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Abstract 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global pandemic 
that has infected more than 14 million people in more than 180 countries worldwide. Like other coronaviruses, 
SARS-CoV-2 is thought to have been transmitted to humans from wild animals. Given the scale and widespread 
geographical distribution of the current pandemic, the question emerges whether human-to-animal 
transmission is possible and if so, which animal species are most at risk. Here, we investigated the structural 
properties of several ACE2 orthologs bound to the SARS-CoV-2 spike protein. We found that species known not 
to be susceptible to SARS-CoV-2 infection have non-conservative mutations in several ACE2 amino acid residues 
that disrupt key polar and charged contacts with the viral spike protein. Our models also predict affinity-
enhancing mutations that could be used to design ACE2 variants for therapeutic purposes. Finally, our study 
provides a blueprint for modeling viral-host protein interactions and highlights several important 
considerations when designing these computational studies and analyzing their results. 
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Introduction 
 
SARS-CoV-2, a novel betacoronavirus first identified in China in late 2019, is responsible for the ongoing global 
pandemic that has infected more than 14 million people worldwide and killed over 600.000 [1]. Comparative 
genomics studies suggest that SARS-CoV-2 was transmitted to humans from an animal host, most likely bats or 
pangolins [2]. Given the widespread human-to-human transmission across the globe, the question emerges 
whether humans can infect other animal species with SARS-CoV-2, namely domestic and farm animals. 
Identifying potential intermediate hosts that can act as reservoirs for the virus has both important global health, 
animal welfare, and ecological implications. 
 
During the course of this pandemic, there have been several news reports of domestic, farm, and zoo animals 
testing positive for SARS-CoV-2 infection. Belgium [3] and New York [4] reported positive symptomatic cases in 
cats, The Netherlands reported infection of minks in farms [5], and the Bronx Zoo in New York reported 
infections in lions and tigers [6]. In all these cases, the vehicle of transmission appears to be an infected human 
owner or handler. More importantly, in the case of the mink farms in The Netherlands, there is evidence of 
human-to-animal-to-human transmission. In addition to these reported cases, several groups put forward both 
pre-prints and peer-reviewed studies on animal susceptibility to SARS-CoV-2 under controlled laboratory 
conditions [7–9], two of which are of particular interest. The first study showed that cats, civets, and ferrets are 
susceptible to infection; pigs, chickens, and ducks are not, while the results for dogs were inconclusive [7]. A 
second study, using human cells expressing recombinant SARS-CoV-2 receptor proteins showed that camels, 
cattle, cats, horses, sheep, and rabbit can be infected with the virus, but not chicken, ducks, guinea pigs, pigs, 
mice, and rats [8]. Together, these studies provide a dataset of confirmed susceptible and non-susceptible 
species that we can analyze to find molecular discriminants between the two groups. For simplicity, from here 
on we will refer to susceptible and non-susceptible species as SARS-CoV-2pos and SARS-CoV-2neg, respectively. 
 
Like SARS-CoV-1 before, SARS-CoV-2 infection starts with the binding of the viral spike protein to the 
extracellular protease domain of angiotensin-converting enzyme 2 (ACE2) [10], a single-pass transmembrane 
protein expressed on the surface of a variety of tissues, including along the respiratory tract and the intestine. 
Several biophysical and structural studies identified helices α1 and α2, as well as a short loop between strands 
β3 and β4 in ACE2 as the interface for the viral spike protein [10–13]. These studies also identified key 
differences between the sequences of the receptor binding domains (RBD) of SARS-CoV-1 and SARS-CoV-2, 
which explain the stronger interaction of the latter with human ACE2. If binding to ACE2 is the first step in the 
infection cycle, we can reasonably assume that sequence variation across ACE2 orthologs can explain why only 
some animal species are susceptible to infection. In addition, combining structural and binding data with the 
natural diversity of ACE2 across species can help elucidate the key aspects that drive ACE2 interaction to viral 
RBDs and ultimately help guide the development of therapeutic molecules against SARS-CoV-2. 
 
Unsurprisingly, several groups already contributed multiple sequence and structure-based analyses of how 
sequence variation affects ACE2 binding to SARS-CoV-2 RBD [14–17]. Two recent preprints, specifically, focus 
on the effects of ACE2 variation on RBD binding. The first used an ACE2 sequence library to select for mutants 
that bind RBD with high affinity, identifying several mutants that enhance or decrease affinity to the viral 
protein and providing a blueprint for engineering proteins and peptides with therapeutic purposes [14]. While 
useful, we note that the authors carried out a single round of selection as opposed to the multiple rounds 
commonly carried out in similar studies. The second study used computational modeling to predict ΔΔG of 
mutations in 215 animal species and assess their risk for infection [15]. In addition, the authors also identified 
a number of locations on ACE2 that contribute to binding the viral RBD, in particular residues 31, 38, 353, as 
well as a cluster of N-terminal hydrophobic amino acid residues. 
 
In this study, we aimed to leverage structural, binding, and sequence data to investigate how different ACE2 
orthologs bind to SARS-CoV-2 RBD. We selected 29 animal species likely to encounter humans in a variety of 
residential, industrial, and commercial settings. For each of these species, we generated 3D models of ACE2 
bound to RBD and refined these models using short molecular dynamic simulations. After refinement, we found 
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that models of SARS-CoV-2pos species generally have a lower (better) score than those of SARS-CoV-2neg species. 
Further, we carried out a per-residue energy analysis that predicts both key locations in ACE2 that are 
consistently mutated across SARS-CoV-2neg species, as well as possible mutations that likely enhance binding to 
the viral RBD. Collectively, our results provide a structural framework to understand why certain animal species 
are not susceptible to SARS-CoV-2 infection, and also provide a starting point for rational engineering of antiviral 
molecular therapeutics. Finally, our work also provides a blueprint for future studies of viral-host protein 
interactions at high-resolution. 
 
