicitly in a multi-particle framework, 
which allows us to unify the processing of frame and tilt series, 
define a set of intuitive regularization constraints, and include 
any number of particle species at different resolutions. Coupled 
with a robust approach to CTF correction and with neural net-
work-based map denoising, M achieves higher resolution on 
several exemplary frame series and tilt series data sets compared 
to other methods14-17. We demonstrate how various features 
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of M contribute to these improvements, and achieve the same 
high resolution for frame series and tilt series data given similar 
amounts of particles. Most strikingly, we use M to visualize a 70S 
ribosome bound to an antibiotic in its native cellular context at 
residue-level resolution from in situ tilt series data.

RESULTS

Overall design
M was designed to form the last part of a largely automated cryo-
EM data pre-processing and map refi nement pipeline – preced-
ed by Warp12 and RELION18, or compatible tools (Fig. 1). Warp 
performs initial, reference-free motion correction and CTF es-
timation on frame series or tilt movies during data acquisition. 
For tilt series pre-processing, Warp, starting with version 1.1.0, 
automatically calls routines from IMOD19 to perform the initial 
tilt series alignment, estimates per-tilt CTF using the tilt angles 
as constraints, and reconstructs the tomographic volumes at a 
large pixel size for visual analysis and particle picking. Warp then 
picks the particles using a convolutional neural net-based (CNN) 
approach for frame series, or template matching for frame or tilt 
series, and exports them as images or reconstructed volumes de-
pending on the data type. In case of tilt series, 3D CTF volumes 
containing the missing wedge and tilt-dependent weighting in-
formation are generated for each particle20. Th e particles are then 

refi ned and classifi ed in RELION using a multitude of strategies 
available there21. All classes and their respective refi nement re-
sults are fi nally imported into M to perform a more accurate, ref-
erence-based, multi-particle frame or tilt series refi nement and 
obtain the fi nal high-resolution maps. Optionally, the refi ned pa-
rameters can be used to re-export more accurately aligned parti-
cles for further classifi cation in RELION or compatible soft ware. 
Th e new alignments can be applied to generate 3D volumes at 
higher resolutions to be used for further particle picking.

M provides a graphical user interface (GUI) that allows the 
user to create, import, export and manage data. Projects are or-
ganized as “populations”, which contain “data sources” and “spe-
cies”. A data source is a set of frame or tilt series, that stem ideally 
from the same sample grid and acquisition session. A species is 
any distinct type of macromolecule, or its compositional and 
conformational sub-state. Each version of a data source or spe-
cies is tracked using a cryptographic hash of its current state, the 
preceding version, and the processing parameters connecting 
them. Th e entire refi nement evolution can be tracked as a di-
rected graph, parts of which can be stored in diff erent locations 
while remaining uniquely connected through the hashes. Th us, 
multiple users can process diff erent collections of data sources 
and species independently and merge them later. Th is is espe-
cially useful for processing in situ data sets, where each user may 
process only a small fraction of all species contained and every-
one would benefi t from pooling data and results together.
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Figure 1 | Th e Warp–RELION–M pipeline for frame and tilt series cryo-EM data refi nement
Electron microscopy data are pre-processed on-the-fl y in Warp, which then exports particles as images or sub-tomograms. Particles are imported in 
RELION, where they can be subjected to a multitude of processing strategies, resulting in 3D reference maps, global particle pose alignments, and 
class assignments. Th e particle population encompassing all classes is then imported in M, where reference-based frame or tilt image alignments 
are performed simultaneously with further refi nement of particle poses and CTF parameters to improve resolution. Finally, M produces high-res-
olution reconstructions that can be used for model building. Alternatively, the improved alignments can be used in Warp to re-export particles for 
further, more accurate classifi cation in RELION.
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Multi-particle system modeling
M considers the entire field of view of a frame or tilt series as a 
physically connected system of particles (Fig. 2a). The particles 
can belong to different refined species, which can be of varying 
size, symmetry, and resolution. As parts of the same system, the 
particles are subject to the same global transformations such as 
the translation and rotation of the microscope stage, as well as 
locally similar transformations caused by BIM that result in ap-
parent translation and rotation of particles. M performs a refer-
ence-based registration of these transformations (Fig. 2b), and 
reverses them when back-projecting individual particle frame or 
tilt images to obtain more accurate reconstructions.

In frame series, all transformations occur in the same image 
reference frame. Their combined effects are parametrized as a 
pyramid of 3D cubic spline grids, where the top grid has low 
spatial and per-frame temporal resolution, and subsequent grids 
have increased spatial and decreased temporal resolution. This 
model is similar to the one used in Warp but fits more param-

eters due to the higher accuracy of reference-based registration. 
The user can set the spatial resolution of the top grid to adjust 
the model’s resolution to the available signal. In addition to im-
age-space warping, M can fit doming-like motion that is known 
to occur at the beginning of an exposure5. This is implemented 
as parameter grids for defocus and orientation offsets with 3x3 
spatial and per-frame temporal resolution.

In tilt series, M distinguishes image-space and volume-space 
effects because the tilt images show the volume from different 
angles. Image-space transformations are parametrized as a 3D 
cubic spline grid with per-tilt temporal, and a spatial resolution 
set by the user depending on the available signal. Additionally, 
parameters of a coarse 3D cubic spline grid can be fitted for every 
tilt movie to account for the significant exposure and deforma-
tion captured in each of them. Volume-space transformations, 
such as the shearing of a thick sample, are modeled as a 4D pa-
rameter grid with quadrilinear interpolation, with the accumu-
lated exposure as the temporal dimension. Because M does not 
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Figure 2 | Multi-particle system modeling and optimization
M employs a reference-based multi-particle optimization to model sample deformation and improve map resolution.
(a) Particles are treated as isolated entities in SPA. Each particle has its own cost function based on the similarity between a simulated reference 
projection and the experimental particle image, which is optimized independently. However, particles in a real sample are physically connected 
and experience locally similar effects during exposure. Each imaged location is modeled as a multi-particle system. Its state model is fitted using 
a single cost function, which compares simulated reference projections to all experimental particle frame or tilt images. The particle poses in each 
frame or tilt are additionally affected by the modeled deformation of the multi-particle system, which is optimized together with the per-particle 
pose alignments.
(b) The multi-particle system deformation model incorporates several modes: Global movement and rotation to account for inaccuracies in stage 
movement between frames and stage rotation between tilts; image-space warping to model local non-linear deformation in the 2D reference frame 
of a frame or tilt image; volume-space warping to model the movement of overlapping particles perpendicular to the projection axis (tilt series 
only); doming to account for the hypothesized bending of a thin sample along the projection axis (frame series only).
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average particle frames or tilts in intermediate steps, per-particle 
translation and rotation trajectories can be fitted to model the 
most local transformations. The temporal resolution of the tra-
jectories can be set for each species depending on its size and 
thus the signal available per particle.

To test the various features of M, we collected cryo-EM frame 
and tilt series data on an apoferritin sample (data sets AF-f and 
AF-t, see Methods). Using the frame series data, we show the 
benefit of considering the particles of multiple species in refine-
ment. To this end, we artificially split the apoferritin population 
in 2 species comprising 5% or 95% of the particles (Fig. S1a). 
No structural similarity between the two species was assumed 
during refinement. Refining the 5% species alone produced a 3.2 
Å map, while adding the 95% species to the multi-particle sys-
tem improved the map calculated from the 5% species to 2.8 Å 
(Fig. S1b). This demonstrates that our multi-species refinement 
approach can improve the resolution for heterogeneous data sets.

Correction of electron-optical aberrations
In addition to a geometric deformation model, M fits CTF pa-
rameters and higher-order aberrations including beam tilt. For 
frame series, defocus is optimized per-particle, similar to cis-
TEM16 and recent RELION versions17. For tilt series, defocus is 
optimized per-tilt, similar to the capability offered in emClarity14. 
For both types of data, astigmatism, anisotropic pixel size and 
higher-order aberrations are fitted and corrected per-series. 

CTF correction at high defocus can introduce artifacts if the 
chosen particle box size is too small to retain high-resolution 
Thon rings, leading to their aliasing (Fig. S2a) and limiting the 
resolution for many combinations of high defocus images and 
small particles. M automates the selection of a sufficiently large 
box size at which the data are pre-multiplied by an aliasing-free 
CTF. The images are then cropped in real space. To match the 
underlying CTF of these images, correctly band-limited CTF2 
images are constructed in a similar way (Fig. S2a). Both are then 
used for refinement and reconstruction. 

We show the benefit of this approach by reconstructing a 
map from a previously refined high-defocus tilt series of HIV1 
virus-like particles (“TS_01”, EMPIAR-10164). Using twice the 
particle diameter as the box size, the resolution is limited to 3.9 
Å as the average sign error of the aliased CTF increases (Fig. S2b). 
Pre-multiplying the data and CTF at an aliasing-free size and 
then cropping them significantly improved the resolution to 3.2 
Å using the same reconstruction box size. Only pre-multiplying 
the data but using an aliased analytical CTF2 for the Wiener-like 
reconstruction filter did not decrease the nominal resolution in 
this case. However, for algorithms that would use such aliased 

models during refinement and classification as well, we expect 
these effects to be more noticeable. This approach improved the 
empirically estimated per-tilt series weighting factors (see Meth-
ods) for high-defocus data to the level of low-defocus data for 
the entire EMPIAR-10164 data set (Fig. S2c).

