
 

The Role of the Medial Prefrontal Cortex in Spatial 

Margin of Safety Calculations 

 

Song Qi1*, Logan Cross1,2, Toby Wise1., Xin Sui1., John O’Doherty1,2, and Dean Mobbs1,2* 

 

1Department of Humanities and Social Sciences and Computation and 2Neural Systems Program at 

the California Institute of Technology, 1200 E California Blvd, HSS 228–77, Pasadena, California 91125, 

USA. 

 

*Corresponding authors: Dean Mobbs, (dmobbs@caltech.edu) and Song Qi (sqi@caltech.edu) 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.05.137075doi: bioRxiv preprint 

about:blank
https://doi.org/10.1101/2020.06.05.137075
http://creativecommons.org/licenses/by-nc-nd/4.0/


Humans, like many other animals, pre-empt danger by moving to locations that 

maximize their success at escaping future threats.   We test the idea that spatial margin of 

safety (MOS) decisions, a form of pre-emptive  avoidance, results in participants placing 

themselves closer to safer locations when facing more unpredictable threats.  Using 

multivariate pattern analysis on fMRI data collected while subjects engaged in MOS 

decisions with varying attack location predictability, we show that while the hippocampus 

encodes MOS decisions across all types of threat, a vmPFC anterior-posterior gradient 

tracked threat predictability.  The posterior vmPFC encoded for more unpredictable threat 

and showed functional coupling with the amygdala and hippocampus. Conversely, the 

anterior vmPFC was more active for the more predictable attacks and showed coupling with 

the striatum. Our findings suggest that when pre-empting danger, the anterior vmPFC may 

provide a safety signal, possibly via predictable positive outcomes, while the posterior 

vmPFC drives prospective danger signals. 
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Staying in close proximity to safety is a key antipredator behavior as it increases the likelihood of the 

organism’s future escape success1.  One metric used by behavioral ecologists to measure this safety behavior 

is called spatial margin of safety, where prey will adopt locations that prevent lethal predatory attack1–3 . In 

turn, this provides the prey with a safety net, while also reducing stress,  energy consumption and promotes 

increased focus on other survival behaviors, such as foraging and copulation. Humans appear to use safety 

distance in similar ways.  For example, when human subjects are placed close to a safety exit, measures of 

fear decrease and when under threat, and the sight of safety signals reduces fear and fear reinstatement5–7.  

Here , we test the idea that when subjects are pre-empting threats of varying attack location probabilities, 

subjects will vary their spatial margin of safety (MOS) decisions depending on predictability.  We propose 

that MOS decisions involve prospective spatial planning, which involves estimating safety by calculating 

the predator’s attack locations4  .  Further, we examine how pre-emptive MOS decisions are instantiated in 

human defensive circuits9,10.   

In the natural world, prey encounter predators that attack with varying degrees of uncertainty. 

Uncertainty is often determined by the likelihood of attack and the distribution of distances at which the 

threat will attack. For example, uncertainty alerts the prey that information about the predator’s impending 

attack location is unknown, thereby resulting in increased anxiety and movement towards safety5. Thus, 

pre-empting predation via close spatial MOS,  safeguards against the unpredictable spatial and temporal 

movements of the predator6 .  Consequently, the ability to predict a predator’s attack location will in turn 

shape the prey’s MOS calculations, whereby uncertain threats will result in low risk behaviors and smaller 

spatial radius from a refuge at the expense of forgoing other survival needs (e.g. food). In particular, 

frequent and salient outlier information in a given information, as presented as leptokurtic noise, makes 

organisms prone to overreaction and inaccurate estimations of the environment13. Therefore, our second 

question is how statistical uncertainty of a threat’s attack location sways spatial MOS decisions and shifts 

activity in the human defensive circuits. 
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         The prospective nature of MOS decisions may elicit activity in a set of neural circuits involved in 

anxiety7  , which can be defined as a future oriented emotional state and involves the behavioral avoidance 

of potential dangers. Two drivers in this spatial avoidance are the ventromedial prefrontal cortex (vmPFC), 

and the hippocampus7–10    . For example, the hippocampus plays a key role in anxiety,  and guides decisions 