 

Results 
 
All our models and the scoring statistics are available for visualization and download at 
https://github.com/joaorodrigues//ace2-animal-models/. 
 

Sequence conservation of ACE2 orthologs 
We analyzed the sequence conservation of ACE2 across our dataset, with respect to the entire sequence (591 
residues) and to the interface residues computed from a structure of ACE2 bound to RBD (PDB ID: 6m17) (22 
residues) (Table 1). All orthologs are reasonably conserved, with global similarity values to the human ACE2 
sequence (hACE2) ranging from 72% (goldfish) to 99.5% (chimpanzee) (S1 Fig). All species coarsely cluster in 
three classes consistent with evolutionary distance to humans: primates have the highest similarity values, 
followed by other mammals, birds and reptiles, and finally fish. Zooming in on the interface residues, we find 
more variation (Fig 1, left). Similarity values for this region range from 50% (crocodile) to 100% (all 3 primates) 
but, despite an overall correlation (Pearson R2 of 0.69), they do not always match global similarities. Hedgehogs 
and sheep, for example, share 86.7% and 86.4% global similarity with hACE2, respectively, but 59% and 95.5% 
for the interface region. In other words, sheep share 21 out of 22 residues with hACE2 at the interface with 
RBD, while hedgehogs share 13. The horseshoe bat, one of the proposed animal reservoirs for SARS-CoV-2, 
shares 72.2% interface similarity with hACE2, a comparable value to the 77.3% of the SARS-CoV-2neg mouse 
sequence. Altogether, these results prompt two observations. First, neither global nor interface sequence 
similarity is predictive of SARS-CoV-2 susceptibility. Second, that the interface of the viral RBD is substantially 
plastic and able to bind to sufficiently different ACE2 orthologs. 
 

Refinement of the hACE2:RBD complex 
In order to validate the refinement protocol used in our analysis, we created and refined models of human 
ACE2 (hACE2) bound to SARS-CoV-2 RBD. We used the cryo-EM structure of full-length human ACE2 bound to 
the RBD, in the presence of the amino acid transporter B0AT1 (PDB ID: 6m17). Compared to a high-resolution 
crystal structure of the same complex (PDB ID: 6m0j), the cryo-EM structure lacks several key contacts between 
our two proteins of interest, which we attribute to poor density for side-chain atoms at the interface region. 
Our refinement protocol restores the majority of these contacts (S1 Table), yielding an average HADDOCK score 
of -116.2 (arbitrary units, a.u.) for the 10 best models of the best cluster. See Materials and Methods for further 
details on the protocol. These scores fall within the range observed for a reference set of transient protein-
protein interactions (N=144, HADDOCK score=-124.9 ± 53.4) [18]. Upon visual inspection, the interfaces in our 
models are dominated by hydrogen bond interactions involving the ACE2 α1 helix and a small loop between 
strands β3 and β4. There is one single salt-bridge involving hACE2 D30 and RBD K417 consistently present in all 
our hACE2 models. These observations all agree with the published crystal structure. Further, the buried surface 
area of the refined models is also in agreement with published crystal structures (~1800 Å2). As such, we are 
confident that our modeling and refinement protocol is robust enough to model all ACE2 orthologs. 
 

Refinement of orthologous ACE2:RBD complexes 
We modeled and refined complexes for all 29 ACE2 orthologs in our dataset (Table 1) using the same protocol 
as above. The representative models for each species (10 best models of the best cluster) are available for 
visualization and download at https://joaorodrigues.github.io/ace2-animal-models/. The HADDOCK scores of 
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all 30 ACE2 complexes (including hACE2) range from -137.5 (dog) to -93.2 (mouse), indicating substantial 
differences between these interfaces (Fig 1, right, and S2 Table). The average HADDOCK score is -116.4, very 
close to that of the human complex (-116.2). Overall, models of SARS-CoV-2pos species have consistently lower 
(better) scores than those of SARS-CoV-2neg species. Although it is well-known that docking scores do not 
quantitatively correlate with experimental binding affinities [19], these scores suggest that SARS-CoV-2neg 
species lack one or more key ACE2 residues that contribute significantly to the interaction with RBD. 
 
To understand what forces drive the interactions between ACE2 and SARS-CoV-2 RBD, we quantified the 
contribution of each component of the HADDOCK scoring function to the overall score (Fig 2). The HADDOCK 
score is a linear combination of van der Waals, electrostatics, and desolvation energy terms. In our models, 
electrostatics are the most discriminatory component (Pearson R2 of 0.60), followed by desolvation (0.31), and 
finally van der Waals (0.08). These correlations suggest that differences between the models of the different 
species originate primarily in polar and charged residues, in agreement with observations from experimental 
structures. In addition, the buried surface area of the models also correlates quite strongly with the HADDOCK 
score (Pearson R2 of 0.66), which is unsurprising since larger interfaces tend to make more contacts. Most 
models bury between 1700 and 1850 Å2, in agreement with the crystal and cryo-EM structures, while the top-
scoring species (dog and goldfish) bury nearly 2000 Å2 and the lowest-scoring (mouse) bury only 1600 Å2. 
Finally, there is a weak correlation between the average HADDOCK score of the representative models and the 
sequence similarity of the ACE2 interface residues (Pearson R2 of 0.18) (S2 Fig). 
 