Optimization procedure
M optimizes all selected hyperparameters describing geometric 
deformation (Fig. 2b), electron-optical aberrations, and particle 
pose trajectories, simultaneously. Because exhaustive search over 
an ensemble of thousands of parameters would be impossible, 
M performs a local, gradient descent-type optimization using 
the Limited-memory Broyden–Fletcher–Goldfarb–Shanno 
(L-BFGS) algorithm22. To compute the derivatives for the vari-
ables efficiently, M precomputes sets of weights using a strategy 
similar to Warp’s12 (see Methods). Derivatives for many of the pa-
rameters can then be computed as weighted sums of per-particle 
image derivatives, which in turn are calculated using GPU-accel-
erated routines. The optimization procedure considers the signal 
of all defined particle species simultaneously to maximize the 
particle density in each frame or tilt series, thus increasing the 
hyperparameter fitting accuracy for heterogeneous data sets.

At the end of an optimization iteration, similar to the Fourier 
Ring Correlation (FRC) approach introduced previously23, 24, M 
calculates the per-Fourier component normalized cross-correla-
tion between reference projections and image data. This can be 
used to empirically optimize anisotropic exposure- and tilt-de-
pendent data weighting, and reconstruct new half-maps using 
the updated model, correcting for Ewald sphere curvature25. The 
denoiser routine is based on deep learning and is re-trained on 
the new half-maps (Fig. S3; see Methods). Then, various map 
metrics, including global, local, and anisotropic resolution, are 
calculated. Further optimization iterations can be performed to 
arrive at a denoised or low-pass filtered and sharpened map. Al-
ternatively, 2D particles or sub-tomograms can be extracted and 
reconstructed from the raw data using the updated alignment 
information, to be exported to RELION for further, more accu-
rate classification.

Contribution of different model parameters to map reso-
lution
We used the apoferritin frame and tilt-series data sets, collected 
from the same grid square under identical conditions (see Meth-
ods), to estimate the contribution of different groups of optimiz-
able parameters to the quality of the reconstructed maps (Fig. 
3). For frame series, particles extracted following reference-free 
alignment in Warp and refined in RELION (without polishing 
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Figure 3 | Contributions of individual multi-particle system model components to map resolution
Fourier shell correlation between half-maps for frame series and tilt series apoferritin data obtained through extending the set of optimizable pa-
rameter groups. Starting with the ‘No refinement’ baseline, in top-down order in the legend, a new group of parameters was added, while keeping 
the previously added groups, and refinement was performed from scratch. The resolution for each step is given in the legend.
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and CTF refinement) provided a baseline resolution of 2.75  Å, 
which was then improved by accumulating the following sets of 
optimizable parameters in M: Reference-based global motion 
alignment improved the resolution to 2.73  Å. Relaxing this 
constraint to allow local motion alignment improved the reso-
lution to 2.71  Å. Resolving individual particle pose trajectories 
as a function of exposure led to a resolution of 2.66  Å. Fitting 
per-particle defocus and per-frame series astigmatism and beam 
tilt improved the resolution to 2.45 Å. Data-driven anisotropic 
weight estimation improved the resolution to 2.39 Å. Finally, re-
solving doming-like motion slightly improved the resolution to 
2.32 Å.

For tilt series, sub-tomograms reconstructed following ref-
erence-free tilt movie alignment in Warp, patch tracking-based 
tilt series alignment in IMOD and refinement in RELION pro-
vided a baseline resolution of 4.1 Å, which was then improved 
by accumulating the following optimizations in M. First, refer-
ence-based global tilt image alignment improved the resolution 
to 3.3 Å. Relaxing this constraint to allow local image-space 
warping improved the resolution to 2.84 Å. Resolving individual 
particle poses as a function of exposure increased the resolution 
to 2.75 Å. Fitting per-tilt defocus and astigmatism, and per-tilt 
series beam tilt improved the resolution to 2.59 Å. Data-driven 
anisotropic weight estimation improved the resolution to 2.50 Å. 
Finally, reference-based tilt movie alignment led to a resolution 
of 2.32 Å. Volume-space warping was not tested because the par-
ticles were arranged in a single 2D layer. 

From these tests, we conclude that accurately registering im-
age-space deformation is essential for obtaining high-resolution 
maps from frame and tilt series data, whereas modeling other 
effects leads to smaller improvement that may generally only 
become significant in the sub-5 Å resolution range. Initial ref-
erence-free alignment is significantly less accurate for tilt series 
than for frame series. However, it is accurate enough to obtain 
initial reference maps and particle poses that can be further re-
fined in M.

Comparison between frame and tilt series performance
Because tilt series are often associated with lower resolution 
compared to frame series, we processed both types of data col-
lected from grid holes in close proximity during the same data 
acquisition session on an apoferritin sample (data sets AF-f and 
AF-t, see Methods) to test potential intrinsic limitations of the 
tilt series data. Given equal amounts of particles, M was able 
to achieve the same resolution with very similar map features 
(Fig. 4) for both frame series and tilt series data. Thus, collecting 

data as tilt series does not incur a resolution penalty. Howev-
er, because tilt series data are still much slower to acquire26 and 
commonly used for more crowded, thicker samples, we expect 
maps derived from tilt series data to remain at lower resolution 
on average. Nevertheless, our results show that there is no intrin-
sic resolution loss when using tilt series over frame series when 
enough high-quality data are collected and optimally processed.

Map denoising and local resolution
Instead of using a traditional Fourier Shell Correlation (FSC)-
based approach for local resolution estimation27, M trains a deep 
learning-based denoiser model using a species’ half-maps to 
filter them to local resolution for the next refinement iteration. 
Because the noise estimation and filtering are done for each half-
map independently, no common artifacts are introduced that 
could be amplified over subsequent refinement iterations. Even 
without local resolution filtering, artifacts may be introduced 
and amplified in regions of significantly lower resolution.

To assess the benefits of M’s denoising, we processed the EM-
PIAR-10288 data set containing the membrane protein canna-
binoid receptor 1-G28. The 3.0 Å map published with the orig-
inal study (EMD-0339) showed overfitting artifacts in the lipid 
bilayer (Fig. S3a). Processing the data with Warp, RELION and 
M led to only slightly improved resolution of 2.9 Å (Fig. S3b) 
using 149,308 particles (ca. 15% fewer than in the original study). 
However, the overfitting artifacts were absent in M’s final recon-
struction (Fig. S3a). This is in line with improvements recently 
demonstrated using different approaches to local map filtering 
that do not rely on conventional FSC-based estimates29, 30.

Comparison with RELION on atomic-resolution frame 
series data
To assess whether M can provide further improvements for frame 
series data processed with RELION 3.1, we refined a previously 
published31 apoferritin data set (EMPIAR-10248). The data were 
acquired on a novel JEOL microscope with a cold field emission 
gun to achieve an atomic resolution of 1.54 Å. Adding M to the 
pipeline improved the resolution to 1.35 Å, revealing densities 
for hydrogen atoms (Fig. S4). This shows that the image artifact 
model implemented in M can correct data at the highest end of 
the SPA resolution currently possible. At this high resolution, we 
were also able to assess the effect of Ewald sphere correction with 
the single side-band algorithm25. Applying it to the reconstruc-
tion alone, as would be possible in RELION 3.0, improved the 
resolution from 1.44 to 1.41 Å. Correcting the particle data and 
considering the sphere curvature during the multi-particle sys-

1.0

0.143

1.67 Å2.32

Frame series
Tilt series

Frame series

Tilt series

Tyr34 Leu148 Pro88 Trp93 Met37

� �

Figure 4 | M achieves similar resolution for frame series and tilt series data
Given equal amounts of frame series and tilt series data of similar quality, M can achieve identical resolution, closing the gap previously assumed 
between both data types. This is exemplified here with the use of apoferritin data collected in both ways on the same grid.
(a) Representative side chain densities observed in the frame series and tilt series maps.
(b) Comparison between the global FSC curves for each map.
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tem refi nement, improved the resolution further to 1.34 Å. Cou-
pled with the demonstrated benefi ts of multi-species refi nement 
and map denoising, this makes M a useful addition to the frame 
series SPA pipeline. 

Comparison with other tools for tilt series data refi nement
To compare M’s reference-based tilt series alignment perfor-
mance with the previously published EMAN215 and emClarity14

packages, we reprocessed some of the data sets used in the re-
spective publications (Fig. 5). EMAN2 reached a resolution of 8.4 
Å on an in vitro 80S ribosome sample (EMPIAR-10064), improv-
ing signifi cantly upon a previous 13 Å result32. For emClarity, a 
resolution of 8.6 Å was reported for the same data14. M improved 
the resolution to 5.7 Å and resulted in a map that clearly showed 
secondary structure elements and the helical groves of the RNA 
(Fig. 5a). We attribute a signifi cant part of this improvement to 
M’s application of constraints between individual particle tilt im-

ages, which is not part of EMAN2.
We further tested M on two data sets used in emClarity’s 

benchmarking. Th e emClarity soft ware reached a resolution of 
7.8 Å on purifi ed 80S ribosomes (EMPIAR-10045) in the orig-
inal publication14, and was later improved to 7.1 Å33, improving 
signifi cantly upon a previous 12.9 Å result20. M improved the 
resolution to 6.0 Å, accompanied by improved resolution isot-
ropy and map features (Fig. 5b). We attribute the improved res-
olution isotropy to M’s denoising-based map fi ltering approach 
that learns the optimal fi ltering empirically, whereas emClarity 
employs a FSC-based approach that may have to be tuned more 
conservatively to achieve the desired robustness to artifacts. 