via memory and prospection18,19.  Further, synchronization between the hippocampus and vmPFC are 

associated anxiety like behaviors20–22, suggesting that the hippocampus, potentially along with the 

amygdala, is involved in signaling the threat significance of a stimulus. The vmPFC is a heterogeneous 

structure involved in information seeking, anticipation and the organization of defensive and safety 

responses11–14.    Research has shown that a safety stimulus during an aversive experience results in 

increased activity in the anterior vmPFC while decreasing threat also results in increased activity in the 

same region, suggesting that the anterior vmPFC may emit safety signals5,26. Research also shows that 

attention set to safety signals, extinction, and down-regulation of anxiety are associated with vmPFC 

activity, suggesting that it is a key node in what has been called the fear suppression circuit27–29. Conversely, 

the posterior vmPFC, encompassing the subgenual and rostral anterior cingulate cortex (sgACC and rACC), 

receives dense projections from the amygdala15    and is implicated in negative affective responses and 

behavioral expression of fear11,16,31,32.   How these, and other brain regions are evoked during pre-emptive 

MOS decisions is yet to be tested.   

       To address these gaps in knowledge between spatial MOS decisions and human defensive circuits, 

we created a task to investigate spatial MOS decisions under uncertainty and elucidate: (i) How do changes 

in the threat’s attack predictability, threat intensity, and reward value impact the subjects’ MOS decisions? 

And ii) Do the hippocampus and vmPFC encode characteristics of threats that are central to MOS 

decisions?  This task models the ecological phenomena where animals venture further away from their 

safety refuge to acquire adequate supplies of food. To create less predictable attack positions, we used 

leptokurtic distributions, which are evolutionarily novel and volatile in nature, and have been shown to 

increase the level of uncertainty and difficulty to learn to the environment13. Leptokurtic noise is generated 

as the composite of two normal distributions with similar means and contrasting variances. Leptokurtic 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.05.137075doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.137075
http://creativecommons.org/licenses/by-nc-nd/4.0/


distributions are thus probability density curves that have higher peaks at the mean and are fatter tailed 

where extreme outcomes (outliers) are expected more (Fig. C). We contrasted this with standard Gaussians 

(Fig. 1D and E)), which are more computationally familiar. We hypothesized that when subjects are facing 

virtual predators with higher frequency of outlier attack distributions, this will result in more uncertainty 

and therefore, decisions to move closer to safety.  

 

 

Fig. 1. Experimental structure.  (A) During the MOS decision task, participants were first 
presented with a series of information screens at the beginning of every 10 trials (one trial block), displaying 
the reward/shock level, color of the predator (leptokurtic,where a kurtosis is added to the normal 
distribution resulting in heavy tails -red, normmatch , where the variance is matched with the leptokurtic 
condition– green, normhalf , where the variance is half as compared to the leptokurtic condition - blue ), 
before being asked to rate their confidence in escaping. In the low shock/reward conditions, participants 
receive 1 shock and the base reward respectively. In the high shock/reward conditions, participants 
received 2 shocks and twice the base reward.   (B) On every trial, for the first 4 seconds, participants were 
presented with a screen displaying the margin of safety runway and their initial location. They were told to 
make a choice of where to put themselves during this phase. However, they were not able to actually move 
in this phase. After a 4 second jitter, they were presented with the same screen again where they can move 
to the desired MOS with a varying bar of reward meter depending on the MOS location. In the next 2 
seconds, the outcome of the chasing was revealed, including whether their escape was successful and how 
much reward was gained.  (C)  Attack distributions for leptokurtic volatile; (D) gaussian distribution with 
matched variance and (E) half the variance gaussian; (F) the predator’s attack distances through all trials. 
Zero on the Y axis marks the mean of the distribution, while numbers represent how far away the drawn 
instance is away from the mean. (G) Escape probability. X axis represents possible margin of safety choices, 
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while Y access represents the corresponding probability of escape. (H) Schematic representation of the 
experimental procedure. Participants undergo 4 x 30 min scans sessions over a two-day period.   

