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 2 

Abstract 22 

Purpose 23 

Short-TE proton MRS is used to study metabolism in the human brain. Common analysis meth-24 

ods model the data as linear combination of metabolite basis spectra. This large-scale multi-site 25 

study compares the levels of the four major metabolite complexes in short-TE spectra estimated 26 

by three linear-combination modelling (LCM) algorithms.  27 

Methods 28 

277 short-TE spectra from a recent multi-site study were pre-processed with the Osprey soft-29 

ware. The resulting spectra were modelled with Osprey, Tarquin and LCModel, using the same 30 

three vendor-specific basis sets (GE, Philips, and Siemens) for each algorithm. Levels of total N-31 

acetylaspartate (tNAA), total choline (tCho), myo-inositol (mI), and glutamate+glutamine (Glx) 32 

were quantified with respect to total creatine (tCr). 33 

Results 34 

Group means and CVs of metabolite estimates agreed well for tNAA and tCho across vendors 35 

and algorithms, but substantially less so for Glx and mI, with mI systematically estimated lower 36 

by Tarquin. The cohort mean correlation coefficient for all pairs of LCM algorithms across all 37 

datasets and metabolites was R2 =0.39, indicating generally only moderate agreement of indi-38 

vidual metabolite estimates between algorithms. There was a significant correlation between lo-39 

cal baseline amplitude and metabolite estimates (cohort mean R2 =0.10). 40 

Conclusion 41 

While mean estimates of major metabolite complexes broadly agree between linear-combination 42 

modelling algorithms at group level, correlations between algorithms are only weak-to-moderate, 43 

despite standardized pre-processing, a large sample of young, healthy and cooperative subjects, 44 

and high spectral quality. These findings raise concerns about the comparability of MRS studies, 45 

which typically use one LCM software and much smaller sample sizes.  46 
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Introduction 47 

Proton MRS allows in-vivo research studies of metabolism1,2. Single-voxel MR spectra from the 48 

human brain are frequently acquired using PRESS localization3 , and can be modelled to esti-49 

mate metabolite levels. Accurate modelling is hampered by poor spectral resolution at clinical 50 

field strengths, and for short-echo-time spectra, metabolite signals overlap with a broad back-51 

ground consisting of fast-decaying macromolecule and lipid signals. Linear-combination model-52 

ling (LCM) of the spectra maximizes the use of prior knowledge to constrain the model solution, 53 

and is recommended by recent consensus4. LCM algorithms model spectra as a linear combina-54 

tion of (metabolite and macromolecular (MM)) basis functions, and typically also include terms 55 

to account for smooth baseline fluctuations. 56 

 57 

Several LCM algorithms are available to quantify MR spectra (Table 1 describes some of the 58 

most widely used: Osprey5, INSPECTOR6, Tarquin7, AQSES8, Vespa9, QUEST10, LCModel11). 59 

The implementations (open-source vs. compiled ‘black-box’), modelling approaches (modelling 60 

domain and baseline model), and their licensure practices are diverse. 61 

 62 

Table 1. Overview of linear-combination modelling algorithms. The domain (time TD or fre-63 
quency FD) of modelling and the baseline model approach are specified. *Citations re-64 
ported from Google Scholar on July 29, 2020. 65 

 66 

Surprisingly few studies have compared the performance of different LCM algorithms. Cross-67 

validation of quantitative results has almost exclusively been performed in the context of bench-68 

marking new algorithms against existing solutions. In-vivo comparisons are often limited to 69 

Name Modelling Domain, 
Baseline approach 

Cost Code 
Availability 

Published Cita-
tions* 

Osprey FD, spline baseline free open 2020 1 
INSPECTOR FD, 1st-order polynomial free open 2018 0 

Tarquin TD, smooth baseline free open 2011 252 
AQSES 
(jMRUI) 

TD, spline baseline free closed 2007 140 

Vespa FD, wavelet baseline free open 2006 68 
QUEST 
(jMRUI) 

TD, spline baseline free closed 2004 305 

LCModel FD, spline baseline $13,300 closed 1992 3454 
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small sample sizes, whether analyzing spectra from animal models7,12,13 or human subjects7,8,12.  70 

To the best of our knowledge, two exceptions compared the LCM performance of different algo-71 

rithms in rat brain14 and human body15, respectively. Most studies report good agreement be-72 

tween results from different algorithms, inferring this from group-mean comparisons, or observ-73 

ing that differences between clinical groups are consistent regardless of the algorithm ap-74 

plied14,16. Correlations of estimates from different algorithms are rarely reported; however, a high 75 

correlation between LCModel and Tarquin results was found in the rat brain at ultra-high field14. 76 

Despite the fact that LCM has been used to analyze thousands of studies (Table 1), a comprehen-77 

sive assessment of the agreement between the algorithms is lacking, and the relationship between 78 

the choice of model parameters and quantitative outcomes is poorly understood. To begin to ad-79 

dress this gap, we conducted a large-scale comparison of short-TE in-vivo MRS data using three 80 

LCM algorithms with standardized pre-processing. While recent expert consensus recommends 81 

using measured MM background spectra, data for different sequences are not broadly available 82 

or integrated in LCM software. This manuscript investigates current common practice, and there-83 

fore all models included simulated MM basis functions. We compared group-mean quantifica-84 

tion results of four major metabolite complexes from each LCM algorithm, performed between-85 

algorithm correlation analyses, and investigated local baseline power and creatine modelling as 86 

potential sources of differences between the algorithms.  87 
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 5 

Methods 88 

Participants & acquisition  89 

277 single-voxel short-TE PRESS datasets from healthy volunteers acquired in a recent multi-90 

site-study17 were included in this analysis. Data were acquired at 25 sites (with up to 12 subjects 91 

per site) on scanners from three different vendors (GE: 8 sites with n = 91; Philips: 10 sites with 92 

n = 112; and Siemens: 7 sites with n = 74) with the following parameters: TR/TE = 2000/35 ms; 93 

64 averages; 2, 4 or 5 kHz spectral bandwidth; 2048-4096 data points; acquisition time = 2.13 94 

min; 3×3×3 cm3 voxel in the medial parietal lobe. Reference spectra were acquired with similar 95 

parameters, but without water suppression and 8-16 averages (for more details, please refer to 96 
17). Data were saved in vendor-native formats (GE P-files, Philips .sdat, and Siemens TWIX). In 97 

the initial study18, written informed consent was obtained from each participant and the study 98 

was approved by local institutional review boards. Anonymized data were shared securely and 99 

analyzed at Johns Hopkins University with local IRB approval. Due to site-based data privacy 100 

guidelines, only a subset of these data (GE: 7 sites with n = 79; Philips: 9 sites with n = 100; and 101 

Siemens: 4 sites with n = 48) is publicly available19. 102 

  103 

Data pre-processing 104 

MRS data were pre-processed in Osprey5, an open-source MATLAB toolbox, following recent 105 

peer-reviewed pre-processing recommendations2, as summarized in Figure 1A. First, the ven-106 

dor-native raw data were loaded, including the metabolite (water-suppressed) data and unsup-107 

pressed water reference data. Second the raw data were pre-processed into averaged spectra. Re-108 

ceiver-coil combination20 and eddy-current correction21 of the metabolite data were performed 109 

using the water reference data. Individual transients in Siemens and GE data were frequency-110 

and-phase aligned using robust spectral registration22, while Philips data had been averaged on 111 

the scanner. After averaging the individual transients, the residual water signal was removed 112 

with a Hankel singular value decomposition (HSVD) filter23. For Siemens spectra, an additional 113 

pre-phasing step was introduced by modelling the signals from creatine and choline-containing 114 

compounds at 3.02 and 3.20 ppm with a double Lorentzian model and applying the inverted 115 

model phase to the data. This step corrected a zero-order phase shift in the data arising from the 116 
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HSVD water removal, likely because the Siemens water suppression introduced asymmetry to 117 

the residual water signal. Finally, the pre-processed spectra were exported in .RAW format. 118 