It was also reported that emClarity achieved a resolution of 
3.1 Å on a thicker sample with a locally high particle density of 
isolated HIV-1 capsid-SP1 assemblies (EMPIAR-10164), im-
proving upon previous 3.9 Å34 and 3.4 Å35 results. M improved 
the resolution to 3.0 Å, accompanied by local improvements in 
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Figure 5 | Comparison of maps obtained from published tilt series using M or other soft ware
When applied to data used previously to test the EMAN15 and emClarity14 packages, M produces maps that compare favorably in terms of resolution 
and visual features.
(a) 80S ribosome data from EMPIAR-10064 were used to benchmark the new tilt series processing in EMAN (EMD-0529). M achieved signifi cantly 
higher resolution, accompanied by visibly better resolved features such as RNA (green arrow) and α-helices (orange arrow).
(b) 80S ribosome data from EMPIAR-10045 were used to benchmark emClarity. Th e originally published map (EMD-8799, not shown) exhibited 
strong resolution anisotropy. A more recently updated map shown here33 still suff ered from resolution anisotropy (“smearing” direction indicated 
by orange arrows). M achieved a slightly higher and more isotropic resolution, aiding the map’s interpretability.
(c) HIV-1 capsid-SP1 data from EMPIAR-10164 were used to benchmark emClarity. Here, M achieved slightly higher resolution using ca. 30% of 
the particle number used by emClarity. Doubling the number of particles did not increase the resolution.
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map quality (Fig. 5c). We attribute the slight improvement of 
overall resolution in both data sets to M’s more accurate defor-
mation model and simultaneous optimization of all parameters, 
in contrast to emClarity’s separate steps for full image alignment 
(performed in IMOD19) and particle alignment (performed in 
emClarity). Our results show that M can improve over current 
methods, and achieve higher resolution with various tilt series 
data sets.

M enables the visualization of an antibiotic bound to 70S 
ribosomes at 3.7 Å in situ
To assess M’s performance on in situ data in the strictest sense, 
i.e. in tilt series obtained from intact cells, we used a data set 
of chloramphenicol-treated Mycomplasma pneumoniae36. M was 
able to resolve the 70S ribosome at 3.7 Å (Fig. 6a,d) based on 
24,202 particles from 65 tomograms. Th e obtained map exhib-
ited a wide range of local resolution values (Fig. 6b,d). Th e large 
50S ribosomal subunit dominates the alignment and had a high-
er average resolution than the small 30S subunit, with much of 
its core reaching the 3.4 Å Nyquist limit of the data. In contrast, 
processing these data with Warp and RELION alone led to a 10 
Å-resolution map of the 70S ribosome (Fig. 6c). M’s result consti-
tutes a dramatic improvement compared to the previously used 
Warp-RELION pipeline, leading to a striking increase in struc-
tural detail (Fig. 6e). 

Th e map possesses features typical for this resolution range, 
such as amino acid side chain stubs and β-sheets with individ-
ually resolved β-strands (Fig. 6e). A rigid body fi t of an E. coli
70S ribosome–chloramphenicol structure (PDB-4v7t) further 

revealed the presence of a density corresponding to the chloram-
phenicol molecule at its expected target site (Fig. 6f), marking 
the fi rst direct visualization of a drug bound to its target inside a 
cell. Th e density was absent in a 5.6 Å 70S reconstruction from 
untreated M. pneumoniae cells produced from processing with 
the older 1.0.6 Warp/M versions36 (Fig. 6f). Th erefore, tilt se-
ries data acquisition on an intact cellular specimen with a mean 
thickness of 150 nm, in combination with the multi-particle re-
fi nement introduced in M, can lead to residue-level resolution 
structures of macromolecules in their native biological context. 

DISCUSSION
Here we present M, a cryo-EM map refi nement tool that uses a 
multi-particle approach to obtain improved map resolution. Our 
results confi rm that treating cryo-EM frame and tilt series as 
multi-particle systems rather than sets of isolated particles, and 
integrating their reference-based refi nement with particle align-
ment and CTF refi nement leads to improved map resolution. We 
show that the new framework removes previous technical limita-
tions of tilt series data processing, allowing to achieve resolution 
at par with state-of-the-art frame series results, provided similar 
amounts of data. Although M’s refi nement is constrained based 
on multi-particle assumptions, its image formation and recon-
struction algorithms, as well as RELION’s 3D classifi cation, as-
sume isolated particles. While this is rarely an issue for in vitro
data, refi nement of crowded in situ data stands to benefi t from 
extending these algorithms as well. Future work on reconstruc-
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Figure 6 | M. pneumoniae 70S ribosome-antibiotic map at 3.7 Å refi ned from in situ data with the new Warp–RELION–M pipeline
We applied the Warp-RELION-M pipeline to an in situ tilt series data set36. Th e achieved resolution reveals residue-level detail and a bound mole-
cule of the antibiotic chloramphenicole (Cm).
(a) Isosurface representation of the 3.7 Å resolution map.
(b) Isosurface of the same map colored by local resolution. Despite stalling of the ribosome that is induced by antibiotic binding, residual ratchet-
ing occurs that leads to higher resolution in the large 50S subunit, which dominates the alignment, and lower resolution in the small 30S subunit.
(c) Isosurface of a 10.8 Å map derived from the same data set using only Warp and RELION shows the striking increase in detail aft er refi nement 
with M.
(d) Comparison between the FSC curves of the 3.7 Å and 10.8 Å map shows the increase in resolution achieved with M. Th e overlaid local resolution 
histogram of the 3.7 Å map shows that a signifi cant portion of the map is resolved close to the data’s Nyquist limit of 3.4 Å.
(e) High-resolution features, such as large amino acid side chains (orange arrow) and well-separated β-strands (green arrows), are resolved at a level 
expected for this resolution range.
(f) Atomic model of a Cm-bound 70S ribosome (PDB-4v7w) fi tted into the 3.7 Å map (top) shows correspondence of map density (light green) to 
the Cm molecule (dark green). Fitting the same model into a 5.6 Å in situ map of an untreated 70S ribosome (EMD-10683, bottom) does not show 
any density for Cm, providing a positive control.
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tion and classification algorithms may address this shortcom-
ing by modeling the multi-particle system explicitly to achieve 
higher resolution. More generally, M’s optimization framework 
is flexible and can be extended in the future. 

M’s ability to resolve structures in situ at a resolution previ-
ously considered exclusive to in vitro samples demonstrates that 
structures can be visualized directly inside cells at high resolu-
tion to arrive at atomic models. However, the ribosome is an 
outlier in terms of size and abundance in cells. Whereas signifi-
cantly smaller complexes may be solved to similar resolutions in 
principle, the number of such instances may be limited due to 
the scarcity and heterogeneity of many complexes, and the diffi-
culty of localizing them. Unlike in vitro, proteins cannot be sig-
nificantly concentrated in situ without perturbing the organism. 
The only way to overcome this is to collect more data. Although 
both sample preparation and tilt series acquisition are becoming 
more streamlined, collecting enough particles of a rare protein 
complex to reach high resolution pose an impractical task for a 
single researcher or facility.

To help overcome this limitation, M offers data pooling and 
distributed processing mechanisms. These are powerful tools 
that can be of critical importance to share in situ image data 
and explore their potential by the community. Otherwise, only 
a very small portion of the data will be analyzed by individual 
research teams. We show that including more particle species in 
a multi-particle refinement improves the resolution of all parti-
cle species involved. Thus, everyone would benefit from having 
more proteins identified and refined in their data.

In conclusion, M can be combined with the established pro-
grams Warp and RELION into a powerful, semi-automated pipe-
line for cryo-EM data processing that includes a comprehensive 
and transferable sub-tomogram analysis workflow. This work-
flow avoids the need for conversion of file formats and conven-
tions between different software packages, as currently common 
in the not yet streamlined processing of tilt series37, enabling 
non-expert users to achieve state-of-the-art results. It proves to 
have the potential to achieve residue-level resolution maps of 
particles inside cells and to capture macromolecular machines in 
action within their native environment. Together with comple-
mentary approaches, it further establishes the foundation for the 
emerging field of in situ structural biology. 

MATERIALS AND METHODS

Data management
M requires data sources initialized based on a Warp project fold-
er. Beside a list of frame/tilt series items, it stores the deforma-
tion model to be refined. M saves the refined deformation model 
for each item in the same XML metadata files previously created 
by Warp. Due to a shared code base, Warp can use the updat-
ed model when calculating new frame series averages or tomo-
graphic reconstructions. Multiple data sources of either type can 
be combined in a single population to facilitate the sharing and 
pooling of valuable in situ data that can contribute to far more 
than one project, but do not contain enough data for any single 
project on their own. To account for minor pixel size miscalibra-
tions between different microscopes, the pixel size can be refined 
alongside other parameters in M.