 

Results 

MOS choices are less risky in the less predictable threat environment. MOS choice in the task 

represents the position participants selected relative to the safety refuge. In order to investigate how 

uncertainty of predator attack modulates MOS choices, we first examined how MOS decisions varies across 

distributions types, with a repeated-measures, one-way ANOVA to investigate how MOS decisions varied 

across distribution types. The result showed a main effect of distribution type [F(2,44) = 61.33, p < 0.001]. 

A Tukey post hoc test revealed that participants’ MOS choice was significantly closer to the safety zone in 

the leptokurtic distribution condition (0.74 +- 0.06) than in the normmatch condition (0.68 +- 0.03) and 

normhalf condition (0.67 +- 0.01). This indicates that participants perceived leptokurtic distributions as 

more risky, resulting in overall safer choices. Interestingly, there was no significant difference in mean MOS 

choices between the two normal distributions. This suggests that only a fundamental change in the 

statistical structure of the target distribution can impact participants’ decision under threat, rather than a 

change in the variance of the distribution (Figure 2 a,b,c,d) 
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Fig. 2. Behavioral Results. Choice frequencies for (A) leptokurtic, (B) matched variance and (C) 
half variance attacking threats. The MOS decision phase and the outcome.  (D): Confidence ratings for 
leptokurtic distribution, matched variance normal distribution, and normal distribution with half variance. 
Post-hoc analysis revealed that participants were less confident in the leptokurtic condition compared to 
the other two conditions (p < 0.001).  Leptokurtic attack location are in red; normal distribution with 
matching variance  are in green; and  normal distribution with half variance  are in blue. 

 

MOS choices are less risky in threat environment with higher punishment. To further 

disentangle how shock and reward levels could interact with predator attack type as additional external 

incentives, we examined participants’ MOS choices within high/low shock conditions and high/low reward 

conditions. In the low shock/reward conditions, participants receive 1 shock and the base reward 

respectively, whereas in the high shock/reward conditions, participants received 2 shocks and twice the 

base reward. While there was no significant difference in their MOS decisions when facing different levels 

of rewards (t(21) = 1.378, p = 0.182) their MOS choices were significantly more conservative in the high 

shock condition (0.75 +- 0.07), compared to the low shock condition (0.69+-0.05): t(21) = 21.21, p < 0.001. 
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This suggests that participants were sensitive to the level of danger and adjusted their MOS decisions 

accordingly (Supplementary figure 1). 

 

More confident participants made riskier MOS decisions. Having shown that uncertainty in 

the attack distribution influences observable behavior, we asked whether it also affects subjective 

confidence in escape success. We collected participants’ confidence ratings before every unique trial block 

(shown in figure 1 A/B, every 10 trials consist a unique trial block). An ANOVA on the confidence ratings 

also revealed that participants were generally more confident on trials in the two normal distributions 

compared with trials in the leptokurtic distribution. A main effect of distribution type was found [F(2,44) 

= 27.32, p < 0.001], and a Tukey post hoc test showed that confidence rating in the leptokurtic condition 

(1.42 +- 0.42) was significantly lower than those in the normmatch condition (2.43 +- 0.68) and the normhalf  

variance (2.65 +- 0.62) (p < 0.001) (figure 2 e). We also examined the relationship between participants’ 

MOS choices and confidence ratings. Interestingly, a significant correlation was only observed in the 

leptokurtic condition, where individuals who were more confident made riskier MOS choices (r = -0.54. p 

= 0.04). This effect was not observed for either the normmatch  condition (r = 0.25, p = 0.37) nor the normhalf   

condition (r = -0.31, p = 0.27).  

 

MOS decisions are represented within prefrontal and subcortical regions. Building on our 

behavioral results, we next sought to identify neural systems underlying MOS decisions in response to 

varying levels of attack uncertainty. Due to the design feature of the behavioral experiment, the decision 

phase consists of  both a cognitive (perception of the threat) and decision component, making the univariate 

analysis insufficient to capture the underlying dynamics of the neural process34,35. The MVPA analysis here 

thus serves two main purposes: to identify the key regions involved in decision making under the current 

threat, and to distinguish the underlying neural mechanism among threats with different levels of 

uncertainty. Results of this analysis can then be used to inform ROIs for subsequent connectivity and 
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parametric modulation analysis. To accomplish this, we used a searchlight cross-decoding approach using 

linear support vector regression (SVR) and leave-one-out cross-validation (Supplementary Methods).  