Data modelling 119 

Fully localized 2D density-matrix simulations implemented in the MATLAB toolbox FID-A 24  120 

with vendor-specific refocusing pulse information, timings, and phase cycling were used to gen-121 

erate three vendor-specific basis sets (GE, Philips, and Siemens) including 19 spin systems: 122 

ascorbate, aspartate, Cr, negative creatine methylene (-CrCH2), g-aminobutyric acid (GABA), 123 

glycerophosphocholine (GPC), glutathione, glutamine (Gln), glutamate (Glu), water (H2O), myo-124 

inositol (mI), lactate, NAA, N-acetylaspartylglutamate (NAAG), phosphocholine (PCh), PCr, 125 

phosphoethanolamine, scyllo-inositol, and taurine. The -CrCH2 term is a simulated negative cre-126 

atine methylene singlet at 3.95 ppm, included as a correction term to account for effects of water 127 

suppression and relaxation. It is not included in the tCr model, which is used for quantitative ref-128 

erencing. 129 

Process
coil-combination
eddy current correction
robust spectral registration
water removal
frequency referencing
(pre-phasing for Siemens data)

Export
.RAW for all vendors
LCModel 
Tarquin

Load
GE P-files
Philips .sdat
Siemens TWIX

A Pre-processing

B Modelling

LCModel v6.3

basis set
H2O excluded
Parameter
spectral range 0.5 to 4 ppm
DKNTMN = 0.15 ppm

basis set
complete basis set
Parameter
spectral range 0.5 to 4 ppm
blineKnotSpace = 0.4 ppm

basis set
H2O excluded
Parameter
spectral range 0.5 to 4 ppm
startpoint 10 ms in FID
endpoint 50 % of FID

vendor-specific basis set (19 metabolites & 8 MMs)
Asc, Asp, Cr, -CrCH2, GABA, GPC, GSH, Gln, Glu, H2O, mI, Lac, NAAG, NAA, PCr, PCh, PE, Scyllo, Taurine
MM0.93, MM1.22, MM1.43, MM1.70, MM2.05, Lip09, Lip13, Lip20

Figure 1. Overview of the MRS analysis pipeline. (A) Pre-processing pipeline implemented in 
Osprey including ‘OspreyLoad’ to load the vendor-native spectra, ‘OspreyProcess’ to process 
the raw data and to export the averaged spectra. (B) Modelling of the averaged spectra with 
details of the basis set and parameters of each LCM (LCModel, Osprey, and Tarquin). 
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8 additional Gaussian basis functions were included in the basis set to simulate broad macromol-130 

ecules and lipid resonances25 (simulated as defined in section 11.7 of the LCModel manual26): 131 

MM0.94, MM1.22, MM1.43, MM1.70, MM2.05, Lip09, Lip13, Lip20. The Gaussian amplitudes were 132 

scaled relative to the 3.02 ppm creatine CH3 singlet in each basis set (details in Supplementary 133 

Information 1). Finally, to standardize the basis set for each algorithm, basis sets were stored as 134 

.mat files for use in Osprey and as .BASIS-files for use in LCModel and Tarquin. In the follow-135 

ing paragraphs, each LCM algorithm investigated in this study is described briefly (for details, 136 

please refer to the original publications5,7,11). 137 

LCModel v6.3 138 

The LCModel (6.3-0D) algorithm11 models data in the frequency-domain. First, time-domain 139 

data and basis functions are zero-filled by a factor of two. Second, frequency-domain spectra are 140 

frequency-referenced by cross-correlating them with a set of delta functions representing the ma-141 

jor singlet landmarks of NAA (2.01 ppm), Cr (3.02 ppm), and Cho (3.20 ppm). Third, starting 142 

values for phase and linebroadening parameters are estimated by modelling the data with a re-143 

duced basis set containing NAA, Cr, PCh, Glu, and mI, with a smooth baseline. Fourth, the final 144 

modelling of the data is performed with the full basis set, regularized lineshape model and base-145 

line, with starting values for phase, linebroadening, and lineshape parameters derived from the 146 

previous step. Model parameters are determined with a Levenberg-Marquardt27,28 non-linear 147 

least-squares optimization implementation that allows bounds to be imposed on the parameters. 148 

Metabolite amplitude bounds are defined to be non-negative, and determined using a non-nega-149 

tive linear least-squares (NNLS) fit at each iteration of the non-linear optimization. Amplitude 150 

ratio constraints on macromolecule and lipid amplitude, as well as selected pairs of metabolite 151 

amplitudes (e.g. NAA+NAAG), are defined as in Osprey and Tarquin. LCModel constrains the 152 

model with three additional regularization terms. Two of these terms penalize a lack of smooth-153 

ness in the baseline and lineshape models using the second derivative operator, preventing unrea-154 

sonable baseline flexibility and lineshape irregularity. The third term penalizes deviations of the 155 

metabolite Lorentzian linebroadening and frequency shift parameters from their expected values. 156 

 157 

Osprey 158 

The Osprey (1.0.0) algorithm5 adopts several key features of the LCModel and Tarquin algo-159 

rithms. Osprey follows the four-step workflow of LCModel including zero-filling, frequency 160 
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referencing, preliminary optimization to determine starting values, and final optimization over 161 

the real part of the frequency-domain spectrum. The model parameters are zero- and first-order 162 

phase correction, global Gaussian linebroadening, individual Lorentzian linebroadening, and in-163 

dividual frequency shifts, which are applied to each basis function before Fourier transformation. 164 

The frequency-domain basis functions are then convolved with an arbitrary, unregularized line-165 

shape model to account for deviations from a Voigt profile. The length of this lineshape model is 166 

estimated during the initial referencing step and set to 2.5 times the FWHM estimate. The line-167 

shape model is normalized, so that the convolution does not impact the integral of basis func-168 

tions. 169 

The spline baseline is constructed from cubic B-spline basis functions, including one additional 170 

knot outside either end of the user-specified fit range, as in LCModel. In contrast to LCModel, 171 

the baseline curvature is not regularized. Therefore, the baseline knot spacing is set to 0.15 ppm 172 

for preliminary modelling step with a reduced basis set and increased to 0.4 ppm for the final full 173 

model. Similar to LCModel, model parameters are determined with a Levenberg-Marquardt27,28 174 

non-linear least-squares optimization algorithm and a NNLS fit to determine the non-negative 175 

metabolite amplitudes at each step of the non-linear optimization. 176 

Tarquin 177 

Tarquin (4.3.10)7 uses a four-step approach in the time domain to model spectra. First, residual 178 

water is removed using singular value decomposition. Second, the global zero-order phase is de-179 

termined by minimizing the difference between the magnitude and the real spectra in the fre-180 

quency domain. Third, zero-filling to double the number of points and frequency referencing are 181 

performed, as in the other algorithms. This step also estimates a starting value for the Gaussian 182 

linebroadening used in the fourth step, the final modelling. The model includes common Gauss-183 

ian linebroadening, individual Lorentzian linebroadening, individual frequency-shifts, and zero- 184 

and first-order phase correction factors applied in the frequency domain.  185 

Optimization is performed in the time domain with a constrained non-linear least-squares Leven-186 

berg-Marquardt solver, allowing bounds and constraints on the parameters. In addition, the range 187 

of time-domain datapoints is limited by removing the first 10 ms of the FID, so as to omit the 188 

fast-decaying macromolecule and lipid signals. Finally, the baseline is estimated in the frequency 189 

domain by convolving the model residual with a Gaussian filter with a width of 100 points. 190 

 191 
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 9 

Model parameters 192 

The parameters chosen for each tool are summarized in Figure 1B. The fit range was limited to 193 