 

Structural and energetic differences between SARS-CoV-2pos and SARS-CoV-2neg species.  
To gain further insight on how ACE2 sequence variation across the different orthologs affects binding to SARS-
CoV-2 RBD, we calculated HADDOCK scores for each interface residue in the refined models. This high-
resolution analysis highlights several ACE2 amino acids with strong interaction energies that differ between 
SARS-CoV-2pos and SARS-CoV-2neg species (Figs. 3 and S3). 
 
The first and most relevant of these sites is amino acid 30, which in hACE2 (D30) interacts with RBD K417 to 
form the only intermolecular salt-bridge of the interface (Fig 4, top left). In all 12 SARS-CoV-2pos species, this 
site is occupied by a negatively charged amino acid residue. In contrast, 4 out of 5 SARS-CoV-2neg species have 
a hydrophobic or polar residue at this position, breaking the intermolecular salt-bridge (Fig 4, bottom left). The 
second site is amino acid 31, a lysine in hACE2, and in nearly all of the SARS-CoV-2pos species, that interacts both 
with ACE2 E35 and RBD Q493 (Fig 4, top middle). The only exceptions are the civet and dromedary sequences, 
mutated to threonine and glutamate, respectively. In the case of the civet, our models show that T31 can still 
hydrogen bond with both E35 and RBD Q493. Dromedaries, on the other hand, share E31 with chickens, guinea 
pigs, and ducks, all SARS-CoV-2neg species. However, and quite beautifully, in dromedary ACE2 the likely 
electrostatic repulsion between E31 and E35 is compensated by a lysine at position 76 (Q76 in hACE2) leading 
to the formation of an additional intramolecular salt-bridge that possibly stabilizes the fold of ACE2 and frees 
E35 to hydrogen bond with Q493 (90% of our models). Those three SARS-CoV-2neg species have an additional 
charge-reversal mutation at position 35. In all our chicken and duck models, E31 is locked in an intramolecular 
salt-bridge with R35, weakening the intermolecular hydrogen bond with RBD Q493 (Fig 4, bottom middle). 
Finally, guinea pigs compensate K31E with E35K and remain able to hydrogen bond with RBD, while rats have 
a lysine at this position. 
 
Besides these major discriminatory sites, we identified multiple other sites that are systematically mutated in 
SARS-CoV-2neg species. The first of these sites is K353 (in hACE2), which is involved in an intramolecular salt-
bridge with D38, and two hydrogen bonds with RBD G496 and G502 (Fig 4, bottom right). In rat and mouse 
ACE2, both SARS-CoV-2neg species, this residue is mutated to a histidine, which weakens the interaction with 
D38, possibly leading to increased conformational dynamics of the β3-β4 loop and consequently lower binding 
affinity. Then, Q42, conserved in most other species, hydrogen bonds with RBD Y449 in the majority of our 
models. In canary, chicken, pigeon, hedgehog, duck, and crocodile ACE2 sequences, this amino acid is mutated 
to a glutamate, which introduces the possibility of an additional intramolecular salt-bridge with K68, in ACE2 
helix α2. As we observe in some of our models, this intramolecular interaction prevents the formation of the 
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intermolecular hydrogen bond. Finally, amino acid 83, a tyrosine in hACE2 and all other SARS-CoV-2pos is 
mutated to phenylalanine in 4 out of 5 SARS-CoV-2neg species: mouse, duck, rat, and chicken. The loss of the 
hydroxyl group excludes residue 83 from a ternary hydrogen-bonding network involving Q24 and RBD N487 
that likely stabilizes the protein-protein interface. Without this hydrophilic terminal group, residue 83 might 
also prefer less solvent accessible conformations in the unbound state, burying between both α1 and α2 helices 
and thus being less available to interact with RBD F486. 
 

Affinity-enhancing mutations from ACE2 orthologs 
In addition to highlighting discriminatory mutations between SARS-CoV-2pos and SARS-CoV-2neg species, our 
models also allow us to search for mutations that could be used to generate variants of hACE2 with higher 
affinity towards the viral RBD. To this end, we calculated a modified HADDOCK score for each residue, including 
both intra- and intermolecular interactions, and then subtracted the score of the corresponding residue in the 
hACE2:RBD models (see Material and Methods for details) (Fig 5). 
 
The resulting analysis highlights several single-point mutations that we predict could confer a higher affinity for 
RBD if engineered on hACE2. Some we can explain with simple biophysics following a careful inspection of the 
models (Fig 6). Q24E, observed in both the pangolin and horseshoe bat sequences, contributes to a stronger 
hydrogen bond network with partner RBD N487, and helps stabilize the α1 helix through interactions with the 
backbone of neighboring S21; A25V, observed only in the dog sequence, is buried between helices α1, α2, and 
α3, and contributes to a stronger packing with neighboring hydrophobic and aromatic residues (L29, Y83, V93, 
and L97); D30E stabilizes the intermolecular salt-bridge with RBD K417 due to the longer glutamate side-chain; 
H34Y enhances the hydrophobic interactions with neighboring L455 and the aliphatic chain of RBD N493; F72Y 
introduces possible hydrogen-bonding interactions between helices α1 and α2, while maintaining strong 
hydrophobic packing through the phenyl ring; L79H, observed only in the ferret ACE2 sequence, allows for 
intermolecular hydrogen bonds with the backbone carbonyl of RBD G485, in addition to stabilizing helix α2 and 
the packing of helices α1 and α2 through hydrogen bonds with residue 76 and aromatic stacking with F28; 
finally, A387E, observed in the ferret sequence, can interact with both R354 (G354 in hACE2) and, more 
importantly, RBD R408.  
 