 

Fig. 3. Neural representation of pre-emptive MOS decisions.  Avoidance decisions decoded in 
the vmPFC, Hippocampus. (A): whole brain search light map displaying regions significantly activated for 
the MOS choice classifier (FDR corrected, p < 0.05). (B): Classification accuracy of the MOS choice classifier. 
Each dot represents data from a single subject. Average accuracy was significantly higher than the simulated 
chance level (p < 0.001). Box and whisker plots display accuracies from the same classifier, at various 
regions of interest (the hippocampus, vmPFC (posterior) and vmPFC (anterior)).(C): In hippocampus, 
classification accuracy from all three attack conditions were significantly higher than their corresponding 
chance levels. (D); Classification accuracy was only significantly higher than chance in the leptokurtic 
distribution in vmPFCpost .(E): Classification accuracy was only significantly higher than chance in the 

normmatch condition in vmPFCant .  (F): Behavioral similarity structure among MOS choices. The Behavioral 
similarity structure represent how similar MOS choices are on the behavior level. For example, MOS choice 
1 and 2 are closer in distance compare to choice 1 and 6, thus more similar in the structure. Naturally, choices 
are more similar when in close spatial distance, and more dissimilar when in sparse spatial distance. (G): 
Actual pattern similarity within the regions of interest. The neural RDM in the hippocampus was 
significantly correlated with the theoretical model (r = 0.593, P < 0.001). Similar correlation effects were 
also found in (H) vmPFCpost and (I) vmPFCant, (r = 0.754, p < 0.001; r = 0.482. p < 0.001). 
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Two separate whole brain searchlight analyses were performed to answer the following questions 

respectively: which regions are critically involved in processing 1) different attacking distributions and 2) 

Margin of safety choices. The first classifier predicted which distribution type a given trial belonged to. This 

showed that regions including right insula and the mid-cingulate cortex (MCC) encoded the distribution 

type, with a decoding accuracy significantly higher than the Monte-Carlo simulated chance level accuracy 

(overall accuracy: t(21) = 2.82, p = .010).  The whole brain decoding map was thresholded at P<0.05 (FWE) 

(Fig. 3a).  

 

Next, for the analysis of MOS decision types, each trial was labelled according to the MOS decision the 

subject made, and a classifier was trained to predict which trials fall into which decision categories. The 

categories were created by grouping MOS choices that are close in spatial distance together. i.e. the entire 

MOS choice runway is divided to six segments from left to right). Each choice category thus represents a 

level of how close participants place themselves to the safety.  Decoding of choices was found in regions 

including the right hippocampus, vmPFCpost and vmPFCant with a decoding accuracy significantly higher 

than chance level (t(21) = 2.47, p = .022). These results suggested that the both the distribution type and 

MOS decision making process is robustly represented in the above mentioned regions.  (Fig. 3 A,B) 

 

vmPFC subregions differentially encode MOS decisions according to uncertainty. The 

regions implicated in the whole brain searchlight overlap with ROIs in previous literature shown to be 

critically involved in the process of decision making under threat. We thus performed MVPA analysis 

within each ROI, namely the hippocampus, vmPFCpost  and vmPFCant to investigate how they uniquely 

contributed to the MOS decision process. Within each specified ROI, we investigated classification accuracy 

for the MOS decisions labels, separately for each distribution conditions. Thus, by comparing how well the 

process is decoded within each ROI, we can examine how the involved regions drive behavioral change 

depending on levels of uncertainty in different predator conditions.   
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Within the vmPFCpos , only choice decoding for the leptokurtic condition was significantly above the 

Monte-Carlo simulated chance level (Monte-Carlo simulated baselines: leptokurtic, 36.7%; normmatch  , 

34.8%; normhalf, 33.7%) (leptokurtic distribution, p < .001; normmatch, p =.410; normhalf, p = .868). Within 

the vmPFCant, only classification for the normmatch condition was significantly above chance level 

(leptokurtic distribution, p = .341; normmatch, p =.004; normhalf, p = .156). Within the hippocampus, 

classification for all 3 distribution types was significantly above chance level (leptokurtic distribution, p 

< .001; normmatch, p = .011; normhalf, p = .038). A follow up ANOVA did not reveal a significant difference 

among the decoding accuracies (Fig. 3 B,C,D,E  ). 