0.5 to 4 ppm in all tools to reduce effects of differences in water suppression techniques. For the 194 

baseline handling, the default parameters were chosen, i.e. bLineKnotSpace = 0.4 ppm for Os-195 

prey, DKNMNT = 0.15 ppm for LCModel, and an FID range from 10 ms to 50% of the FID for 196 

Tarquin.  197 

     198 

Quantification, visualization, and secondary analyses 199 

The four major metabolite complexes tNAA (NAA + NAAG), tCho (GPC + PCh), mI, and Glx 200 

(Glu + Gln) were quantified as basis-function amplitude ratios relative to total creatine (tCr = Cr 201 

+ PCr). Since the primary purpose was to compare performance of the core LCM algorithms, no 202 

additional relaxation correction or partial volume correction was performed.  203 

 204 

Model visualizations were generated with the OspreyOverview module, which allows LCModel 205 

and Tarquin results files (.coord and .txt) to be imported. For each algorithm, the visualization 206 

includes site-mean spectra, cohort-mean spectra (i.e. the mean of all spectra), and site- and co-207 

hort-mean modelling results (complete model, spline baseline, spline baseline + MM compo-208 

nents, and the separate models of the major metabolite complexes). 209 

Three secondary analyses included a linewidth and SNR analysis, as well as the investigation of 210 

local baseline power and creatine modelling as potential sources of differences between the algo-211 

rithms (details in Supplementary Information 2). 212 

 213 

Data analysis  214 

Quantitative metabolite estimates (tNAA/tCr, tCho/tCr, mI/tCr, Glx/tCr) were statistically ana-215 

lyzed and visualized using R29 in RStudio (Version 1.2.5019, RStudio Inc.). The functions are 216 

publicly available30. The supplemental materials with MATLAB- and R-files, example LCModel 217 

control files (one for each vendor), and Tarquin batch-files for this study are publicly available31. 218 

The results from each LCM algorithm were imported into R with the spant package32. 219 

Distribution analysis 220 

The results are presented  as raincloud plots33 and Pearson’s correlation analysis using the 221 

ggplot2 package34. The raincloud plots include individual data points, boxplots with median and 222 
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25th/75th percentiles, a smoothed distribution, and mean ± SD error bars to identify systematic 223 

differences between the LC algorithms. In addition, the coefficient of variation (CV = SD/mean) 224 

and the mean  𝐶𝑉 = ("#tNAA$"#tCho$"#Ins$"#Glx)
&

 across all four metabolites of each algorithm are 225 

calculated. 226 

Correlation analysis 227 

The correlation analysis featured different levels, including pair-wise correlations between algo-228 

rithms, as well as correlations between baseline power and metabolite estimates of each algo-229 

rithm. The pair-wise correlation on the global level (black R2), as well as within-vendor correla-230 

tions (color-coded R2) with different color shades for different sites are reported. Furthermore, 231 

mean R2  for each pair-wise correlation (e.g. Osprey vs LCModel) and metabolite, estimated by 232 

row or column means e.g. 𝑅' = ()tNAA
- $)tCho

- $)Ins
- $)Glx

- *
&

, and a cohort mean R2  (across all pair-233 

wise correlations) are calculated. For the correlations, no correction for multiple testing was ap-234 

plied. The cohort mean R2  was used to identify global associations across all correlation analy-235 

sis, while the mean R2  allowed the identification of algorithm-specific (row means) and  metab-236 

olite-specific (column means) interactions across all correlation analysis. Associations between 237 

the outcome of specific algorithms were identified by the pair-wise correlation analysis (R2). 238 

Vendor-specific effects were identified by differentiating between global level and within-vendor 239 

correlations.  240 

Statistical analysis 241 

In the statistical analysis, the presence of significant differences in the mean and the variance of 242 

the metabolite estimates was assessed. Global metabolite estimates were compared between al-243 

gorithms with parametric tests, following recommendations for large sample sizes35. Differences 244 

of variances were tested with Fligner-Killeen’s test with a post-hoc pair-wise Fligner-Killeen’s 245 

test and Bonferroni correction for the number of pair-wise comparisons. Depending on whether 246 

variances were different or not, an ANOVA or Welch’s ANOVA was used to compare means 247 

with a post-hoc paired t-test with equal or non-equal variances, respectively. 248 

 249 
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Results 250 

All 277 spectra were successfully processed, exported, and quantified with the three LCM algo-251 

rithms; no modelled spectra were excluded from further analysis. 252 

Summary and visual inspection of the modelling results 253 

A site-level averaged summary of the 277 spectra is shown in Figure 2A, B and C, for analyses 254 

in LCModel, Osprey, and Tarquin, respectively. The averaged data, models and residuals for 255 

each of the 25 sites are color-coded by vendor. The cohort-mean of all analyses for each vendor 256 

is shown in Figure 2D, E and F (GE, Philips and Siemens, respectively). Data, models and re-257 

siduals are color-coded by algorithm. 258 

1234
Frequency (ppm) Frequency (ppm)

1234
Frequency (ppm)

OspreyLCModel Tarquin

GE (8 sites)
Philips (10 sites)
Siemens (7 sites)

residual

data

model

MM model + baseline

baseline

A

D

B

E

C

F Siemens (n = 74)Philips (n = 112)GE (n= 91)

1234

LCModel
Osprey
Tarquin

LCModel
Osprey
Tarquin

LCModel
Osprey
Tarquin

tNAA

tCho

mI

Glx

tCr

1234
Frequency (ppm)

1234
Frequency (ppm)

1234
Frequency (ppm)

model

MM model

Figure 2. Summary of the modelling results. (A–C) site-level averaged residual, data, model, 
MM model + baseline, baseline and MM model for each LCM algorithm, color-coded by 
vendor. (D–F) cohort-mean residual, data, model, MM model + baseline, and metabolite 
models for each vendor, color-coded by LCM algorithm. 
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 259 

In general, the phased spectra and models agreed well between vendors for all algorithms. Com-260 

paring the algorithms, notable differences in spectral features in the estimated baseline models 261 

appeared between 0.5 and 1.95 ppm (degree of variability: Osprey > LCModel > Tarquin) and 262 

between 3.6 and 4 ppm (degree of variability: LCModel > Osprey > Tarquin) (as shown in Fig-263 

ure 2A-C). 264 

Cohort-mean spectra and models agreed well across all vendors and algorithms (Figure 2D-F). 265 

The greatest differences in the spectral features of the baseline between algorithms occur be-266 

tween 0.5 and 1.95 ppm, with closer agreement between Osprey and Tarquin than with 267 

LCModel. The amplitude of the residual over the whole spectral range is highest for Osprey, and 268 

similar for Tarquin and LCModel.  269 

NAA linewidth was significantly lower (p < 0.001) for Philips (6.3 ± 1.3 Hz) compared to GE 270 

(7.3 ± 1.5 Hz), while no differences in the linewidth were found for the other comparisons (Sie-271 

mens 6.6 ± 2.4 Hz). SNR was significantly higher for Siemens (285 ± 72 ) compared to both 272 

other vendors (p < 0.001) and significantly higher (p < 0.001) for Philips (226 ± 58) compared to 273 

GE (154 ± 37). 274 

  275 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.06.05.136796doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136796
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 13 

Metabolite level distribution 276 

Table 2 – Metabolite level distribution. Mean, standard deviation and coefficient of variation 277 
(CV) of each metabolite-to-creatine ratio, listed by algorithm and vendor as well as global 278 
summary values. Asterisks indicate significant differences (adjusted p < 0.01 = ** and adjusted 279 
p < 0.001 = *** or ### or ’’’) in the mean (for the metabolite ratios) or the variance (for the CV) 280 
compared to the algorithm in the next row (LCModel vs Osprey = ** or ***, Osprey vs Tarquin 281 
= ###, and Tarquin vs LCModel = ’’’).   282 