A species is initialized from the refinement results of RELION 
or other compatible software, taking the unfiltered half-maps, a 
mask, and the particle coordinates and poses (i.e. translations 
and rotations) as a starting point. The state of a species after each 
refinement iteration comprises the reconstructed half-maps, 
the weights of the trained denoising model, various filtered and 
sharpened maps, a denoised map, and a list of particle coordi-

nates and poses with multiple temporal sampling points if de-
sired. The particles reference their data source items by their data 
hash to avoid naming conflicts between different data sources.

To enable multiple users to collaborate and pool their results, 
M tracks precisely the chain of refinements and other operations 
on data. After each refinement iteration, a “commit” is generat-
ed to save the new state. Similar to version-control systems like 
Git38, the commit’s hash is based on the exact state of the system 
committed. The hash of each data source item is calculated from 
the raw data, the refined deformation and imaging models, and 
the hashes of all species used for their refinement. The hash of 
each species is calculated based on the half-maps, the weights 
of the denoising model, the particle coordinates and poses, and 
the hashes of all data source items contributing information. The 
hashes can be used to verify a graph representing all steps that 
led to a particular state of a data source or species. Similar to 
the “pull request” mechanism in Git, species can be added to a 
population taking into account potential physical collisions with 
existing particles. This enables the maintenance of a centralized 
population repository from which multiple users can obtain pre-
aligned data sources, identify new particle species or reclassify 
existing particles into more states, and contribute the results 
back to the repository.

Deformation model
For frame series data, deformation of the multi-particle system 
is modeled in the XY plane only, with a pyramid of cubic spline 
grids12 ( ), , F jG id  (where j  is the index within the pyramid, d  is 
the spatial interpolation coordinate, and i  is the temporal in-
terpolation coordinate) going from high temporal/low spatial 
to low temporal/high spatial resolution. This accounts for the 
fast-changing, global stage movement, and the slowly-develop-
ing, local BIM. Furthermore, translation and rotation of individ-
ual particles as a function of exposure can be modeled with 2–3 
control points depending on the particle size and overall expo-
sure.

The model for tilt series data is more complex, owing to the 
higher potential for perturbations in the system between individ-
ual tilt exposures. As the mechanical rotation of the microscope 
stage and the estimated orientation of the tilt axis are imperfect, 
the assumed stage orientation can be randomly off in every tilt. 
M thus refines an independent set of stage rotation angle correc-
tions iw  for every tilt i . These corrections only affect the particle 
orientations to avoid redundancy, as the induced changes in the 
projected particle positions can be fully modeled by a deforma-
tion grid that must already be employed for other purposes. 

Similarly, stage translation varies randomly between individ-
ual tilts. BIM patterns can be very different across adjacent tilt 
images as additional exposures are taken for focusing and track-
ing in-between. Particle positions can further deviate due to oth-
er imaging artifacts, such as wrongly calibrated magnification 
anisotropy39. M employs an “image warp” grid of cubic splines 

TIG  with a spatial resolution of 3–5 in X and Y and per-tilt tem-
poral resolution to model these geometric displacements in im-
age space collectively. Furthermore, in vitro and in situ sample 
types for which tilt series are commonly used contain multiple 
overlapping layers of particles. Some deformations of densely 
filled volumes, such as shearing, or bending in the Z dimension 
when viewed at a high tilt angle, cannot be modeled accurately 
by XY translations in image space. M employs an additional “vol-
ume warp” grid TVG , implemented as a 4D grid of control points 
with quadrilinear interpolation between them that is anchored 
in volume space rather than image space. Hence it rotates with 
the sample and can model slow, continuous deformation that af-
fects the particles’ projected positions in image space. As with 
frame series data, per-particle translation and rotation as a func-
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tion of exposure is also modeled for tilt series.
Finally, a single tilt image exposure is usually fractionated in 

multiple frames, making it a tilt movie. At 1–3 e-/ Å2, the ex-
posure in a single tilt movie is usually short, but still requires 
additional modeling to compensate motion. M parametrizes the 
XY translation as a combination of a grid with no spatial and per-
frame temporal resolution, and a grid with a spatial resolution 
of 3x3 and a temporal resolution of 3. Stage and particle orien-
tations are assumed to remain constant throughout a tilt movie. 
Overall, the number of parameters for tilt series is larger than 
for frame series, requiring a higher particle density to achieve 
equivalent accuracy.

Imaging model
The ability to model imaging conditions such as defocus, astig-
matism, magnification or higher-order aberrations is equally 
important for obtaining high-resolution reconstructions. Frame 
and tilt series offer different advantages for refining some of 
these parameters.

For particles in frame series data, the Z coordinate and thus 
the relative offset from the global defocus of the micrograph is 
unknown. Although local defocus estimation based on ampli-
tude spectrum fitting has been shown to increase resolution12, 
reference-based refinement of per-particle defocus can lead to 
a further increase in resolution17. M refines per-particle defocus 
and a per-series astigmatism for frame series, assuming constant 
values throughout the series.

Tilt series, on the other hand, provide accurate Z coordinates 
for all particles. However, the initial amplitude spectra-based 
global defocus estimates for each tilt have lower accuracy due 
to very short exposures, and cannot be assumed to remain con-
stant throughout the series due to stage movement and refocus-
ing. Furthermore, these estimates can be biased by contrast-rich 
objects that are not the particles of interest, such as a carbon 
film below or above the particles, or the platinum coating layer 
for FIB-thinned samples40. The astigmatism can also change be-
tween tilts due to fluctuating electron optics. M refines per-tilt 
defocus and astigmatism for tilt series, and calculates per-parti-
cle tilt CTFs based on these values and their Z coordinates. Par-
ticles in tilt series can potentially have more accurate defocus 
values because the number of parameters that can be fitted scales 
with the number of tilts or particles for tilt or frame series, re-
spectively. In many cases the number of tilts will be significantly 
lower than the number of particles.

In both frame and tilt series, M also models per-series aniso-
tropic magnification and higher-order optical aberrations. Re-
finement of a global set of Zernike polynomials representing the 
aberrations based on a 2D phase residual image calculated from 
all particles in a data set has been shown to improve the resolu-
tion significantly for slightly misaligned microscopes41. Within 
individual tilt series, too, beam tilt can vary as it is applied to 
compensate stage misalignments during tracking. Unfortunately, 
the signal in individual tilts is insufficient for accurate beam tilt 
estimation, and such an option is not implemented in M.

Optimization procedure
M seeks to maximize the following target function M , which 
is essentially a weighted, normalized cross-correlation between 
all particle images and the corresponding reference projections:
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where s  is a particle species, p  is a particle of that species, and 
i  is the index of a frame or tilt in a series; *  denotes the dot 
product between two complex vectors, where the complex num-
bers are treated as pairs of scalars; ¼  denotes the L2 norm; W  
is the anisotropic exposure- and tilt angle-dependent amplitude 
weighting of frame or tilt i ; P  is a projection operator in Fou-
rier space sampling a central slice of the volume of species s  
at orientation Q , taking into account the anisotropic scaling 
t , bent to account for the Ewald sphere curvature determined 
by the species’ diameter; ×  denotes scalar multiplication; T  is 
the complex-valued beam tilt compensation; FT  denotes the 
discrete Fourier transform; CTF  is the real-valued CTF taking 
into account the defocus at position L  and the astigmatism in 
frame or tilt i ; AS  is the real-valued, rotational average over the 
amplitude spectra of all particle images of all species extracted 
from tilt i  or the average of all aligned frames, used for spectrum 
whitening, scaled and cropped to the respective species size and 
resolution; I  is the FT of a particle image extracted from frame 
or tilt i  at position d , cropped to the respective species resolu-
tion; D  is a soft circular mask with particle diameter d . 

Similar target functions in previous literature used P CTF×  to 
model the contents of I 16, 18. However, in M’s implementation 
I  is pre-multiplied by CTF  to avoid CTF aliasing despite us-
ing small particle windows. This change does not affect the nu-
merator part of M  due to the associativity of complex number 
multiplication; its impact on the denominator part of M  does 
not affect the achieved resolution in any way. It also avoids the 
additional memory footprint of storing pre-calculated CTFs, or 
the computational overhead of calculating them on-the-fly.

M can consider the Ewald sphere curvature during refine-
ment if this is made necessary by a large species and/or high res-
olution42. In this case 2 copies of CTF I×  are prepared using the 
single side-band algorithm25: PCTF I×  and QCTF I× . To calculate 
the cost function, one is correlated with a bent central slice P
, and the other with a central slice bent in the opposite direction. 
The resulting cost functions PM  and QM  are then added. As with 
previous implementations17, the absolute handedness for the 
correction must be provided by the user.

For frame series, the position and orientation of particle p  in 
frame i  are calculated as:

( ) ( )( ) ( )( ), , , , , p i p OF j p F j p p
j j

i G i i G i i Zl l lL = + + +å å  ,

( ), p i p iqQ =  ,

where l  is the value of the refined particle position trajectory 
interpolated at the accumulated exposure of frame i ; OFG  is a 
deformation grid pyramid produced by Warp’s original refer-
ence-free alignment that is not altered in M refinement; FG  is a 
deformation grid pyramid that is refined in M; Z  is the refined 
defocus value of particle p  that is added as the Z coordinate 
to its position; q  is the value of the refined particle orientation 
trajectory interpolated at the accumulated exposure of frame i .