Other mutations observed in top-scoring species and predicted in our models to have stronger local interactions 
are dependent on additional mutations in neighboring residues. F40S, observed in bat and horse ACE2, forms 
a hydrogen bond with the hydroxyl group of Y390 (F390 in hACE2); Y41H, observed in bat, donkey, and horse 
ACE2, contributes to a polar network involving RBD residues, namely Q498, T500, and N501, as well as hydrogen 
bonds with the backbone of ACE2 L351, that might help stabilize the local fold of the β3-β4 loop; lastly, Q76E, 
Q76K, and T78K all stabilize helices α1 and α2 through interactions with adjacent residues, such as E31 
(dromedary), E74 (pangolin), E75 (dog), or H79 (ferret). 
 

Discussion 
 

Can structural modeling predict cross-species transmission of SARS-CoV-2? 
Our computational modeling of 30 vertebrate ACE2 orthologs bound to SARS-CoV-2 RBD discriminates between 
previously reported SARS-CoV-2pos and SARS-CoV-2neg species. Models of SARS-CoV-2neg species – chicken, duck, 
mouse, and rat – have clearly higher (worse) HADDOCK scores than average (Fig 1), suggesting that these 
species’ non-susceptibility to infection could stem from deficient RBD binding to ACE2. Despite this clear trend, 
our predictions are not entirely correct. Our modeling ranks guinea pig ACE2 (SARS-CoV-2neg) as a better 
receptor for SARS-CoV-2 RBD than for example, human, cat, horse, or rabbit ACE2 (all SARS-CoV-2pos species), 
despite experiments showing that there is negligible binding between the two proteins [8]. 
 
These results highlight the need for carefully evaluating predictions from computational models. As noted 
earlier in the introduction, SARS-CoV-2 infection is a complex multi-step process [20]. Thus, while we can 
assume that impaired ACE2 binding decreases odds of infection, we cannot state that ACE2 binding is predictive 
of infection. For instance, experiments with recombinant ACE2 show that the pig ortholog binds SARS-CoV-2 
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RBD and leads to entry of the virus in host cells [8], but tests in live animals returned negative results [7]. Our 
modeling protocol, like any structure prediction method, is limited by the accuracy of its sampling method (how 
many conformational states do we model) and of its scoring function (how do we pick the most native-like 
model). In addition, by basing our models on a cryo-EM structure of the hACE2:RBD complex, we make 
assumptions about the bound state of the two proteins when it is known from structures of the full-length 
SARS-CoV-2 spike protein [21] and coarse-grained simulations [22] that there is considerable flexibility at the 
interface. As such, our computational models alone cannot be used to predict whether certain animal species 
are at risk of infection; our ranking of species needs thorough experimental validation. What our models do 
predict, however, are distinctive molecular features between SARS-CoV-2pos and SARS-CoV-2neg species. As the 
adage goes, ‘all models are wrong, but some are useful.’  
 

SARS-CoV-2neg species lack important polar and charged ACE2 residues 
Having established that our modeling protocol and scoring function generally distinguishes between SARS-CoV-
2pos and SARS-CoV-2neg species, we took a closer look at the biophysical properties of the interface across all 
orthologs. We decomposed our scoring function in its individual energy terms (Fig 2) and found that SARS-CoV-
2neg models rank worse due to a substantial decrease in electrostatic energy and interface surface area. An 
exhaustive per-residue energy analysis of the 10 best models for each species (300 models in total), reveals a 
loss of hydrogen bonds and salt-bridges in models of mouse, duck, rat, and chicken ACE2. Most importantly, 
these species lack the only intermolecular salt-bridge observed between hACE2 and RBD due to mutations on 
position 30 (D30 in hACE2) (Fig 4, left). These predictions are supported by experimental work, where mutants 
lacking a negative charge at this position are largely unable to bind SARS-CoV-2 RBD [14]. Non-conservative 
mutations at other sites on ACE2 also contribute negatively to the interface scores. Our models suggest that 
the introduction of a negatively charged residue at position 31 is disruptive to binding, in agreement with 
experiments [14], unless it is compensated by an additional mutation. In both chicken and duck ACE2, the 
compensatory mutation –  E35R – nevertheless locks E31 in an intramolecular salt-bridge and prevents it from 
interacting with RBD (Fig 4, middle). Then, at the opposite end of the α1 helix, our models identify K353 as a 
strong contributor to interface stability that is mutated in both rat and mouse ACE2 (Fig 4, right). The long lysine 
side-chain stabilizes the interface region of ACE2 by forming an intramolecular salt-bridge with D38, but also 
contributes to hydrogen bonds with viral RBD, with G496 and G502. These results support other modeling work 
[17] that predicts that RBD mutants G496D bind worse to ACE2 because of the disruption of this intramolecular 
salt-bridge. Also, as shown by experiments, any mutation in this region decreases the ability of ACE2 to bind 
RBD [14], confirming our predictions and highlighting a second important interaction site lacked by rodents’ 
ACE2. Our predictions identify other sequence differences between SARS-CoV-2pos and SARS-CoV-2neg species 
that impair intra- and intermolecular polar interactions. Position 83 is mutated from a tyrosine to a 
phenylalanine in all SARS-CoV-2neg species except guinea pig, while position 42, a glutamine in all SARS-CoV-2pos 

species, is mutated to a glutamate in chicken and duck ACE2. Introducing these mutations on hACE2 leads to 
impaired binding of RBD [14]. Given the highly polar nature of the interface (Tables S1 and S2), it is then 
plausible that the accumulation of several mutations on key polar and charged residues, as observed in SARS-
CoV-2neg species, leads to a drastic reduction in binding affinity between the two proteins. 
 