 
 [metabolite] / [tCr] (mean ± SD) 

tNAA tCho mI Glx 
GE 

LCModel 
Osprey 
Tarquin 

 
1.48 ± 0.12 
1.47 ± 0.10 
1.48 ± 0.11 

 
0.19 ± 0.02 
0.18 ± 0.02 
0.22 ± 0.03 

 
0.85 ± 0.10 
0.78 ± 0.09 
0.57 ± 0.07 

 
1.75 ± 0.25 
1.42 ± 0.17 
2.05 ± 0.22 

Philips 
LCModel 
Osprey 
Tarquin 

 
1.38 ± 0.10 
1.50 ± 0.12 
1.40 ± 0.12 

 
0.17 ± 0.02 
0.18 ± 0.02 
0.16 ± 0.03 

 
0.81 ± 0.08 
0.86 ± 0.10 
0.60 ± 0.09 

 
1.46 ± 0.14 
1.34 ± 0.16 
1.78 ± 0.19 

Siemens 
LCModel 
Osprey 
Tarquin 

 
1.52 ± 0.19 
1.54 ± 0.12 
1.50 ± 0.15 

 
0.19 ± 0.02 
0.19 ± 0.02 
0.18 ± 0.03 

 
0.83 ± 0.09 
0.89 ± 0.06 
0.65 ± 0.07 

 
1.65 ± 0.31 
1.45 ± 0.14 
2.04 ± 0.19 

global 
LCModel 
Osprey 
Tarquin 

 
1.45 ± 0.15*** 

1.50 ± 0.12### 

1.46 ± 0.14 

 
0.18 ± 0.02 
0.18 ± 0.02 
0.18 ± 0.04 

 
0.83 ± 0.09 

0.84 ± 0.09### 

0.60 ± 0.08’’’ 

 
1.45 ± 0.15*** 
1.50 ± 0.12### 
1.93 ± 0.24’’’ 

 CV (SD/mean) 

tNAA tCho mI Glx 
GE 

LCModel 
Osprey 
Tarquin 

 
7.9% 
6.9% 
7.5% 

 
12.9% 
9.7% 
11.7% 

 
11.8% 
11.1% 
11.2% 

 
14.2% 
11.8% 
10.8% 

Philips 
LCModel 
Osprey 
Tarquin 

 
7.2% 
8.0% 
8.8% 

 
10.6% 
10.0% 
19.8% 

 
9.9% 
11.8% 
15.2% 

 
9.7% 
11.9% 
10.7% 

Siemens 
LCModel 
Osprey 
Tarquin 

 
12.4% 
8.0% 
10.1% 

 
13.4% 
11.1% 
14.3% 

 
10.8% 
6.9% 
10.5% 

 
18.7% 
10.0% 
9.3% 

global 
LCModel 
Osprey 
Tarquin 

 
10.0% 
7.8% 
9.3% 

 
13.2%** 
10.4%### 
20.5%’’’ 

 
10.9% 

11.7%### 
13.6% 

 
16.4%*** 
11.8%### 
12.3% 

 283 
The tCr ratio estimates and CVs of the four metabolites are summarized in Table 2. Distributions 284 

and group statistics are visualized in Figure 3, with the four rows corresponding the three ven-285 

dors and a cohort summary across all datasets. 286 

 287 
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 288 
Between-algorithm agreement was greatest for the group means and CVs of tNAA and tCho. 289 

The cohort-mean CV was lowest for Osprey (10.4%), followed by LCModel (12.6%) and Tar-290 

quin (14.0%). Group means and CVs for tNAA are relatively consistent. As a result, the cohort-291 

mean tNAA/tCr was 1.45 ± 0.15 for LCModel, 1.50 ± 0.12 for Osprey, and 1.45 ± 0.14 for Tar-292 

quin, with significant differences between Osprey and both other LCM algorithms. 293 

Cohort means for tCho showed a high agreement between all algorithms. The global CV of tCho 294 

estimates was significantly higher for Tarquin compared to both other algorithms, and signifi-295 

cantly lower for Osprey compared to LCModel. Global tCho/tCr was 0.18 ± 0.02 for LCModel, 296 

0.18 ± 0.02 for Osprey, and 0.18 ± 0.04 for Tarquin. 297 
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Figure 3. – Metabolite level distribution. Raincloud plots of the metabolite estimates of each 
LCM algorithm (color-coded). The four metabolites are reported in the columns, and the three 
vendors in rows, with a cohort summary in the last row. The coefficient of variation is reported 
for each distribution, as well as a mean CV reported in the last column,  which is calculated 
across each row. Asterisks indicate significant differences (adjusted p < 0.001 = ***). 
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For mI, group means and CVs were comparable for Osprey and LCModel, while Tarquin esti-298 

mates were lower by about 25%. Global CVs were significantly lower for Osprey compared to 299 

Tarquin, while no significant differences in the CV were found for the other comparisons. Global 300 

mI/tCr was 0.83 ± 0.09 for LCModel, 0.84 ± 0.09 for Osprey, and 0.60 ± 0.08 for Tarquin, with 301 

significant mean differences between all Tarquin and both other algorithms. 302 

Group means and CVs for Glx were comparable between Osprey and LCModel, while estimates 303 

were about 30% higher in Tarquin. Global CV was significantly lower for Osprey compared to 304 

both other algorithms. Global Glx/tCr was 1.45 ± 0.15 for LCModel, 1.50 ± 0.12 for Osprey, and 305 

1.93 ± 0.24 for Tarquin, with significant differences between all algorithms. Mean CVs , esti-306 

mated by the row-mean, were between 9.0 and 13.8% for all algorithms and vendors. 307 

 308 

Correlation analysis: pairwise comparison between LCM algorithms 309 

The correlation analysis for each metabolite and algorithm pair is summarized in Figure 4. R2  310 

for each algorithm pair and metabolite are reported in the corresponding row and column, re-311 

spectively.    312 
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The cohort-mean R2  = 0.39 suggests an overall moderate agreement between metabolite esti-313 

mates from different algorithms. The agreement between algorithms, estimated by the row-mean 314 
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Figure 4. Pairwise correlational comparison of algorithms. LCModel and Osprey are 
compared in the first row, Tarquin and Osprey in the second row, and LCModel and Tarquin 
in the third row. Each column corresponds to a different metabolite. Within-vendor 
correlations are color-coded; global correlations are shown in black. The R2  values are 

calculated along each dimension of the grid with mean R2 for each metabolite and each 

correlation. A cohort-mean R2  value is also calculated across all twelve pair-wise 

correlations. Asterisks indicate significant correlations (p < 0.01 = ** and p < 0.001 = ***). 
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R2 , was highest for Tarquin-vs-LCModel ( R2 = 0.43), followed by Osprey-vs-LCModel ( R2  315 

= 0.38), and Osprey-vs-Tarquin ( R2  = 0.37).   316 

The agreement between algorithm for each metabolite, estimated by the column-mean R2 , was 317 

highest for tNAA ( R2  = 0.50), followed by tCho ( R2  = 0.44), Glx ( R2 = 0.32), and mI ( R2  = 318 

0.29). The cohort-mean R2  for each vendor was higher for Siemens ( R2  = 0.45) than for GE 319 

( R2  = 0.40) and Philips ( R2  = 0.40).  320 

 321 

While the within-metabolite mean R2  (average down the columns in Figure 4) are comparable 322 

between vendors, there is substantially higher variability of the R2 values with increasing granu-323 

larity of the analysis. Supplementary Information 3 includes an additional layer of correlations 324 

at the site level.  325 

 326 

Correlation analysis: baseline and metabolite estimates 327 

The correlation analysis between local baseline power and metabolite estimates for each algo-328 

rithm is summarized in Figure 5. The cohort-mean R2 = 0.10 suggests that overall, there is an 329 

association between local baseline power and metabolite estimates, that is weak but statistically 330 

significant. The influence of baseline on metabolite estimates differs between metabolites, as re-331 

flected by the column-mean R2 which was lowest for tCho ( R2  = 0.04) and tNAA ( R2  = 332 