For tilt series, the position and orientation of particle p  in tilt 
i  are calculated as:

( ) ( ) ( )( )( ) ( )( ), , , p i i p TV p V i TI p iR i G i i C C G i i Zl l lL = W × + - + + +  ,

( ) ( ) ( )( )( )1
, p i XYZ i i pR R R R iw q-Q = × W ×  ,

where R  and XYZR  construct a rotation matrix based on a set of 
Euler and XYZ angles, respectively, and 1R-  calculates a set of 
Euler angles based on a rotation matrix; VC  is the center of the 
volume in which the multi-particle system is anchored, and iC  
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is the center of the full tilt image; iZ  is the refined defocus val-
ue of tilt i  that is added to the Z coordinate of the transformed 
particle position; W  is the stage orientation determined in the 
initial, reference-free tilt series alignment that is not altered in M 
refinement; ×  denotes matrix multiplication here.

For frames in tilt movie i , the position of particle p  in frame 
k  is calculated as:

( ) ( ), , , , , , , , , , p k p i OF i j p i TF i j p i
j j

G k G kL =L + L + Lå å  ,

where OFG  is the deformation grid pyramid produced by Warp’s 
original reference-free alignment of the tilt movie that is not al-
tered in M refinement.

Due to the very large number of parameters, M employs 
L-BFGS22 to perform almost all of the optimization. Only the 
initial defocus search is done exhaustively over a limited range to 
avoid getting trapped in a local optimum because of the quick-
ly oscillating nature of the CTF. Every L-BFGS search iteration 
requires the calculation of a partial derivative of the target func-
tion with respect to each optimizable parameter. Reevaluating 
M  twice per parameter to compute the gradient with the central 
differences numerical scheme would be very computationally 
expensive. Like Warp, M takes a computational shortcut for most 
of the parameters. 

Before optimization starts, M calculates the partial derivatives 
of the X and Y components of all , p iL  with respect to all warp-
ing grid parameters and all control points of a particle’s position 
trajectory that affect them. Similarly, the partial derivatives of 
the individual Euler angle components of all , p iQ  with respect 
to all stage angle correction parameters and all control points of 
a particle’s orientation trajectory are calculated. As each param-
eter influences only a small fraction of particle frames or tilts, 
most of the derivatives are 0. They are excluded from the pre-
calculated lists to avoid unnecessary computation. Then, during 
optimization, once per search iteration, the partial derivative of 

( ) 2 2/A B A B*  for each particle frame or tilt is calculated with 
respect to X, Y and the Euler angles. This amounts to evaluating 
M  10 times. A useful approximation for the derivative for each 
parameter h  can then be calculated as follows:
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where { }, , , , x ya f J yÎ , i. e. one of the translation axes or Euler 
angles;   denotes the concatenation of two tuples; ( )a¼  denotes 
the selection of component a  from a tuple.

The deformation parameters make up the bulk of all param-
eters. Parameters such as absolute magnification and beam tilt 
do not benefit from the same shortcut and their derivatives must 
be calculated independently with the central differences scheme. 
The CTF-related parameters are few, but the calculation of their 
derivatives is especially expensive because it requires the parti-
cles to be reextracted at an aliasing-free size, pre-multiplied by 
the altered CTF, and cropped to refinement size – all involving 
expensive FT steps. M calculates the values of M  by adding up 
the results from small batches of particles. This allows the cost 
of the first FT at aliasing-free size to be amortized over all opti-
mizable CTF parameters, as its result is reused for all subsequent 
calculations. The gradients for all per-particle or per-tilt defocus 
and astigmatism parameters can all be calculated in the same 

pass as each of them affects only one particle or tilt.
If defocus is to be optimized, an iterative grid search can be 

executed before the L-BFGS optimization starts. The search runs 
for 5 iterations. For the first iteration, a range of ±300 nm around 
the current values is sampled in 10 nm steps. For each subse-
quent iteration, the search step is halved, and a range of ± the 
new search step around the 2 best values for each particle or tilt 
from the previous iteration is sampled.

Memory footprint considerations
Traditional SPA refinement treats every particle as an isolated 
entity, thus requiring no more than one particle to be held in 
memory at any given time if parallelization is not considered. A 
multi-particle approach, however, needs to rapidly evaluate the 
state of the entire multi-particle system during refinement. The 
particle frame/tilt series need to be stored in memory because 
re-extracting and reprocessing them for every evaluation would 
be too inefficient. While an in vitro sample usually contains a 
single layer of proteins with up to 1000–2000 particles in a field 
of view, a densely packed in situ volume has the potential to con-
tribute tens of thousands of particles to refinement if enough 
species can be identified. The image size is selected to be twice 
the particle diameter to account for signal delocalization and in-
terpolation artifacts, leading to significant overlap even in the 
single-layer case. At high refinement resolution, the memory re-
quirements of all extracted particle frame/tilt series in a system 
can vastly exceed those of the original data, rising to tens or even 
hundreds of gigabytes. 

Although M uses GPUs for acceleration wherever possible, 
currently available consumer-level cards offer up to 12 GB, which 
would be insufficient in many cases. Therefore, the extracted par-
ticle frame/tilt series are held in “pinned” (i.e. page-locked) CPU 
memory where they can be transparently accessed by the GPU. 
Despite the low bandwidth of CPU–GPU memory transfers, 
the GPU does not experience a significant performance penalty 
when correlating them to reference projections. This is because 
the particle data accesses are sequential and highly coalesced, 
whereas the creation of reference projections on-the-fly accesses 
the GPU memory randomly, creating significant overhead. As 
faster CPU–GPU interfaces are being developed, the penalty 
should become more negligible in the future.

Still, memory requirements can become too high even for 
CPU memory. To reduce the footprint, M exploits the varying 
information content of frames/tilts over the course of a series. 
As sample damage from radiation is accounted for by applying 
a Gaussian (“B-factor”) weighting function in Fourier space7, 

17, the contribution of higher-frequency components becomes 
negligible at high exposure. M crops extracted particle images 
in Fourier space to a resolution that corresponds to the weight-
ing function value falling below 0.25, resulting in considerable 
space savings once high resolution is reached. Assuming an in-
crease in the weighting B-factor of 4  Å 2 per 1 e-/ Å 2 of accumu-
lated exposure, the maximum useful frequency at exposure d  

is ( )ln 4 /maxf d= , and the image size m  scales with a factor of 

( )min 1, /max refinef f . Thus, the upper bound for memory consump-
tion in case of low refinement resolution and/or low overall ex-
posure is ( )2O m d , while the lower bound is ( )( )2lnm dW  in case of 
high refinement resolution and/or high overall exposure. 

Avoiding CTF aliasing
Cryo-EM data of thin biological specimens are usually acquired 
at defocus to achieve phase contrast. In the absence of a phase 
plate device, and often in the case of in situ tomography, defocus 
values can exceed 4 µm to enable better visual interpretation of 
the raw data. Higher defocus results in stronger delocalization of 
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the signal in real space, as reflected by faster oscillations of the 
CTF in Fourier space. As the CTF oscillates between -1 and 1, 
combining signals with different defoci would result in an aver-
age value of 0 at higher spatial frequencies. Thus, a phase shift of 
p  must be applied to frequency components modulated by neg-
ative CTF values prior to averaging. Furthermore, it is desirable 
to compute the reconstruction as a weighted average, using the 
CTF for the weighting. Multiplying the FT of a particle image by 
the corresponding real-valued CTF achieves both goals.

Current SPA packages advise the user to select the particle box 
size as 1.5–2 the particle diameter to account for Fourier-space 
interpolation artifacts, not considering the image defocus. When 
an image is cropped around a particle, the Fourier-space mod-
ulation pattern becomes band-limited to the new window size. 
If CTF oscillations are too fast to be resolved, the band-limited 
values for the amplitudes of the corresponding frequency com-
ponents will converge to 0. Even worse, the analytical 2D CTF 
model used in refinement and reconstruction is not band-lim-
ited, and contains solely aliasing artifacts past the Fourier-space 
Nyquist frequency instead of converging to 0. This can put a hard 
limit on the achievable resolution for small particles and those 
acquired at high defocus that is independent of the actual data 
quality.

This problem can be mitigated by selecting a box size large 
enough to avoid CTF aliasing at the highest defocus value in a 
data set. However, the required size m  can exceed 1000 px at high 
resolution or defocus, significantly slowing down refinement al-
gorithms whose complexity and memory footprint are ( )2O m  
and ( )3O m , respectively. This increase can be entirely avoided by 
pre-multiplying particle images by the CTF at an aliasing-free 
size, and cropping them to a smaller size for refinement or recon-
struction. As the modulation pattern is CTF2 after pre-multipli-
cation, the band-limited oscillations will converge to 0.5 instead 
of 0. The 2D CTF model used in refinement and reconstruction 
must be similarly band-limited to match the data. As M operates 
on all particles of an entire frame/tilt series at a time and extracts 
the particle images on-the-fly, such considerations are made au-
tomatically for the currently needed resolution.