Natural variants of ACE2 encode potential affinity-enhancing mutations for SARS-CoV-2 RBD 
One of the many proposed antiviral agents against SARS-CoV-2 is recombinant soluble hACE2 [23], which acts 
as a decoy for the viral RBD and therefore reduces rates of infection. While deep mutagenesis experiments 
have been used to optimize protein-protein interfaces for therapeutic purposes [24], it is impractical to carry 
out an exhaustive search of the entire protein sequence space. Our models suggest several sites and variants 
that potentially enhance the affinity between hACE2 and RBD (Fig 5). These predictions fall in three broad 
categories: the stabilization of existing interactions, the introduction of novel interactions, and stabilization of 
the ACE2 interface region. We note, however, that our coverage of sequence space is limited to naturally 
occurring variants, and that natural selection imposes additional constraints on sequence variability besides 
RBD binding.  
 
 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.06.05.136861doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136861
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

For the first category, the clearest affinity enhancer seems to be D30E, a variant observed in 6 of the 8 best 
scoring species (Fig 6, third panel) and shown in experiments to increase binding to RBD [8,14]. The longer side-
chain of a glutamate residue can help strengthen and stabilize the intermolecular salt-bridge with RBD K417. 
The impact of such Asp-to-Glu mutations in modulating protein interactions has been reported previously for 
other systems [25]. Other mutations predicted to enhance the strength of existing interactions between ACE2 
and RBD include Q24E (Fig 6, first panel) and F72Y, both validated by experiments [14]. The introduction of 
novel interactions is particularly interesting from a protein design perspective. Our models predict that placing 
a negative charge at position 387 might allow for a second intermolecular salt-bridge to form with RBD R408 
(Fig 6, fourth panel). In our hACE2 models, RBD R408 points towards – but does not interact with – the glycan 
molecule bound to N90. It has been shown that removing this N-glycosylation motif increases RBD binding, 
while both A387D and A387E lead to mild increases in binding affinity in some cases [14]. As such, we propose 
that a double N90A/A387E mutant could have a synergistic effect on RBD affinity. Finally, it is known that 
interactions between rigid binders, with little to none conformational changes upon binding, have the highest 
affinities [18]. Indeed, this is a ground rule of many successful protein interface designs (e.g. [26]). Our per-
residue energy analysis predicts that A25V stabilizes the packing of the α1 and α2 helices, which is an important 
nexus of RBD interactions (Fig 6, second panel). 
 
Our models also predict that mutating H34Y increases RBD binding, possibly by introducing novel interactions 
with RBD via the terminal hydroxyl of the tyrosine side-chain. In addition, the large aromatic ring offers a 
hydrophobic partner for RBD L455. Our predictions for both H34V and H34S indicate that neither of these 
mutants is energetically favorable, likely because they retain only one of the two types of interactions (aromatic 
or polar). However, experiments show exactly the opposite behavior: H34S or H34V dramatically increase 
binding to RBD, while H34Y decreases it [14]. This result highlights the limitations of our models and stresses 
the need for experimental validation for all our predictions. 
 
In summary, our protocol combines structural, sequence, and binding data to create a structure-based 
framework to understand SARS-CoV-2 susceptibility across different animal species. Our models help 
rationalize the impact of naturally-occurring ACE2 mutations on SARS-CoV-2 RBD binding and explain why 
certain species are not susceptible to infection with the virus. In addition, we propose possible affinity-
enhancing mutants that can help guide engineering efforts for the development of ACE2-based antiviral 
therapeutics. Our protocol and models can easily be replicated using freely-available tools and web servers and 
serve as a blueprint for future modeling studies on protein interactions where data is available for a large 
number of homologues.  
 
Finally, to prevent human-to-animal transmission, we recommend following the World Organization for Animal 
Health guidelines: people infected with COVID-19 should limit contact with their pets, as well as with other 
animals (including humans). 
 
 

Materials and Methods 
 

Sequence Alignment of ACE2 Orthologs 
Sequences of ACE2 orthologs from 28 species were retrieved from NCBI using the human gene as a reference 
(Gene ID: 59272, updated on 20-Apr-2020) and the query term “ortholog_gene_59272[group]”. Other species, 
such as Rhinolophus sinicus, were manually included using custom queries. The sequences were aligned with 
MAFFT version 7 [27,28], using the alignment method FFT-NS-i (Standard). Some sequences had undefined 
amino acids (‘X’), which we converted to glycine to allow modeling without any bias for amino acid identity. All 
species and the respective protein identifiers are listed in Table 1. 
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Definition of Sequence Similarity 
All calculations were based on the alignments from MAFFT, restricted to the region used for modeling (residues 
21-600). To calculate sequence similarity, we considered the following groups based on physico-chemical 
properties: charged-positive (Arg, Lys, His), charged-negative (Asp, Glu), aromatic (Phe, Tyr, Trp), polar (Ser, 
Thr, Asn, Gln), and apolar (Ala, Val, Ile, Met). Cys, Gly, and Pro residues were considered individual classes. 
 

Modeling of ACE2 Orthologs 
 
The modeling of ACE2 orthologs was carried out using MODELLER 9.24 [29] and custom Python scripts (available 
here: https://github.com/joaorodrigues//ace2-animal-models/).  We used the cryo-EM structure of the SARS-
CoV-2 RBD bound to human ACE2 (PDB ID: 6M17) [12] as a template for all our subsequent models, including 
all glycans and the coordinates of RBD. To save computational resources, we modeled only the extracellular 
domain of ACE2, specifically residues 21-600, which are known to be sufficient to bind to RBD. To avoid 
unwanted deviation from the initial cryo-EM structure, we restricted the optimization and refinement of the 
models to the coordinates of atoms of mutated or inserted residues. We used the fastest library schedule for 
model optimization and the very_fast schedule for model refinement. For each species, we generated 10 
backbone or loop models and selected the one with the lowest normalized DOPE score as a representative. 
These final models were then processed to remove any sugar molecules in species where the respective 
asparagine residue had been mutated. 
 