0.06), and higher for mI ( R2  = 0.13) and Glx ( R2 = 0.18). The global baseline correlations all 333 

had negative slope, except for tCho estimates of Tarquin. 334 
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The mean R2  across metabolites for each algorithm, calculated as the row mean, were low for 335 

all algorithms with LCModel ( R2  = 0.17) showing a greater effect than Tarquin ( R2  = 0.08) 336 

and Osprey ( R2  = 0.06). Comparing between vendors, the cohort-mean R2  was higher for GE 337 

( R2  = 0.15) and Siemens ( R2  = 0.14) than for Philips ( R2  = 0.05) spectra.   338 
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Variability of total creatine models 339 

Mean tCr model spectra (± one standard deviation) are summarized in Figure 6 for each vendor 340 

and LCM algorithm, along with distribution plots of the area under the model. 341 

The agreement in mean and CV is greatest between Osprey and Tarquin for all vendors, while  342 

tCr areas for LCModel appear slightly higher. Differences in water suppression are accounted for 343 

with the -CrCH2 correction term, which is not included in the tCr model used for quantitative ref-344 

erencing.  345 
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Figure 5. Correlation analysis between metabolite estimates and local baseline power for each 
algorithm, including global (black) and within-vendor (color-coded) correlations. The mean 
R2  values are calculated along each dimension of the grid for each metabolite and each 

algorithm. Similarly, a cohort-mean R2  value is calculated across all twelve pair-wise 
correlations. Asterisks indicate significant correlations (p < 0.05 = *, p < 0.01 = ** ,  p < 
0.001 = ***). 

 

Figure 6. Variability of tCr models. Mean models +/- standard deviation (shaded areas) are 
presented column-wise by vendor and color-coded by LCM algorithm. The distribution and CV 
of the areas under the models are inset. 
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Discussion 346 

We have presented a three-way comparison of LCM algorithms applied to a large dataset of 347 

short-TE in-vivo human brain spectra. The aims at the onset were to compare metabolite esti-348 

mates obtained with different LCM algorithms, as applied in the literature, and to identify poten-349 

tial sources of differences between the algorithms. The major findings are: 350 

• Group means and CVs for tNAA and tCho agreed well across vendors and algorithms. 351 

For mI and Glx, group means and CVs were less consistent between algorithms, with a 352 

higher degree of agreement between Osprey and LCModel than with Tarquin. 353 

• The strength of the correlations between individual metabolite estimates from different 354 

algorithms was moderate. In general, tNAA and tCho estimates from different algorithms 355 

agreed better than Glx and mI. With each sub-level of analysis, the variability of 356 

correlation strength increased, i.e. correlations grew increasingly variable when 357 

calculated separately for each vendor, or even each site. 358 

• Overall, the association between metabolite estimates and the local baseline power was 359 

significant, with mI and Glx showing stronger associations than tNAA and tCho, and 360 

LCModel showing greater effects than Tarquin and Osprey. 361 

      The strong agreement of group means and CVs for metabolites with prominent singlets 362 

(tNAA/tCho) and inconsistency for lower-intensity coupled signals (mI/Glx) are in line with pre-363 

vious two-tool comparisons of simulated data 7,15 and in-vivo studies with smaller sample sizes 364 
7,14,16. 365 

While previous work highlighted group means and standard deviations, the between-algorithm 366 

agreement of individual metabolite estimates has not been extensively studied. Our results sug-367 

gest that substantial variability is introduced by the choice of the analysis software itself, indi-368 

cated by only moderate between-algorithm correlation strength (between-algorithm mean R2 <= 369 

0.5 for all investigated metabolites), even for the well-established LCM algorithms LCModel and 370 

Tarquin (R2 between 0.27 and 0.59 for all metabolites). This finding raises concerns about the 371 

generalizability and reproducibility of MRS study results. MRS studies typically suffer from low 372 

sample sizes (~20 per comparison group is common). Considering the moderate between-tool 373 

correlation of individual estimates, it is likely that marginally significant group effects and corre-374 

lations found with one analysis tool will not be found with another tool, even if the exact same 375 
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dataset is used. This is exacerbated by the substantial variability of correlation strengths at ven-376 

dor- or even site-level, and is even more likely to be the case for ‘real-life’ clinical data, given 377 

the relatively high quality of the dataset in this study (standardized pre-processing; large sample 378 

size; high SNR; low linewidth; young, healthy, cooperative subjects). While two previous studies 379 

found that some differences between clinical groups remained significant independent of the 380 

LCM algorithm 14,16, this is questionable as a default assumption. The lack of comparability aris-381 

ing from the additional variability originating in the choice of analysis tool is rarely recognized 382 

or acknowledged. If choice of analysis tool is a significant contributor to measurement variance, 383 

it could be argued that modelling of data with more than one algorithm will improve the 384 

robustness and power of MRS studies. It should also be investigated whether the reduction of the 385 

degrees of freedom by improving MM and baseline models (e.g. by using acquired MM data) 386 

increases between-tool agreement and consistency between sites and vendors. 387 

Sources of variance 388 

In order to understand the substantial variability introduced by the choice of analysis tool, the in-389 

fluence of modelling strategies and parameters on quantitative results needs to be better under-390 

stood. Previous investigations have shown that, within a given LCM algorithm, metabolite esti-391 

mates can be affected by the choice of baseline knot spacing36,37, the modelling of MM and lipids 392 
36,38, and SNR and linewidth39–42. In this study, we focused on the comparison of each LCM with 393 

their default parameters, and observed differences resulting both from the default parameters and 394 

from differences in the core algorithm. 395 

LCM relies on the assumption that broad background and baseline signals can be separated from 396 

narrower metabolite signals. This is true to a limited degree, and the choice of MM and baseline 397 

modelling influences the quantification of metabolite resonances4.  Our secondary analysis of the 398 

relationship between baseline power and metabolite estimates showed a stronger interaction for 399 

the broader coupled signals of Glx and mI than the singlets. tCho showed the weakest effect, and 400 

the three LCMs showed the highest agreement between the MM+baseline models around 3.2 401 

ppm. The higher variance of Glx and mI estimates may at least partly be explained by the ab-402 

sence of MM basis functions for frequencies >3 ppm in the model. MM signal must therefore ei-403 

ther be modelled by metabolite basis functions or the spline baseline.  Including experimental 404 

MM acquisitions into studies may reduce the degrees of freedom of modelling, but introduce 405 

other sources of variance, such as age-dependency43 or tissue composition38,44. While consensus 406 
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is emerging that such approaches are recommended many open questions must be resolved be-407 

fore the recommendations can be broadly implemented25. 408 

For all three LCM algorithms, optimization between the model and the data is solved by local 409 

optimization. Algorithms could converge on a local minimum,  if the search space of the non-410 

linear parameters is of high dimensionality, or if the starting values of the parameters are far 411 

away from the global optimum45. The availability of open-source LCM such as Tarquin and Os-412 

prey will allow further investigation of the relationship between optimization starting values and 413 

modelling outcomes. 414 

 415 

Since this study focused on reporting tCr ratios, it is important to consider the variance of the 416 

creatine model of each algorithm. With MRS only quantitative in a relative sense, separating the 417 

variance contribution of the reference signal is a challenge. While mean tCr model areas were 418 

slightly higher for LCModel than for Osprey and Tarquin, there was no generalizable observa-419 

tion of lower tCr ratios from LCModel. CVs of the tCr model areas were comparable across 420 