The minimum box size needed for CTF correction at a giv-
en resolution is dictated by the maximum oscillation rate of the 
CTF within the available spatial frequency range. This is not nec-
essarily the oscillation rate at the highest spatial frequency as j  
is not a monotonic function: A combination of low underfocus 
and high Cs will cause the oscillations to slow down significantly 
and accelerate again at higher spatial frequencies. The oscillation 
rate can be calculated as the first derivative of j . In practice, it is 
easier to evaluate /d dkj  numerically within the relevant range 
of spatial frequencies to find its maximum absolute value. To 
fully resolve the oscillation, one period must be rasterized onto 
at least 2 pixels, i.e. the window size must be chosen such that 

( )max / 2 / 2d dk pxj p= . While this guarantees a fully resolved CTF 
in 1D, a CTF rasterized on a Cartesian 2D grid has an aniso-
tropic sampling rate. At its lowest, i.e. along the diagonals, it re-
quires 2  the sampling rate of the 1D case.

Before particle extraction, the size padding factor at which 
the images will be pre-multiplied by the CTF has to be deter-
mined, taking into consideration the maximum defocus value 
expected in a frame/tilt series, and the expected maximum reso-
lution. During refinement, the latter is set to the refinement res-
olution. For the final reconstruction, it is set to 1.25x the current 
global resolution. Particles are extracted using the calculated 
minimum box size (or twice the particle diameter in case that 
value is larger), and pre-multiplied by the CTF in Fourier space. 
Then the inverse FT (IFT) is applied, the particles are cropped 
to the refinement or reconstruction size in real space, and trans-
formed back to Fourier space for refinement. The band-limited 

CTF2 model is prepared by simulating the function at the same 
aliasing-free size in Fourier space, cropping its IFT in real space, 
and taking the real components of the result’s FT.

Data-driven weighting
To account for radiation damage as a function of accumulated 
exposure, or increasing sample thickness as a function of the 
stage orientation, several heuristics and empirical approaches 
have been proposed7, 17, 20. By default, M adopts the heuristic in-
troduced in RELION 1.420. The B-factor is increased by 4 Å 2 per 
1 e-/Å2 of exposure, and each tilt is weighted as cosJ . Once high 
resolution is reached, the weights can be estimated empirically 
using a reference correlation-based approach similar to the one 
introduced in RELION 3.017.

In a departure from RELION’s scheme, the normalized cor-
relation (NC) is calculated between particle images and reference 
projections at the end of a refinement iteration are not combined 
across the entire data set. It is kept as a 2D image to enable the 
fitting of anisotropic weights rather than averaging rotationally. 
The correlation data can then be recombined in different ways 
to calculate different kinds of weights. Furthermore, because M 
supports the refinement of multiple species with different reso-
lution, the per-species correlation vectors for each frame or tilt 
need to be combined. This is done by weighting each one by the 
FSC calculated between the half-maps of the respective species. 
This produces a set of vectors , , d i kNC , where d  is the series, i  is 
the frame or tilt, and, optionally, k  is the tilt movie frame.

The procedure then iteratively calculates NC  as:

( )
( )

, , , 

, 

d id i k d i k d i kd i k

d id i k d i kd i k

NC G B B B W W W CTF
NC

G B B B W W W CTF
× + + × × × ×

=
+ + × × × ×

å åå
å åå

 ,

and optimizes the weighting parameters to minimize the fol-
lowing cost function:

( ), , d i k d i k d i k
d i k

C NC NC G B B B W W W= - × + + × × ×ååå  ,

where ×  denotes scalar multiplication; G  is an anisotropic 2D 
Gaussian B-factor weighting function; B  is a vector describing 
the B-factor along the X and Y axes, and their rotation; W  is a 
scalar weight; CTF  is the weighted average of all particle CTFs 
in one frame or tilt. The B-factors in each group are constrained 
such that the highest value in a group is set to 0.

In this default formulation, the weighting scheme allows to 
assign separate weights not only to individual frames/tilts, but 
also to weight the contribution of an entire series. For data with 
high particle density this scheme can be extended to assign dif-
ferent weights to frames/tilts of each individual series. Anisotro-
pic B-factors improve the weighting of frames with significant 
intra-frame motion (Fig. S5). Combined with per-series, per-
frame weighting, such granularity allows to rescue more infor-
mation from the first few frames of an exposure if parts of them 
are less affected by BIM.

Map reconstruction
Previous refinement packages took two different approaches to 
map reconstruction from frame and tilt series data. For frame 
series, weighted averages were prepared either directly from the 
initial, reference-free alignments, or based on a “polishing” pro-
cedure17. These 2D averages were then weighted based on a 2D 
CTF model and a spectral signal-to-noise ratio (SSNR) term18, 
and back-projected to obtain the reconstruction. For tilt series, 
the algorithms operated on intermediate per-particle 3D recon-
structions (‘sub-tomograms’) with fixed translational and rota-
tional offsets between individual tilt images. These 3D sub-to-

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.05.136341doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136341
http://creativecommons.org/licenses/by-nc-nd/4.0/


mograms were then weighted based on a 3D CTF model20 and 
an SSNR term, and back-projected to obtain the reconstruction.

M seeks to unify the handling of both types of data and uses 
the original, non-interpolated 2D data at every step, including 
reconstruction. For tilt series, this approach avoids any arti-
facts from intermediate interpolation and reconstruction steps. 
For frame series, the requirement for identical orientation of all 
particle frames no longer exists as they are not averaged in 2D, 
enabling the modeling of particle orientation as a function of 
exposure. Only for individual tilt movie frames a shortcut is tak-
en to save memory and computation, and they are pre-averaged 
in 2D using the approach described for Warp12 after a separate 
multi-particle refinement of the respective tilt movie.

Thus, for the reconstruction, individual particle frames or tilts 
are weighted by an exposure-dependent function to account for 
radiation damage, and an aliasing-free 2D CTF model (see pre-
vious section) that incorporates the exact defocus and astigma-
tism values for that position and frame/tilt. The weighted data 
are then back-projected through Fourier space summation, ac-
counting for Ewald sphere curvature. The reconstruction is final-
ized by dividing the summed data component by the summed 
weights component18.

Map denoising
Reconstructions of biological specimens derived from cryo-EM 
data rarely have homogeneous resolution throughout all parts 
of the macromolecule. Using a map filtered to its global resolu-
tion for particle alignment can have detrimental effects. Poorly 
resolved regions, such as floppy protein domains or the lipid bi-
layer around transmembrane domains, will make the alignment 
worse by adding noise to reference projections below the refine-
ment resolution. In the case of fully independent half-maps43, 
the noise patterns that the particles will be aligned against are 
independent, and amplifying them over several iterations only 
has the potential of making the resolution worse. In the case of 
refinement with merged half-maps16, where overfitting is avoid-
ed by limiting the refinement resolution, the poorly resolved re-
gions may be well below that limit, leading to a common, overfit-
ted noise pattern in both half-maps.

Past attempts at filtering maps based on local resolution es-
timates for refinement44, 45 applied FSC-based approaches27 to 
estimate the local resolution and performed the filtering in the 
Fourier domain. As only one set of estimates can be made based 
on one pair of half-maps, any spurious patterns in the estimated 
values will be introduced into both half-maps when the filtering 
is performed. The locality and accuracy of the estimates depends 
on the window size27. A smaller window increases locality at the 
expense of accuracy. Once introduced, the noise pattern can be-
come amplified over multiple iterations, leading to overestimated 
local resolution and phantom features that can be misinterpreted. 
More advanced regularization schemes have been proposed29, 30 
since to deal with this problem.

M implements a new approach to map filtering that uses 
neural network-based denoising. After the recently proposed 
noise2noise training principle46 has been successfully applied 
to micrograph12 and tomogram12, 47 denoising, half-map recon-
structions provide another obvious case of two independently 
noisy observations of the same signal. We find that a denoiser 
trained on one pair of half-maps not only matches closely the 
result of conventional global resolution filtering when applied 
to maps with homogeneous resolution, but also provides locally 
smooth, artifact-free local resolution filtering. As such models 
can train on and denoise sets of micrographs or tomograms with 
different defocus values and thus different noise models, they 
can also recognize and adapt to different noise levels within the 
same reconstruction. In another important departure from FSC-
based methods, the denoising step is applied to the half-maps 

independently and the denoiser sees only one of them at a time. 
Thus, even if some spurious pattern is introduced as part of the 
denoising, it is independent between the half-maps.

The neural network architecture is identical to the one used 
for tomogram denoising in Warp. A separate denoising model is 
maintained for every species, and trained only on the respective 
pair of half-maps. The model is initialized with random values 
and trained for 800 iterations upon the creation of a new species. 
It is later retrained for another 800 iterations after every refine-
ment. Spectrum whitening is applied to the maps before training 
to restore high-frequency amplitudes16, similar to B-factor-based 
sharpening48. During training, 643 px volumes are extracted from 
both maps at the same random position and orientation, and pre-
sented to the network as input and output in mini-batches of 3. 
The random orientations make sure the network learns the noise 
model rather than merely learning the average map. The learning 
rate for the Adam optimizer is exponentially decreased from 10-3 
to 10-5 throughout the training. For the denoising of each half-
map, the map is partitioned in 643 px windows overlapping by 24 
px, denoised, and the results from each window are inserted into 
the output volume. Regardless of regions with above-average 
resolution being potentially present, the refinement resolution 
is set conservatively to the global map resolution. In addition to 
the two half-maps for refinement, a denoised average map is also 
prepared by applying the same denoising model to the average of 
the spectrum-whitened half-maps.