 

Univariate overlap with vmPFC regions involved in ‘fear’ and extinction.  To 

compare the activated regions with past studies, we constructed ROIs from neurosynth using the key words 

“fear” (for comparison with posterior vmPFC/sgACC) and “extinction” (for comparison with vmPFCant 

ROIs were constructed using 6mm spheres from the peak coordinate. Small volume corrections were 

performed. Extinction maps were used as we hypothesized that the extinction and reduced threat would 

overlap. We then performed SVC with the “fear” ROI on vmPFCpos   with the leptokurtic contrast ( p < 0.001, 

T = 5.07, cluster size = 31, (0,26,-12)) and SVC with the “extinction” ROI on vmPFCant (p = 0.010, T = 4.35, 

cluster size = =11, (-2,46,-10) ). For a full list of activated regions, please refer to supplementary table 1. 

These coordinates overlap with the corresponding ROIs taken from the searchlight analysis, indicating that 

information processing and learning through both fear and safety are potentially presented in MOS 

decision making through vmPFCpost and vmPFCant, respectively.   

vmPFC activity encodes MOS decisions. Having demonstrated that vmPFC activity patterns 

encode MOS decisions, the next step was to ask whether overall BOLD activity levels in the vmPFC also 

covaried with MOS decision (Fig. 4E). To test this, we constructed two univariate parametric modulators 

indicating whether the participants’ final MOS choices is a safety choice or a risky choice (compared to their 

randomly assigned initial location). The parametric modulation of univariate data thus reveals what 
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regions showed activity associated with risky/safety choices under different levels of predictability. 

Inspection of the resulting statistical maps, using SVCs from the previously constructed vmPFCpost and 

vmPFCant   ROIs, showed that the “move to danger” and “move to safety” modulations were significant in 

the vmPFCpost and vmPFCant  ROIs respectively (Move to danger: p < 0.001, T = 6.44;  Move to safety: p < 

0.001, T = 4.39, supplementary table 4).  

 

Representational similarity analysis of the vmPFCpost, vmPFCant and hippocampus. The 

MVPA searchlight analysis offers insights into what key regions are involved in coding MOS decision 

process. However, it is left unclear how different MOS choices were actually neurally represented in the 

ROIs mentioned above. Thus, a representational similarity analysis was conducted to investigate the 

underlying geometry of the neural encoding of the MOS decision variables in the above mentioned ROIs. 

Distinctive clustering in the RDM structure also help further validate the original behavioral paradigm, 

showing how sensitive participants were to all the possible MOS choices.     

A Behavioral RDM, together with RDMs from the neural data within the hippocampus, vmPFCpost, and 

vmPFCant were constructed to investigate the potential MOS decision information and perceived 

distribution information embedded in the activity patterns of these ROIs. A high level of similarity between 

the theoretical structure and the actual brain activity in a certain ROI will indicate that task-relevant 

information is encoded in a way that is consistent with the behavioral structure of the during the MOS 

decision process. Figure 3 illustrates the theoretical/behavioral RDMs constructed by the pairwise relations 

of the 50 MOS decisions. Spearman correlation coefficients were used to calculate the distance between the 

model and neural data matrices. The neural RDM in the hippocampus was significantly correlated with the 

theoretical model (r = 0.593, P < 0.001) across all conditions. Similar correlation effects were also found in 

vmPFCpost and vmPFCant, (r = 0.754, p < 0.001; r = 0.482. p < 0.001), but these were specific to the 

leptokurtic and normmatch  conditions respectively (fig 3f,g,h,i   ).  
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Converging evidence from the previously mentioned searchlight, univariate parametric modulation, 

and RSA analysis has shown that the vmPFC subregions (vmPFCpost and vmPFCant) play a vital role in the 

encoding of MOS decisions under environments with different levels of predictability. Next we further 

investigate the connectivity structure seeding from these regions.  