LCM algorithms for each vendor. Vendor differences in water suppression of each vendor were 421 

accounted for by limiting the analysis range to 0.5 to 4 ppm, and by including a -CrCH2 correc-422 

tion term (omitted from calculations of the tCr ratios and the secondary analysis of the tCr mod-423 

els). The contribution of the reference signal to the variance of metabolite estimates is unclear 424 

and hard to isolate. Nevertheless, tCr referencing was preferred in this study, since water refer-425 

encing is likely to add additional tool-specific variance resulting from water amplitude estima-426 

tion.     427 

 428 

Limitations              429 

As mentioned in greater detail above, there is currently no widely adopted consensus on the defi-430 

nition of MM basis functions, and measured MM background data are not widely available to 431 

non-expert users. To reflect common practice in current MRS applications, the default MM basis 432 

function definitions from LCModel were adapted for each algorithm in this study. These basis 433 

functions only included MMs for frequencies < 3.0 ppm, which is likely insufficient for the mod-434 

elling of MM signals between 3 and 4 ppm46, and will have repercussions for the estimation of 435 

tCho, mI, and Glx. Second, standard modelling parameters were chosen for each LCM, which 436 

ensure a broader comparability to the current literature, but may not be ideal. Third, there is 437 
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obviously no ‘gold standard’ of metabolite level estimation to validate MRS results against. The 438 

performance of an algorithm is often judged based on the level of variance, but low variance 439 

clearly does not reflect accuracy and may indicate insufficient responsiveness of a model to the 440 

data. In comparing multiple algorithms, it is tempting to infer algorithms that show a higher de-441 

gree of correlation in results are more reliable, but it could equally be the case that shared algo-442 

rithm-based sources of variance increase such correlations. Efforts to use simulated spectra as a 443 

gold-standard, including those applying machine learning 47,48, can only be successful to the ex-444 

tent that simulated data are truly representative of in-vivo data. Fourth, another criterion to judge 445 

the performance of an algorithm is the residual. For example, a small residual indicates a higher 446 

agreement between the complete model and the data for LCModel, it does not infer a better esti-447 

mation of individual metabolites, and may result from the higher degree of freedom in the base-448 

line of LCModel (higher number of splines) compared to Osprey and Tarquin. This is empha-449 

sized by the high agreement of the mean mI models, but lower agreement of the baseline models 450 

around 3.58 ppm between LCModel and Osprey. Fifth, this study was limited to the two most 451 

widely used algorithms LCModel and Tarquin, as well as the Osprey algorithm that is under on-452 

going development in our group. While including additional algorithms would increase the gen-453 

eral understanding of different algorithms, the complexity of the resulting analysis and interpre-454 

tation would be overwhelming and beyond the scope of a single publication. 455 

  456 
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Conclusion 457 

This study presents a comparison of three LCM algorithms applied to a large short-TE PRESS 458 

dataset. While different LCM algorithms’ estimates of major metabolite levels agree broadly at a 459 

group level, correlations between results are only weak-to-moderate, despite standardized pre-460 

processing, a large sample of young, healthy and cooperative subjects, and high spectral quality. 461 

The variability of metabolite estimates that is introduced by the choice of analysis software is 462 

substantial, raising concerns about the robustness of  MRS research findings, which typically use 463 

a single algorithm to draw inferences from much smaller sample sizes. 464 

  465 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.06.05.136796doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136796
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 25 

Acknowledgement 466 
This work is supported by NIH grants R01 EB016089 R01 EB023963 R21A G060245. GO re-467 
ceives support from NIH grant K99 AG062230. MP is supported by NIH grants P41EB015909 468 
and R01NS106292. 469 
  470 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.06.05.136796doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136796
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 26 

References 471 
1.  Öz G, Alger JR, Barker PB, et al. Clinical Proton MR Spectroscopy in Central Nervous 472 

System Disorders. Radiology. 2014;270(3):658-679. doi:10.1148/radiol.13130531 473 

2.  Wilson M, Andronesi O, Barker PB, et al. Methodological consensus on clinical proton 474 
MRS of the brain: Review and recommendations. Magn Reson Med. 2019;82(2):527–550. 475 
doi:10.1002/mrm.27742 476 

3.  Bottomley P. Selective Volume Method for Performing Localized NMR Spectroscopy. Vol 477 
3.; 1985. doi:10.1016/0730-725X(85)90032-3 478 

4.  Near J, Harris AD, Juchem C, et al. Preprocessing, analysis and quantification in single-479 
voxel magnetic resonance spectroscopy: experts’ consensus recommendations. NMR Bio-480 
med. 2020;n/a(n/a):e4257. doi:10.1002/nbm.4257 481 

5.  Oeltzschner G, Zöllner HJ, Hui SCN, et al. Osprey: Open-source processing, reconstruction 482 
& estimation of magnetic resonance spectroscopy data. J Neurosci Methods. 483 
2020;343:108827. doi:10.1016/j.jneumeth.2020.108827 484 

6.  Juchem C. INSPECTOR - A Tool for Teaching Magnetic Resonance Spectroscopy. In: 26th 485 
Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM). 486 
Paris, France; 2018. 487 

7.  Wilson M, Reynolds G, Kauppinen RA, Arvanitis TN, Peet AC. A constrained least-488 
squares approach to the automated quantitation of in vivo 1 H magnetic resonance spectros-489 
copy data. Magn Reson Med. 2011;65(1):1–12. doi:10.1002/mrm.22579 490 

8.  Poullet J-B, Sima DM, Simonetti AW, et al. An automated quantitation of short echo time 491 
MRS spectra in an open source software environment: AQSES. NMR Biomed. 492 
2007;20(5):493–504. doi:10.1002/nbm.1112 493 

9.  Soher BJ, Semanchuk P, Todd D, Steinberg J, Young K. VeSPA: Integrated applications 494 
for RF pulse design, spectral simulation and MRS data analysis. In: 19th Annual Meeting of 495 
the International Society for Magnetic Resonance in Medicine (ISMRM). Montreal, Canada; 496 
2011. https://cds.ismrm.org/protected/11MProceedings/files/1410.pdf. Accessed May 19, 497 
2020. 498 

10.  Graveron-Demilly D. Quantification in magnetic resonance spectroscopy based on semi-499 
parametric approaches. Magn Reson Mater Phys Biol Med. 2014;27(2):113-130. 500 
doi:10.1007/s10334-013-0393-4 501 

11.  Provencher SW. Estimation of metabolite concentrations from localized in vivo proton 502 
NMR spectra. Magn Reson Med. 1993;30(6):672–679. doi:10.1002/mrm.1910300604 503 

12.  Osorio‐Garcia MI, Sima DM, Nielsen FU, Himmelreich U, Huffel SV. Quantification of 504 
magnetic resonance spectroscopy signals with lineshape estimation. J Chemom. 505 
2011;25(4):183-192. doi:10.1002/cem.1353 506 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.06.05.136796doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136796
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 27 

13.  Shen ZW, Chen YW, Wang HY, et al. Quantification of Metabolites in Swine Brain by ^1H 507 
MR Spectroscopy Using LCModel and QUEST: A Comparison Study. In: 2008 Congress 508 
on Image and Signal Processing. Vol 5. ; 2008:299-302. doi:10.1109/CISP.2008.478 509 

14.  Kossowski B, Orzeł J, Bogorodzki P, Wilson M, Setkowicz Z, P. Gazdzinski S. Follow-up 510 
analyses on the effects of long-term use of high fat diet on hippocampal metabolite concen-511 
trations in Wistar rats: Comparing Tarquin quantification of 7.0T rat metabolites to 512 
LCModel. Biol Eng Med. 2017;2(4). doi:10.15761/BEM.1000129 513 