Assessment of map denoising
Frame series data were downloaded for the EMPIAR-10288 en-
try (Fig. S3). Frame alignment and local CTF estimation were 
performed in Warp with a spatial resolution of 5x5. 1,033,994 
particles were picked with a retrained BoxNet model in Warp 
and exported at 1.5 Å/px. 2D classification, 3D classification and 
refinement were performed in RELION using EMD-0339 as the 
initial reference. 149,328 particles corresponding to the best 3D 
class were imported in M. The particle poses were given a tempo-
ral resolution of 2, the deformation grid resolution was set to 2x2, 
and refinement of all parameters was performed for 5 iterations. 
Data-driven weight estimation was performed to assign unique 
weights to every frame index.

Acquisition of apoferritin benchmark data
To compare the resolution achievable with frame and tilt series 
data and assess individual algorithms implemented in M, we 
acquired two data sets of human heavy-chain apoferritin: AF-f 
(frame series) and AF-t (tilt series). To make sure that any ob-
served differences came from data type and processing strategies 
rather than local variance in sample quality, neighboring holes 
within the same grid square were used for both data sets. 

The apoferritin plasmid and purification protocol were kind-
ly provided by Louise Fairall and Christos Savva from the Mid-
lands Regional Cryo-EM Facility, University of Leicester. In brief, 
GST-tagged apoferritin was overexpressed in E. coli, captured on 
Gluthatione-sepharose beads after cell lysis, cleaved off the resin 
by TEV protease and purified to homogeneity by size exclusion 
chromatography in 50 mM Tris-HCl pH 7.5, 100 mM NaCl and 
0.5 mM TCEP. 

3 ml of apoferritin at 3.8 mg/ml were applied to freshly glow 
discharged R 1.2/1.3 holey carbon grids (Quantifoil) at 4˚C and 
100% relative humidity followed by plunge-freezing in liquid 
ethane using a Vitrobot Mark IV (Thermo Fisher Scientific). The 
sample concentration resulted in a dense, single-layered hole 
coverage. Data were collected on a Titan Krios TEM (Thermo 
Fisher Scientific) operated at 300 kV and a magnification result-
ing in a calibrated pixel size of 0.834 Å. The energy filter (Gatan) 
was operated in zero loss mode with a slit width of 20 eV. The 
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K3 direct electron detector (Gatan) was operated in counting 
mode with a freshly acquired reference for gain correction. The 
exposure rate was adjusted to 20 e-/px/s. SerialEM49 was used for 
frame and tilt series acquisition.

Positions for both data sets were selected to be distributed 
evenly over the same grid area to maximize the similarity in ice 
thickness and particle density. For AF-f, 150 frame series were 
collected with a total series exposure of 32 e-/Å2, fractionated in 
40 frames. For AF-t, 135 tilt series ranging from -40 to +40 de-
grees were collected in a grouped dose-symmetric scheme50 with 
a group size of 2 and in 2 degree steps. Each tilt was exposed to 
2.7 e-/Å2, fractionated in 3 frames.

Comparison between frame and tilt series performance
Using data set AF-f, frame series alignment and local CTF esti-
mation were performed in Warp with a spatial resolution of 8x5, 
owing to the rectangular format of the K3 chip. 22,122 particles 
were picked with a retrained BoxNet model in Warp and export-
ed at full resolution in 512 px boxes. Global 3D refinement with 
octahedral symmetry was performed in RELION 3.0. The results 
were imported in M. The particle poses were given a temporal 
resolution of 3, the deformation grid resolution was set to 6x4, 
and refinement of all parameters was performed for 5 iterations. 
Data-driven weight estimation was performed to assign unique 
weights to every series and frame index.

Using data set AF-t, tilt movie frame alignment was per-
formed in Warp using a model without spatial resolution. Ini-
tial tilt series alignment was performed in IMOD using patch 
tracking on 6x binned images with default settings. Tilt series 
CTF estimation was performed in Warp. 18,991 particles were 
picked using Warp’s 3D template matching in full tomograms 
reconstructed at 10 Å/px. Sub-tomograms and 3D CTF volumes 
were exported at 2 Å/px using 140 px boxes. Global 3D refine-
ment with octahedral symmetry was performed in RELION 3.0. 
The results were imported in M. The particle poses were given a 
temporal resolution of 3, the image warp grid resolution was set 
to 6x4x41, and refinement of all parameters was performed for 5 
iterations, including tilt movie frame alignment in the last 2 iter-
ations. Data-driven weight estimation was performed to assign 
unique weights to every series and tilt index. 

Assessment of multi-species refinement
Particles from each frame series of the AF-f data set were split 
in 5% and 95% sub-populations, resulting in species with 3,710 
and 70,497 particles, respectively. Frame alignments and particle 
poses previously obtained from Warp and RELION were reused. 
In the first scenario, the 5% species was refined alone. In the sec-
ond scenario, the 5% species was co-refined with the 95% species. 
Both species were assumed to be structurally independent and 
did not contribute particles to each other’s reconstructions. For 
both tested scenarios, a 6x4 starting grid for the deformation was 
used, the resolution of all species was set to 4.0 Å and only one 
refinement iteration was performed in M to avoid possible bene-
fits from the higher resolution the 95% species would reach after 
the first iteration.

Comparison with RELION on atomic-resolution frame 
series data
Frame series data were downloaded for the EMPIAR-10248 en-
try and pre-processed in Warp. 109,437 particles were exported 
at 0.6 Å/px using 466 px boxes and refined in RELION. The re-
sulting particle poses and half-maps were imported in M and 
refined for 5 iterations starting with a resolution of 3.0 Å in the 
first iteration. A starting grid of 4x4 was used for the deforma-
tion model. All CTF-related parameters were refined, including 
per-series beam tilt and a 3x3 grid model for local astigmatism. 

For the last 2 iterations, anisotropic per-series, per-frame B-fac-
tor weights were estimated. The original mask deposited with 
EMD-9865 was used to estimate the final resolution.

Comparison with other tools for tilt series data refine-
ment
Tilt series movie data were downloaded for the EMPIAR-10164 
entry. Tilt movie frame alignment was performed in Warp us-
ing a model without spatial resolution. Initial tilt series align-
ment was performed in IMOD using gold fiducials automatically 
picked in Warp, on 6x binned images with default settings. Tilt 
series CTF estimation was performed in Warp. 130,658 particles 
were picked using Warp’s 3D template matching with a template 
derived from EMD-3782 in full tomograms reconstructed at 10 
Å/px. Sub-tomograms and 3D CTF volumes were exported at 
5 Å/px using 56 px boxes. Global 3D refinement with C6 sym-
metry was performed in RELION 3.0, and reached the 1/10 Å -1 
Nyquist frequency. The results were imported in M. The particle 
poses were given a temporal resolution of 3, the image warp and 
volume warp grid resolutions were set to 8x8x41 and 3x3x3x20, 
and refinement of all parameters was performed for 5 iterations, 
including tilt movie frame alignment in the last 2 iterations. Da-
ta-driven anisotropic weight estimation was performed to assign 
unique weights to every series, tilt index and tilt frame index.

Tilt series data were downloaded for the EMPIAR-10045 en-
try. Initial tilt series alignment was performed in IMOD using 
manually picked gold fiducials on 4x binned images with de-
fault settings. Tilt series CTF estimation was performed in Warp. 
3,058 particles were picked using Warp’s 3D template matching 
in full tomograms reconstructed at 10 Å/px. Sub-tomograms 
and 3D CTF volumes were exported at 5.0 Å/px. Global 3D re-
finement reached a resolution of 13 Å. The results were imported 
in M. The particle poses were given a temporal resolution of 3, 
the image warp and volume warp grid resolutions were set to 
8x8x41 and 4x4x2x20, respectively, and refinement of all param-
eters was performed for 5 iterations. Data-driven anisotropic 
weight estimation was performed to assign unique weights to 
every series and tilt index.

Tilt series data were downloaded for the EMPIAR-10045 en-
try. Initial tilt series alignment was performed in IMOD using 
manually picked gold fiducials on 4x binned images with de-
fault settings. Tilt series CTF estimation was performed in Warp. 
3,566 particles were picked using Warp’s 3D template matching 
in full tomograms reconstructed at 10 Å/px. Sub-tomograms and 
3D CTF volumes were exported at 5.0 Å/px. Global 3D refine-
ment reached a resolution of 13 Å. The results were imported in 
M. The particle poses were given a temporal resolution of 3, the 
image warp and volume warp grid resolutions were set to 8x8x41 
and 4x4x2x20, respectively, and refinement of all parameters was 
performed for 5 iterations. Data-driven anisotropic weight esti-
mation was performed to assign unique weights to every series 
and tilt index.