         

 
Fig. 4. Psychophysiological interactions seeding from regions of interest and meta 

analytical decoding. (A) Example of Brodmann Areas (BA) that distinguish posterior-anterior axis.  For 
example, the posterior vmPFC reflects BA 25, 24, 32(ACC), 10m and 14, while the anterior encompasses 
BA 10p, 10 r 11, and 32 (non-ACC).  This is made clearer by the dotted line.  Connectivity analysis were first 
performed on the anterior and posterior vmPFC seeds, which are 6 mm spheres centered on the peak voxel 
of the corresponding clusters in the MVPA searchlight. (B) For the posterior vmPFC seed, in all three 
attacking conditions, the connectivity maps showed significant activation in the hippocampus (leptokurtic: 
p < 0.001,T = 4.06; normmatch:  p < 0.001, T = 3.62; normhalf : p = 0.011, T = 3.18). Interestingly, only in the 
leptokurtic attacking condition, the amygdala was found significant on the connectivity map (p < 0.001, T 
= 4.60). (C) On the other hand, with the anterior vmPFC seed, all three attacking conditions showed 
significant connectivity towards the Caudate (leptokuctic: p < 0.001,T = 3.87; normmatch  P < 0.001, T = 
4.23; normhalf   P < 0.001, T = 4.59. ).  We constructed two parametric modulators indicating whether the 
participants’ final MOS choices is a (D) safety choice or a (E) risky choice (compared to their randomly 
assigned initial location). The parametric modulation of univariate data thus reveals what regions were 
associated with risky/safety choices under different levels of predictability. On the resulting statistical maps, 
using SVCs from the previously constructed vmPFCpost and vmPFCant   ROIs, we found that the “move to 
danger” and “move to safety” modulations were significant in the vmPFCpost and vmPFCant   ROIs 
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respectively (Move to danger: p < 0.001, T = 6.44;  Move to safety: p < 0.001, T = 4.39) (F)  Meta-analytical 
decoding with Neurosynth. Red and Green radar bars represent correlation strength between key words 
and the anterior (x = 0, y = 26, z = -12) and posterior(x = -2, y = 46, z = -10) vmPFC ROIs.   

 
Differences in vmPFCpost and vmPFCant connectivity. With vmPFCpost and vmPFCant   identified 

as key regions associated with risky and dangerous choices, we were interested in how these regions 

regulate MOS decisions in concert with subcortical structures. To test this, we performed connectivity 

analysis using gPPI (see supplementary methods), to reveal regions that showed covarying activity with our 

vmPFC seed regions.  From the MVPA analysis, we took the vmPFCpost and vmPFCant as seed regions for 

the leptokurtic distribution contrast and normal distribution contrasts, since they were identified as 

regions representing the process where participants make risk decisions under the corresponding predator 

conditions. PPI analyses were first performed on the moving to safety/danger contrast, respectively on the 

vmPFCpost and vmPFCant, ROIs (fig 4 b c) For the vmPFCpost seed, in all three attacking conditions, the 

connectivity maps showed significant activation in the hippocampus (leptokurtic: p < 0.001,T = 4.06; 

normmatch:  p < 0.001, T = 3.62; normhalf : p = 0.011, T = 3.18). Interestingly, only in the leptokurtic attacking 

condition did the amygdala show significant coupling with the vmPFCpost (p < 0.001, T = 4.60). On the 

other hand, with the anterior vmPFC seed, all three attacking conditions showed significant connectivity 

towards the caudate (leptokurtic: p < 0.001,T = 3.87; normmatch  P < 0.001, T = 4.23; normhalf   P < 0.001, 

T = 4.59. ). For a full list of activated regions, please refer to supplementary table 2.   

 

Subjects continually optimize MOS decisions through adaptive learning from trial 

outcomes.  In order to perform effectively on the task, subjects may continually adjust their policy 

depending on their perceived likelihood of escape which is updated on every trial depending on its outcome. 