15.  Mosconi E, Sima DM, Garcia MIO, et al. Different quantification algorithms may lead to 514 
different results: a comparison using proton MRS lipid signals. NMR Biomed. 515 
2014;27(4):431-443. doi:10.1002/nbm.3079 516 

16.  Scott J, Underwood J, Garvey LJ, Mora-Peris B, Winston A. A comparison of two post-pro-517 
cessing analysis methods to quantify cerebral metabolites measured via proton magnetic 518 
resonance spectroscopy in HIV disease. Br J Radiol. 2016;89(1060):20150979. 519 
doi:10.1259/bjr.20150979 520 

17.  Považan M, Mikkelsen M, Berrington A, et al. Comparison of Multivendor Single-Voxel 521 
MR Spectroscopy Data Acquired in Healthy Brain at 26 Sites. Radiology. 522 
2020;295(1):191037. doi:10.1148/radiol.2020191037 523 

18.  Mikkelsen M, Barker PB, Bhattacharyya PK, et al. Big GABA: Edited MR spectroscopy at 524 
24 research sites. NeuroImage. 2017;159:32–45. doi:10.1016/j.neuroimage.2017.07.021 525 

19.  Big GABA repository. Big GABA repository. https://www.nitrc.org/projects/biggaba/. Pub-526 
lished 2018. Accessed May 27, 2020. 527 

20.  Hall EL, Stephenson MC, Price D, Morris PG. Methodology for improved detection of low 528 
concentration metabolites in MRS: Optimised combination of signals from multi-element 529 
coil arrays. NeuroImage. 2014;86:35-42. doi:10.1016/j.neuroimage.2013.04.077 530 

21.  Klose U. In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med. 531 
1990;14(1):26–30. doi:10.1002/mrm.1910140104 532 

22.  Mikkelsen M, Tapper S, Near J, Mostofsky SH, Puts NAJ, Edden RAE. Correcting fre-533 
quency and phase offsets in MRS data using robust spectral registration. NMR Biomed. July 534 
2020:e4368. doi:10.1002/nbm.4368 535 

23.  Barkhuijsen H, de Beer R, van Ormondt D. Improved algorithm for noniterative time-do-536 
main model fitting to exponentially damped magnetic resonance signals. J Magn Reson 537 
1969. 1987;73(3):553–557. doi:10.1016/0022-2364(87)90023-0 538 

24.  Simpson R, Devenyi GA, Jezzard P, Hennessy TJ, Near J. Advanced processing and simu-539 
lation of MRS data using the FID appliance (FID-A)—An open source, MATLAB-based 540 
toolkit. Magn Reson Med. 2017;77(1):23–33. doi:10.1002/mrm.26091 541 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.06.05.136796doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136796
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 28 

25.  Cudalbu C, Behar KL, Bhattacharyya PK, et al. Contribution of macromolecules to brain 542 
1H MR spectra: Experts’ consensus recommendations. NMR Biomed Revis. 2020. 543 

26.  Provencher S. LCModel & LCMgui User’s Manual. LCModel & LCMgui User’s Manual. 544 
http://s-provencher.com/pub/LCModel/manual/manual.pdf. Published 2020. Accessed July 545 
15, 2020. 546 

27.  Levenberg K. A method for the solution of certain non-linear problems in least squares. Q 547 
Appl Math. 1944;2(2):164-168. doi:10.1090/qam/10666 548 

28.  Marquardt DW. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J Soc 549 
Ind Appl Math. 1963;11(2):431-441. doi:10.1137/0111030 550 

29.  R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: 551 
R Foundation for Statistical Computing; 2017. https://www.R-project.org/. 552 

30.  SpecVis GitHub repository. SpecVis GitHub repository. 553 
https://github.com/hezoe100/SpecVis. Published 2020. Accessed May 27, 2020. 554 

31.  Zöllner HJ. Comparison of algorithms for linear-combination modelling of short-echo-time 555 
magnetic resonance spectra. https://osf.io/3ekq4/. Published June 1, 2020. Accessed June 2, 556 
2020. 557 

32.  https://github.com/martin3141/spant. spant GitHub repository. https://github.com/mar-558 
tin3141/spant. Published 2017. Accessed May 27, 2020. 559 

33.  Allen M, Poggiali D, Whitaker K, Marshall TR, Kievit RA. Raincloud plots: a multi-plat-560 
form tool for robust data visualization. Wellcome Open Res. 2019;4:63. doi:10.12688/well-561 
comeopenres.15191.1 562 

34.  Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York; 563 
2009. http://ggplot2.org. 564 

35.  Fagerland MW. T-tests, non-parametric tests, and large studiesa paradox of statistical prac-565 
tice? BMC Med Res Methodol. 2012;12(1):78. doi:10.1186/1471-2288-12-78 566 

36.  Marjańska M, Terpstra M. Influence of fitting approaches in LCModel on MRS quantifica-567 
tion focusing on age-specific macromolecules and the spline baseline. NMR Biomed. No-568 
vember 2019. doi:10.1002/nbm.4197 569 

37.  Wenger KJ, Hattingen E, Harter PN, et al. Fitting algorithms and baseline correction influ-570 
ence the results of non-invasive in vivo quantitation of 2-hydroxyglutarate with 1H-MRS. 571 
NMR Biomed. 2019;32(1):e4027. doi:10.1002/nbm.4027 572 

38.  Schaller B, Xin L, Gruetter R. Is the macromolecule signal tissue-specific in healthy human 573 
brain? A \textlesssup\textgreater1\textless/sup\textgreater H MRS study at 7 tesla in the oc-574 
cipital lobe. Magn Reson Med. 2014;72(4):934–940. doi:10.1002/mrm.24995 575 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.06.05.136796doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136796
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 29 

39.  Bartha R. The Effect of Signal to Noise Ratio and Linewidth On 4T Short Echo Time 1H 576 
MRS Metabolite Quantification. Proc 13th Sci Meet Int Soc Magn Reson Med. 577 
2005;216(1):2459–2459. 578 

40.  Near J. Investigating the effect of spectral linewidth on metabolite measurement bias in 579 
short-TE MRS. In: 21th Annual Meeting of the International Society for Magnetic Reso-580 
nance in Medicine (ISMRM). Milan, Italy; 2014. 581 

41.  Wijtenburg SA, Knight-Scott J. The Impact of SNR on the Reliability of LCModel and 582 
QUEST Quantitation in 1 H-MRS. In: 17th Annual Meeting of the International Society for 583 
Magnetic Resonance in Medicine (ISMRM). ; 2009. 584 

42.  Zhang Y, Shen J. Effects of noise and linewidth on in vivo analysis of glutamate at 3 T. J 585 
Magn Reson. 2020;314. doi:10.1016/j.jmr.2020.106732 586 

43.  Marjańska M, Deelchand DK, Hodges JS, et al. Altered macromolecular pattern and con-587 
tent in the aging human brain. NMR Biomed. 2018;31(2):e3865. doi:10.1002/nbm.3865 588 

44.  Považan M, Strasser B, Hangel G, et al. Simultaneous mapping of metabolites and individ-589 
ual macromolecular components via ultra-short acquisition delay 1H MRSI in the brain at 590 
7T. Magn Reson Med. 2018;79(3):1231-1240. doi:10.1002/mrm.26778 591 

45.  Poullet J-B, Sima DM, Van Huffel S. MRS signal quantitation: A review of time- and fre-592 
quency-domain methods. J Magn Reson. 2008;195(2):134-144. 593 
doi:10.1016/j.jmr.2008.09.005 594 

46.  Giapitzakis I-A, Avdievich N, Henning A. Characterization of macromolecular baseline of 595 
human brain using metabolite cycled semi-LASER at 9.4T. Magn Reson Med. 596 
2018;80(2):462-473. doi:10.1002/mrm.27070 597 

47.  Lee HH, Kim H. Deep learning-based target metabolite isolation and big data-driven meas-598 
urement uncertainty estimation in proton magnetic resonance spectroscopy of the brain. 599 
Magn Reson Med. 2020;n/a(n/a). doi:10.1002/mrm.28234 600 

48.  Lee HH, Kim H. Intact metabolite spectrum mining by deep learning in proton magnetic 601 
resonance spectroscopy of the brain. Magn Reson Med. 2019;82(1):33-48. 602 
doi:10.1002/mrm.27727 603 

 604 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.06.05.136796doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136796
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 30 

Figure Captions 

Figure 2. Overview of the MRS analysis pipeline. (A) Pre-processing pipeline implemented in 
Osprey including ‘OspreyLoad’ to load the vendor-native spectra, ‘OspreyProcess’ to process 
the raw data and to export the averaged spectra. (B) Modelling of the averaged spectra with 
details of the basis set and parameters of each LCM (LCModel, Osprey, and Tarquin). 