Refinement of ACE2:RBD complexes 
The initial complex models were prepared for refinement using the pdb-tools suite [30]. Each chain was 
separated into a different PDB file (pdb_selchain) and standardized with TER and END statements (pdb_tidy). 
We used HADDOCK 2.4 [31] to carry out the refinement of the models. The protein molecules were 
parameterized using the standard force field in HADDOCK, while the sugars were parameterized using updated 
parameters for carbohydrates [32]. We used a modified version of the topology generation scripts to allow 
automatic detection of N-linked glycans and expand the range of the interface refinement (10 Å distance 
cutoff). Each initial homology model was refined through 50 independent short molecular dynamics simulations 
in explicit solvent (solvshell=True). These refined models were then clustered using the FCC algorithm [33] with 
default parameters and scored using the HADDOCK score, a linear combination of van der Waals, electrostatics, 
and desolvation. A lower HADDOCK score is better. The top 10 models of the top scoring cluster, ranked by its 
average HADDOCK score, were selected as representatives of the complex. 
 

Analysis of interface contacts of refined ACE2:RBD complexes 
We used the interfacea analysis library (version 0.1) (http://doi.org/10.5281/zenodo.3516439) to identify 
intermolecular contacts between hACE2 and RBD, specifically hydrogen bonds, salt bridges, and aromatic ring 
stacking. Hydrogen bonds were defined between any donor atom (nitrogen, oxygen, or sulfur bound to a 
hydrogen atom) within 2.5 Å of an acceptor atom (nitrogen, oxygen, or sulfur), if the donor-hydrogen-acceptor 
angle was between 120 and 180 degrees. Salt bridges were defined between two residues with a pair of 
cationic/anionic groups within 4 Å of each other. Finally, two aromatic residues were defined as stacking if the 
centers of mass of the aromatic groups were within 7.5 Å (pi-stacking) or 5 Å (t-stacking) and the angle between 
the planes of the rings was between 0 and 30 degrees (pi-stacking) or between 60 and 90 degrees (t-stacking). 
Additionally, for pi-stacking interactions, the projected centers of both rings must fall inside the other ring. For 
each modelled species, we took the 10 best models of the best cluster, judged by their HADDOCK score, and 
aggregated all their contacts together. Contacts present in at least 5 models were considered representative. 
 

Per-residue decomposition of HADDOCK scores 
 
We used a custom CNS [34] script to calculate the HADDOCK score of each residue at the interface between 
ACE2 and RBD. Briefly, the protocol was the following. For each model, since HADDOCK uses a united-atom 
force field, we first added missing hydrogen atoms and minimized their coordinates, keeping all other atoms 
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fixed. We marked a residue of ACE2 as part of the interface if any of its atoms were within 5 Å of any atom of 
RBD, and vice-versa. We then calculated the electrostatics, van der Waals, and desolvation energies for each of 
these residues, considering only atoms belonging to the other protein chain. Note that this protocol does not 
account for intramolecular effects of mutations. Finally, we calculated the HADDOCK score per residue, using 
the default scoring function weights, and averaged per-residue values for the best 10 models of the best cluster 
of each species. For the calculation of combined intra- and intermolecular scores (Fig 6), we followed a similar 
protocol where the distance cutoff to define neighbors was increased to 7.5 Å and atoms from both chains 
were considered. 
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Figures and Tables 

 
Fig 1. Interface statistics of modeled ACE2:RBD complexes. SARS-CoV-2pos species (in blue) generally have lower 
(better) HADDOCK scores (left, expressed in arbitrary units) than SARS-CoV-2neg species (in red). A similar but 
less conclusive trend is observed between the sequence similarities of amino acid residues interacting with the 
viral RBD (derived from PDB 6m17) (right). Collectively, these results suggest that SARS-CoV-2neg species lack 
specific key ACE2 amino acid residues, leading to impaired binding between the two proteins. Species are 
ordered in increasing order of HADDOCK score. Species for which SARS-CoV-2 susceptibility is unknown or 
assays were inconclusive are shown in gray. 
 

 
Fig 2. Correlation of HADDOCK score with individual energy terms and structural features. Differences in 
electrostatics energy contribute the most towards discriminating SARS-CoV-2pos species (blue) from SARS-CoV-
2neg species (red), supporting observations of hydrogen bonding networks and charged interactions in 
experimental structures. The buried surface area of the models is also strongly correlated with their HADDOCK 
score, suggesting larger interfaces of SARS-CoV-2pos species might confer better binding properties. 
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Fig 3. HADDOCK score of individual ACE2 interface residues. For each species (row), the blocks (columns) 
represent amino acid residues within 5Å of the viral RBD in any of the species’ best 10 models. The identity of 
the amino acid is shown in one-letter code. The colors represent the HADDOCK score of each residue, averaged 
over the 10 models: lower scores (dark blue) indicate more favorable interactions, while positive scores indicate 
steric clashes or electrostatic repulsion. The first row shows the median of the averages for each column. From 
this analysis, we predict that amino acid residues at positions 30, 31, and 353 contribute the most to the stability 
of the ACE2:RBD complex. In SARS-CoV-2neg species (red labels), some of these residues are consistently 
mutated (30 and 31), which could explain their lower susceptibility to infection. S3 Fig shows the per-residue 
analysis for all species in the dataset. 