We sought to test this by fitting a simple reinforcement learning model to the behavioral data which 

assumes subjects estimate the likelihood of receiving a given reward (which depends on both the available 

reward level and the likelihood of survival) on each trial.  
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This took the form of a standard Rescorla-Wagner learning model which was used to characterize 

participants’ margin of safety choice behaviors. The learning rate ‘α’ reflects to what extent participants’ 

choice of MOS is based on the most recent outcomes. A high learning rate indicates that choice behavior is 

updated in a more rapid manner based on the difference between the expected choice outcome and the 

actual choice outcome. In contrast, at low learning rates, surprising outcomes lead to little change in their 

choice on the next trial.  In the current study, we estimated participants’ learning rates in the uncertain vs 

more certain attack position blocks by fitting a reinforcement learning model36 to their choices in each task 

block (10 trials per session, as described in figure 1).  

 

We first examined whether our model recapitulated observed patterns in the MOS decision data. The 

model demonstrated behavior that was consistent with the true data (Figure 5 a), indicating that a 

reinforcement learning model can describe subjects’ behavior in the task. We next assessed whether 

participants, as a group, adapted their learning rate in response to the change in attack distances between 

the more predictable normal distributed attack distances and more uncertain attack distances characterized 

by leptokurtic outliers. Consistent with previous studies of reinforcement learning, participants’ learning 

rates were higher in the leptokurtic attack than the more predictable normally distributed attacks positions. 

(Main effect of attack distribution: F(2,63) = 4.43, p =  0.0159. Post hoc comparisons, p<0.001) (figure 5 b), 

indicating that subjects adapted their learning based on the level of uncertainty in the attack distribution. 

 

MOS prediction errors are tracked by a distributed network of brain regions. A 

parametric modulation analysis on univariate data, using the prediction error from the RL model was 

performed to address what underlying neural processes were involved during the learning process  of 

participants’ MOS decisions.  Small volume corrections were performed on the key ROIs : hippocampus: 

leptokurtic: p = 0.002; normmatch: p = 0.004; normhalf: p = 0.191;  amygdala: leptokurtic: P = 0.014; 

normmatch: p = 0.006; normhalf: P = 0.094; striatum: leptokurtic: p < 0.001; normmatch: p < 0.001; normhalf: 

p < 0.001. This suggests that while the striatum decodes the representation of prediction error in all three 
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attacking distributions, the hippocampus and amygdala were involved only in the leptokurtic and 

normmatch  attacking conditions. (figure 5 d e). 

 

 
Fig. 5. Reinforcement Learning model. (A) Actual MOS choice categories and model fitting MOS 

choice categories. Choice 1~6 are choice categories from risky to safe. Y axis represents the choice ratio 
under each category (B) Learning rate from the reinforcement learning model over two days. Data of two 
sessions within one day were averaged across participants. Learning rate in the leptokurtic condition 
(which is more predictable) was significantly higher than the other two conditions (posthoc p < 0.001).(C):  
Maps showing parametric modulation with prediction errors from the model. Small volume corrections 
(D): (hippocampus): leptokurtic: p = 0.002,; norm1: p = 0.004 ; norm2: p = 0.191 ;  (amygdala): leptokurtic: 
P = 0.014; norm1: p = 0.006; norm2: P = 0.094 (E): (striatum): leptokurtic: p < 0.001; norm1: p < 0.001; 
norm2: p < 0.001. For the remaining activated regions, please refer to supplementary table 3.  

 
 

Discussion 

We found evidence in support of our hypothesis that in uncertain environments, participants adjust their 

distance to be closer to safety37.  We also show that when encountering a more uncertain threat, participants 

decreased confidence in escape success, while displaying higher learning rates, signifying that under 

uncertain environments, people adjust decisions more based on recent, immediate information, instead of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.05.137075doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.137075
http://creativecommons.org/licenses/by-nc-nd/4.0/


accumulated information over time. Our MVPA analysis shows that the vmPFCPost is associated with 

avoidance of more uncertain threats and consequently the decision to stay closer to safety.  The vmPFCPost  

also showed increased functional coupling with the hippocampus and amygdala, supporting the known 

connectivity with this region as well as its role in control of fear38,39.  On the other hand, the vmPFCAnt was 

associated with more certain attack locations and thereby executing safer decisions.  These results are 

congruent with the idea that vmPFC sub-regions play distinct roles in both danger and safety signals that 

reflect the ability to predict positive or negative outcomes with a threat. 