 
Figure 2. Summary of the modelling results. (A–C) site-level averaged residual, data, model, 
MM model + baseline, baseline and MM model for each LCM algorithm, color-coded by 
vendor. (D–F) cohort-mean residual, data, model, MM model + baseline, and metabolite 
models for each vendor, color-coded by LCM algorithm. 

Figure 3. – Metabolite level distribution. Raincloud plots of the metabolite estimates of each 
LCM algorithm (color-coded). The four metabolites are reported in the columns, and the three 
vendors in rows, with a cohort summary in the last row. The coefficient of variation is reported 
for each distribution, as well as a mean CV reported in the last column,  which is calculated 
across each row. Asterisks indicate significant differences (adjusted p < 0.001 = ***). 

Figure 4. Pairwise correlational comparison of algorithms. LCModel and Osprey are 
compared in the first row, Tarquin and Osprey in the second row, and LCModel and Tarquin 
in the third row. Each column corresponds to a different metabolite. Within-vendor 
correlations are color-coded; global correlations are shown in black. The R2  values are 

calculated along each dimension of the grid with mean R2 for each metabolite and each 
correlation. A cohort-mean R2  value is also calculated across all twelve pair-wise 

correlations. Asterisks indicate significant correlations (p < 0.01 = ** and p < 0.001 = ***). 

Figure 5. Correlation analysis between metabolite estimates and local baseline power for each 
algorithm, including global (black) and within-vendor (color-coded) correlations. The mean 
R2  values are calculated along each dimension of the grid for each metabolite and each 

algorithm. Similarly, a cohort-mean R2  value is calculated across all twelve pair-wise 
correlations. Asterisks indicate significant correlations (p < 0.05 = *, p < 0.01 = ** ,  p < 
0.001 = ***). 

 
Figure 6. Variability of tCr models. Mean models +/- standard deviation (shaded areas) are 
presented column-wise by vendor and color-coded by LCM algorithm. The distribution and CV 
of the areas under the models are inset. 
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Supplementary Material 3. Facetted pair-wise correlational comparison of algorithms. 
LCModel and Osprey are compared in the first row, Tarquin and Osprey are compared in the 
second row, and LCModel and Tarquin are compared in the third row. Each sub-plot (A-D) 
corresponds to a different metabolite. Within-vendor (bold line with confidence interval) and 
within-site (thin line) correlations are color-coded. Asterisks indicate significant correlations (p 
< 0.01 = ** and p < 0.001 = ***).  
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Table Captions 
 

Table 3. Overview of linear-combination modelling algorithms. The domain (time TD or fre-
quency FD) of modelling and the baseline model approach are specified. *Citations re-
ported from Google Scholar on July 29, 2020. 

Table 4.  Metabolite level distribution. Mean, standard deviation and coefficient of variation 
(CV) of each metabolite-to-creatine ratio, listed by algorithm and vendor as well as global 
summary values. Asterisks indicate significant differences (adjusted p < 0.01 = ** and adjusted 
p < 0.001 = *** or ### or ’’’) in the mean (for the metabolite ratios) or the variance (for the CV) 
compared to the algorithm in the next row (LCModel vs Osprey = ** or ***, Osprey vs Tarquin 
= ###, and Tarquin vs LCModel = ’’’).   

Supplementary Material 1. Properties of the Gaussian functions of the broad macromolecule 
and lipid resonances included in the basis sets, taken from section 11.7 of the LCModel manual. 
The amplitude values are scaled relative to the CH3 singlet of creatine with amplitude 3. 
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Supplementary Material 

Name Frequencies [ppm] FWHM [ppm] Amplitude 

MM09 0.91 0.14 3.00 

MM12 1.21 0.15 2.00 

MM14 1.43 0.17 2.00 

MM17 1.67 0.15 0.20 

MM20 2.08 0.15 1.33 

2.25 0.20 0.33 

1.95 0.15 0.33 

3.00 0.20 0.40 

Lip09 0.89 0.14 3.00 

Lip13a 1.28 0.15 2.00 

Lip13b 1.28 0.089 2.00 

Lip20 2.04 0.15 1.33 

2.25 0.15 0.67 

2.80 0.20 0.87 

Supplementary Material 1. Properties of the Gaussian functions of the broad macromolecule 
and lipid resonances included in the basis sets, taken from section 11.7 of the LCModel manual. 
The amplitude values are scaled relative to the CH3 singlet of creatine with amplitude 3. 
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Supplementary Material 2 –  Overview plot and secondary analyses  

Details on the creation of the visual overview plot  

As in the default visualizations for the LCModel and Tarquin software interfaces, inverse phase 

estimates were applied to the spectra and final models. For the visualization, spectra were nor-

malized to the amplitude of the 3-ppm creatine singlet, and a DC offset was added to each site 

mean spectrum to align the mean frequency-domain amplitude between 1.85 and 4.0 ppm, to aid 

visual comparison between algorithms and sites.  

Details on the three secondary analyses: 
1. To investigate potential vendor differences in linewidth and SNR based on the different export

formats of the data, NAA linewidth and SNR were investigated.

2. To investigate potential interactions between baseline power and metabolite estimates unbiased

by DC offsets, the MM + baseline models were first aligned vertically according to the

frequency-domain minimum of the acquired spectra between 2.66 and 2.7 ppm (i.e. between the

aspartyl signals, which is the region with the highest consistency between the baseline models).

Baseline models were normalized to the frequency-domain amplitude of each metabolite

spectrum between 2.9 and 3.1 ppm to account for differences in the scaling of the model outputs

of LCModel and Tarquin. Baseline power beneath each major metabolite was then defined as the

range-normalized integral of the baseline model between 1.9 and 2.1 ppm for the tNAA baseline;

3.1 and 3.3 ppm for the tCho baseline; 3.33 and 3.75 ppm for mI; and 1.9 to 2.5 ppm and 3.6 to

3.8 ppm for the Glx baseline.

3. The contribution of variance in modelling of the creatine reference signal to metabolite ratios was

also investigated. To this end, each individual total creatine model (Cr + PCr) was normalized to

the frequency-domain amplitude of each metabolite spectrum between 1.9 and 2.1 ppm to

account for differences in the scaling of the total creatine model outputs of LCModel and

Tarquin. Finally, the integral over the individual creatine model was calculated.
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Supplementary Material 3. Facetted pair-wise correlational comparison of algorithms. 
LCModel and Osprey are compared in the first row, Tarquin and Osprey are compared in the 
second row, and LCModel and Tarquin are compared in the third row. Each sub-plot (A-D) 
corresponds to a different metabolite. Within-vendor (bold line with confidence interval) and 
within-site (thin line) correlations are color-coded. Asterisks indicate significant correlations (p 
< 0.01 = ** and p < 0.001 = ***).  
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