Fig 4. Interface differences between human and SARS-CoV-2neg models. The top panels show key residue-
residue interactions at the interface between hACE2 (white) and the viral RBD (teal), which are conserved in 
nearly all SARS-CoV-2pos species: salt-bridge between D30 and K417 (left); three-body interaction between K31, 
E35, and RBD Q493 (middle); and the interactions of K353, an intramolecular salt-bridge with D38 and an 
intermolecular hydrogen bonds with G496 and G502 (right). The bottom panels highlight equivalent regions in 
three SARS-CoV-2neg species: D30N mutation in mice (left) disrupts the intermolecular salt-bridge; D31K/D35R 
in ducks stabilizes an intramolecular salt-bridge and weakens the intermolecular hydrogen bond (middle); 
K353H in mice disrupts the intramolecular salt-bridge (right). 
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Fig 5. ΔHADDOCK score of individual ACE2 interface residues compared to hACE2. For each species (row), the 
blocks (columns) represent amino acid residues within 7.5Å of the viral RBD in any of the species’ best 10 
models. The identity of the amino acid is shown in one-letter code. The colors represent the ΔHADDOCK score 
– including intramolecular interactions – of each residue, averaged over the 10 models, compared to the 
average of the corresponding hACE2 residue: negative scores (dark blue) indicate a stabilizing mutation. This 
analysis highlights several potential affinity-enhancing mutations, namely Q24E, A25V, D30E, H34Y, F40S, Y41H, 
F72Y, L79H, and A387E. We note that this analysis requires further visual inspection of the models to account 
for additional variations in ACE2 sequence that may skew the per-residue HADDOCK score. Refer to the main 
text for details. S4 Fig shows the same plot for all species of the dataset. 

 

Fig 6. Predicted affinity-enhancing mutations for hACE2. Analyzing the residue energetics of ACE2 orthologs 
suggests mutations that have the potential to enhance the affinity of hACE2 (white) to RBD (teal). The top 
panels shows our top-scoring hACE2:RBD model and its interactions (yellow cylinders) for four such sites: 
residues 24, 25, 30, and 387. The bottom panels show mutations in specific species, and the resulting new or 
enhanced interactions: Q24E in pangolin, A25V in dog, D30E in cow, and A387E in ferret. Some of these 
mutations are found in multiple ACE2 orthologs. 
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Table 1. List of species included in the study 

Scientific Name Common Name NCBI Protein ID 

Homo sapiens Human NP_001358344.1 

Anas platyrhynchos Duck XP_012949915.2 

Bos taurus Cow XP_005228485.1 

Camelus dromedarius Dromedary XP_010991717.1 

Canis lupus familiaris Dog NP_001158732.1 

Capra hircus Goat NP_001277036.1 

Carassius auratus Goldfish XP_026131313.1 

Cavia porcellus Guinea pig XP_023417808.1 

Columba livia Pidgeon XP_021154486.1 

Crocodylus porosus Crocodile XP_019384826.1 

Equus asinus Donkey XP_014713133.1 

Equus caballus Horse XP_001490241.1 

Erinaceus europaeus Hedgehog XP_007538670.1 

Felis catus Cat XP_023104564.1 

Gallus gallus Chicken XP_416822.2 

Macaca mulatta Macaque NP_001129168.1 

Manis javanica Pangolin XP_017505746.1 

Mesocricetus auratus Hamster XP_005074266.1 

Mus musculus Mouse NP_081562.2 

Mustela putorius furo Ferret NP_001297119.1 

Oryctolagus cuniculus Rabbit XP_002719891.1 

Ovis aries Sheep XP_011961657.1 

Paguma larvata Civet AAX63775.1 

Pan troglodytes Chimpanzee XP_016798468.1 

Panthera tigris altaica Siberian Tiger XP_007090142.1 

Pongo abelii Orangutan NP_001124604.1 

Rattus norvegicus Rat NP_001012006.1 

Rhinolophus sinicus Horseshoe bat AGZ48803.1 

Serinus canaria Canary XP_009087922.1 

Sus scrofa Pig NP_001116542.1 
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Supporting Information 

 
Fig. S1. Global sequence similarity across ACE2 orthologs. 

 
 

Fig. S2. Correlation between HADDOCK score and interface sequence similarity for all models. 
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Fig. S3. HADDOCK score of individual ACE2 interface residues for all species. 

 

 
Fig. S4. ΔHADDOCK score of individual ACE2 interface residues compared to hACE2 for all species. 
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Table S1. Interface contacts of refined human ACE2:RBD 

Type ACE2 Residue RBD Residue Frequency in Top 10 hACE2 Models In crystal (6m0j) 

hbond Q24 A475 7  

hbond Q24 N487 6 x 

hbond T27 Y489 9  

ionic D30 K417 10 x 

hbond K31 F490 4  

hbond K31 Q493 10 x 

hbond H34 Y453 2  

hbond E35 Q493 6 x 

hbond E37 Y505 4 x 

hbond D38 Y449 10 x 

hbond Y41 T500 10 x 

hbond Y83 N487 2 x 

hbond K353 Y495 1  

hbond K353 G496 9  

hbond K353 G502 10 x 

 

Table S2. HADDOCK scores and individual energy terms for each modeled ACE2:RBD complex. The values 

represent the average and standard deviation of the 10 best models (ranked by HADDOCK score) of each 

species. 