Acquisition and refinement of M. pneumoniae in situ tilt 
series data
Data previously used in another study36 were re-analyzed with 
the release version of M. As described there, Mycoplasma pneu-
moniae strain M129（ATCC 29342）cells were grown on 200 
mesh gold grids coated with a holey carbon support (R 2/1, 
Quantifoil). Cells were cultivated at 37 °C in modified Hayflick 
medium: 14.7 g/L Difco PPLO (Becton Dickinson, USA), 20% 
(v/v) Gibco horse serum (New Zealand origin, Life Technologies, 
USA), 100 mM HEPES-Na (pH 7.4), 1% (w/w) glucose, 0.002% 
(w/w) phenol red and 1,000 U/mL freshly dissolved penicillin 
G. Chloramphenicol (Cm; Sigma-Aldrich, USA) was added 15 
minutes prior to vitrification, at a final concentration of 0.5 mg/
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ml. Grids were quickly washed with PBS buffer containing 10 nm 
protein A-conjugated gold beads (Aurion, Netherlands), blotted 
from the back side for 2 seconds, and plunged into mixed liquid 
ethane/propane at liquid N2 temperature with a manual plunger 
(Max Planck Institute of Biochemistry, Germany). The cryo-EM 
grids were stored in a sealed box in liquid N2 before usage. 

Tilt series data were collected on a Titan Krios TEM operated 
at 300 kV (Thermo Fisher Scientific) equipped with a field-emis-
sion gun, a Gatan K2 Summit direct detector and a Quantum 
post-column energy filter (Gatan). Images were recorded in 
exposure-fractionation, counting mode using SerialEM 3.7.2. 
Tilt-series were acquired with a dose-symmetric scheme us-
ing dedicated scripts51 with the following settings: TEM in na-
no-probe mode, magnification 81,000 with a calibrated pixel size 
of 1.7 Å, energy filter in zero loss mode, defocus range 1.5 to 3.5 
µm, tilt range -60° to 60° with 3° tilt increment and constant ex-
posure per tilt, total exposure of 120 e-/Å2. In total, 65 tilt series 
were collected from Cm-treated cells. 

Raw tilt movies were processed in Warp. De novo tilt series 
alignment was performed in IMOD using gold fiducials picked 
automatically with Warp’s BoxNet, and the results were imported 
in Warp, where the tilt series CTFs were estimated. Using full 
tomograms reconstructed at 10 Å/px, two tomograms were de-
noised using Warp’s Noise2Map tool to pick the ribosome par-
ticles manually. Using these coordinates, sub-tomograms were 
exported from Warp to RELION to obtain an initial reference. 
This reference was used to perform template matching in Warp 
at 10 Å/px. In addition, a 3D convolutional neural network was 
trained on the 2 manually picked tomograms to remove false 
positives (membranes, carbon hole edges etc.) from the tem-
plate matching results. 24,202 particles were obtained this way. 
Sub-tomograms for all particles were exported from Warp to 
RELION and aligned against the previously refined low-resolu-
tion reference. No classification was performed. The results were 
imported in M. There, global movement and rotation, a 5x5x41 
image-space warping grid, a 8x8x2x10 volume-space warping 
grid, as well as particle pose trajectories with 3 temporal sam-
pling points were refined over 5 iterations. Starting with itera-
tion 3, CTF parameters were also refined. At the beginning of 
iteration 4, reference-based tilt movie alignment was performed. 
Similar results for the final map (not shown here), demonstrat-
ing the flexibility of M, were obtained independently using on-
the-fly raw tilt movies alignment in SerialEM49 and template 
matching in pyTOM52.
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Figure S1 | Benefits of considering more particles per micrograph through multi-species refinement
Apoferritin frame series were refined using a small 5% sub-population of the particles alone, and together with another 95% sub-population that 
improved the accuracy of the multi-particle system hyperparameters, but did not contribute particles to the 5% half-maps.
(a) Exemplary distribution of the 2 sub-populations within a frame series.
(b) FSC curves between the half-maps of the 5% population in both scenarios, showing the benefit of multi-species refinement.

1.0

0.143

1.7 Å3.23.2 2.82.8

5% species refined alone
5% species co-refined 
with 95% species

� �
5% species
95% species

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.05.136341doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136341
http://creativecommons.org/licenses/by-nc-nd/4.0/


Low defocus

High defocus

=
extract

≠
extract

High defocus
with premult.
in RELION

≠
premultiply,

extract

Micrograph CTF Particle CTF Assumed particle CTF

High defocus
in M =

premultiply,
extract

* CTF

* CTF

^2

^2

1.0

0.5

0.143

2.7 Å

340 Å box @ 3.9 µm
Premult. data
Premult. data, 
band-limited CTF2

Proportion of CTF 
sign errors

3.93.9 3.23.2

0 Å2

-150

5 µm31

340 Å box
Premult. data, 
band-limited CTF2

Half-map FSC at high defocus Per-series B-factor weights vs. defocus

�

� �

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.05.136341doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136341
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S2 | CTF correction in small particles boxes at low and high defocus
High-resolution information is delocalized at high defocus. Choosing an insufficiently large particle box size results in loss of that information. 
In Fourier space, this results in CTF oscillations becoming too fast to be resolved at the sampling rate provided by the small box, averaging to 0. 
M chooses the box size automatically for each frame or tilt series’ defocus, pre-multiplies the data and simulated CTF by the CTF to eliminate the 
oscillations and localize the signal, and then crops the data to the desired map size. This avoids the pitfall of losing map resolution due to an inap-
propriately chosen box size.
(a) Visualization of the delocalization and aliasing effects in Fourier space as 2D and rotationally averaged 1D CTFs; grids depict sampling rate. At 
low defocus (row 1), all signal is localized within the box and no aliasing is seen in the simulated CTF used for the image formation model during 
refinement. At high defocus (row 2), high-resolution signal is delocalized outside the small particle box. Once the particle is extracted, the fast CTF 
oscillations are averaged to 0 and high-resolution information is lost. At the same time, the simulated CTF is filled with aliasing artifacts because it 
is not low-pass filtered in the same way. If the particle data are pre-multiplied by the CTF at a box size large enough to contain all signal and resolve 
all CTF oscillations (row 3), as can be done optionally in RELION, all particle signal is contained in the box after cropping it to a smaller size, and 
the CTF averages to 0.5. However, the simulated CTF2 does not match this and contains aliasing artifacts. M applies the pre-multiplication to both 
particle data and simulated CTF in a larger box before cropping (row 4) to avoid the mismatch.
(b) FSC between the half-maps reconstructed from HIV1 virus-like particles of a single high-defocus (3.9 μm) tilt series in an insufficiently large 
box. Using data extracted without pre-multiplication, as is currently common, limits the resolution to 3.9 Å (grey). Pre-multiplying both particle 
data and CTF in a larger box, as automated in M, provides the best 3.2 Å result (green). Pre-multiplying only particle data is only slightly worse here 
(blue), but would likely lead to noticeably worse results in RELION as the aliased CTF2 would be used in the image formation during refinement. 
The FSC curves diverge as the proportion of CTF sign errors (orange) increases.
(c) Relation between tilt series defocus and associated contribution of high-resolution information to the reconstruction. For the larger data set, 
not pre-multiplying the data results in a strong correlation, where high-defocus data is down-weighted to contribute less (grey). The correlation 
disappears when pre-multiplication is applied, so more tilt series contribute high-resolution information (green).
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Figure S3 | Effects of deep learning-based denoising of reconstructions during refinement
M trains a denoising model on each species’ half-maps after every refinement iteration to filter the maps to local resolution and avoid artifact over-
fitting in low-resolution areas, such as lipid nanodiscs or flexible domains.
(a) 2D XY slices through 3D reconstructions of the cannabinoid receptor 1-G membrane protein28. The original refinement in cisTEM (left) intro-
duced artifacts in the highly disordered lipid region (green arrow). The denoised map (middle) and the raw reconstruction before denoising (right) 
used in the last refinement iteration in M are devoid of the artifacts because the denoising filtered and downweighed the low-resolution region.
(b) FSC between the half-maps refined in M, showing a global resolution of 2.9 Å. A value of 3.0 Å was reported in the original study, with no FSC 
curve included with the deposited map.
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Figure S4 | Comparison with RELION on atomic-resolution frame series data
Atomic-resolution data of apoferritin previously refined with RELION 3.1 to 1.54 Å (EMD-9865) were processed with M to achieve a resolution of 
1.34 Å, showing that M’s image artifact model is suited for very high resolution.
(a) Examples of side-chain densities produced by RELION (top) and M (bottom), showing cases of improved atomic features such as one of the 
hydrogens in Tyr29 (black arrow).
(b) FSC between the half-maps produced by RELION (grey) and M (green), showing a general improvement in resolution through M.
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Figure S5 | Examples of anisotropic B-factor weighting
Normalized 2D correlation between reference projections and data, averaged over all particles in a single frame is shown for the 1st and 3rd frame 
of the same exposure. Values in the low-frequency region are excluded to reduce the value range. Th e fi tted B-factor is highly anisotropic for the 1st 
frame because of intra-frame motion: 0 Å2 and -62 Å2 along X and Y, respectively. For the 3rd frame, the fi t is much more isotropic due to lack of 
intra-frame motion, but some high-resolution information is lost to radiation damage: -8 Å2 and -10 Å2 along X and Y, respectively.
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