Species 
HADDOCK Score 

(a.u.) 
van der Waals 

(kcal/mol) 
Electrostatics 

(kcal/mol) 
Desolvation 

(a.u.) 
Buried Surface Area 

(Å2) 

Dog -137,5 ± 3,7 -64,5 ± 4,0 -230,3 ± 18,4 -26,9 ± 2,5 1903 ± 44 

Ferret -127,2 ± 1,8 -60,6 ± 2,6 -195,8 ± 16,8 -27,5 ± 3,4 1824 ± 70 

Goldfish -131,2 ± 5,9 -68,2 ± 3,8 -189,3 ± 19,2 -25,1 ± 3,2 1925 ± 67 

Pangolin -127,7 ± 3,3 -59,9 ± 3,6 -233,8 ± 16,0 -21,0 ± 2,0 1854 ± 32 

Hamster -119,1 ± 3,1 -57,6 ± 2,8 -242,8 ± 23,8 -13,0 ± 2,5 1821 ± 51 

Siberian Tiger -126,0 ± 4,8 -60,7 ± 3,9 -196,3 ± 27,8 -26,0 ± 3,3 1804 ± 37 

Guinea pig -118,0 ± 3,3 -62,3 ± 2,6 -163,3 ± 12,2 -23,0 ± 2,5 1868 ± 41 

Sheep -126,7 ± 2,5 -61,4 ± 2,2 -231,2 ± 26,8 -19,0 ± 3,6 1876 ± 25 

Chimpanzee -121,2 ± 3,4 -57,5 ± 3,7 -213,5 ± 17,6 -21,0 ± 3,1 1816 ± 33 

Civet -123,6 ± 4,2 -56,4 ± 4,5 -193,6 ± 27,9 -28,6 ± 3,4 1786 ± 56 

Human -116,2 ± 3,2 -54,4 ± 2,8 -221,8 ± 15,1 -17,5 ± 3,2 1781 ± 37 

Dromedary -113,1 ± 2,2 -56,0 ± 2,0 -181,3 ± 16,3 -20,8 ± 2,7 1733 ± 65 

Horseshoe bat -125,8 ± 2,7 -60,7 ± 3,2 -259,4 ± 17,5 -13,2 ± 3,2 1819 ± 52 

Pig -113,3 ± 1,1 -53,8 ± 2,1 -202,7 ± 12,6 -18,9 ± 2,5 1715 ± 32 

Cow -115,3 ± 4,1 -54,9 ± 1,5 -212,1 ± 19,1 -18,0 ± 4,0 1766 ± 41 

Cat -117,2 ± 1,7 -55,2 ± 2,0 -202,4 ± 9,8 -21,5 ± 3,0 1752 ± 42 

Macaque -120,8 ± 3,2 -56,5 ± 2,1 -217,7 ± 18,6 -20,7 ± 2,3 1841 ± 37 

Pidgeon -106,0 ± 2,0 -57,3 ± 2,7 -189,7 ± 11,9 -10,7 ± 3,0 1730 ± 28 

Orangutan -118,5 ± 4,5 -62,5 ± 2,7 -182,3 ± 21,1 -19,5 ± 3,8 1837 ± 49 
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Horse -116,8 ± 4,2 -55,4 ± 3,7 -220,0 ± 14,0 -17,4 ± 2,4 1762 ± 34 

Rabbit -116,4 ± 5,6 -55,6 ± 2,7 -222,6 ± 18,2 -16,2 ± 2,7 1827 ± 55 

Donkey -119,9 ± 1,9 -58,3 ± 1,7 -220,5 ± 13,5 -17,6 ± 3,3 1767 ± 44 

Goat -108,5 ± 4,0 -53,5 ± 3,6 -189,0 ± 10,5 -17,2 ± 3,1 1745 ± 64 

Chicken -111,8 ± 1,4 -64,8 ± 1,6 -132,3 ± 15,0 -20,5 ± 3,7 1802 ± 44 

Canary -112,5 ± 2,8 -61,5 ± 5,0 -170,7 ± 33,7 -16,8 ± 3,8 1822 ± 73 

Hedgehog -103,5 ± 3,2 -57,3 ± 5,3 -160,9 ± 38,9 -14,0 ± 3,8 1726 ± 48 

Rat -108,9 ± 3,5 -55,3 ± 4,5 -162,4 ± 16,0 -21,2 ± 2,7 1777 ± 58 

Crocodile -96,0 ± 2,5 -64,9 ± 2,7 -90,4 ± 18,1 -13,1 ± 2,6 1690 ± 49 

Duck -98,8 ± 2,3 -63,3 ± 1,9 -99,5 ± 6,0 -15,5 ± 3,1 1782 ± 55 

Mouse -93,2 ± 2,6 -53,8 ± 2,6 -93,1 ± 14,4 -20,8 ± 2,5 1598 ± 65 

 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.06.05.136861doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136861
http://creativecommons.org/licenses/by-nc/4.0/


21 
 

Funding 
JPGLMR acknowledges support from the Molecular Sciences Software Institute (ACI-1547580) 

(https://molssi.org). JPGLMR and ML acknowledge funding from the National Institutes of Health USA 

(R35GM122543) (https://www.nigms.nih.gov). PLK acknowledges funding from the Federal Ministry for 

Education and Research (BMBF, ZIK program) (03Z22HN23) (https://www.bmbf.de) and the European Regional 

Development Funds for Saxony-Anhalt (EFRE: ZS/2016/04/78115) (https://www.efre.nrw.de). The funders had 

no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. 

 

Author Contributions 
Conceptualization: João P. G. L. M. Rodrigues 
Funding Acquisition: Michael Levitt 
Investigation: João P. G. L. M. Rodrigues, Susana Barrera-Vilarmau, João M. C. Teixeira,  Panagiotis Kastritis 
Writing – Original Draft: João P. G. L. M. Rodrigues, João M. C. Teixeira, Susana Barrera-Vilarmau, Elizabeth 
Seckel 
Writing – Review and Editing: João P. G. L. M. Rodrigues, Susana Barrera-Vilarmau, João M. C. Teixeira,  Elizabeth 
Seckel, Panagiotis Kastritis 
 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.06.05.136861doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.136861
http://creativecommons.org/licenses/by-nc/4.0/