  
Our results suggest that when the attack location is relatively predictable (i.e. normmatch and normhalf 

Guassian distributions), participants make more risky MOS choices.  That is, subjects choose to place 

themselves further away from the safety exit to earn more reward. On the other hand, when the attack 

location is more unpredictable (i.e. leptokurtic distribution), participants tended to place themselves closer 

to safety and thus displayed more protective actions. Critically, despite significant differences in variance, 

there were no differences in MOS decisions between the two Guassian distributions. This suggests that 

participants’ decision patterns facing uncertain threats was not swayed by a simple change in distribution 

variance, but by a total structural change in the predictability of the distribution. This was echoed in 

participants’ subjective rating of their confidence, a reflection of how likely they felt they were to escape 

(Fig. 2E).  

 
When dissecting the defensive circuitry, it is critical to understand which brain regions are involved in 

the avoidance of forthcoming danger.  Our MVPA searchlight identified three key regions, namely the 

hippocampus, the vmPFCPost and the vmPFCAnt.  Interestingly, when looking at the classification accuracies, 

we found that within the vmPFCAnt, classification accuracy was above chance level only for the normhalf, in 

line with our prediction that this region would be involved in the most more predictable attack locations. 

On the other hand, within the vmPFCPost, the classification was more accurate than chance level only for 

the more unpredictable, leptokurtic distribution condition. This suggests a separation of vmPFC subregions 

in terms of functional roles. While the vmPFCAnt is correlated with more predictable decision environments, 
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the vmPFCPost seems to be associated with more volatile counterparts. Interestingly, the hippocampus 

classification accuracies revealed no differences between attack locations distributions, suggesting a more 

general role in avoidance decisions. 

 
The vmPFCPost  may function as a hub when the environment is more uncertain and where more 

information gathering is needed. Further evidence for this comes from our parametric modulation analysis 

using relative MOS from the starting position, which showed that more dangerous choices are associated 

with activation in the vmPFCPost. This suggests a tentative role for the vmPFCPost to be responsible for 

computations concerning a more unpredictable environment, or a more risky choice. In our connectivity 

analysis seeding from the vmPFCPost, we observed activations in amygdala and hippocampus only in the 

uncertain attacking locations. Previous research has shown a role for the amygdala-mPFC as a pathway of 

modulating threat avoidance behavior 1–4, and hippocampus as a center for representing predictive 

relationships between environmental states17,18..   This is in line with the idea that for decision making 

under threat with less predictability, more predictive computations are required.  

 

The vmPFCAnt modulates behavior when the environment is relatively easy to predict during the spatial 

MOS decisions. Interestingly, using relative MOS from the starting position as a modulator in the 

parametric modulation analysis, the vmPFCAnt  was also activated when the choice is categorized as “safe”. 

In previous studies, this region has been implicated in both safety learning through extinction and safety 

learning through active avoidance19,20.  For example, studies using the lever press avoidance task in rodents 

have shown activation of the prelimbic regions of MPFC (the rodent homologue of human anterior vmPFC) 

during the expression of active avoidance43,44 .  These regions partially overlap with the identified clusters 

of vmPFCAnt in our task. Further, when looking at functional connectivity seeding from the vmPFCAnt, the 

caudate was significant only in the two more predictable predator conditions.   Although there may be other 

explanations (action selection45). This resonates with previous studies where vmPFC not only functions as 

a center for signaling safety, but also in reward related processes, because safety processing may be 
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“intrinsically rewarding or reinforcing”19 . This is also supported by a parametric modulation analysis 

showing that shifts towards safety activate the vmPFCAnt. Also involved in this process is the striatum, which 

has been shown to be responsible for fear memory extinction46,47. For example, previous research on 

rodents has shown that in rats, the dopamine level in the striatum was unchanged after exposure to novel 

environmental stimulus, but follows more closely to the expression of conditioned response28. Interestingly, 

this orchestras with our finding where the striatum is only responsive to the high predictability threats 

together with the vmPFCAnt. 

 
We further correlated the neural data with behavioral parameters from the exploratory reinforcement 

learning model. Parametric modulation using prediction error from the RL model also activated the 

amygdala in the more uncertain, leptokurtic attacking condition, providing additional evidence for the 

modulation mechanism where amygdala is involved in the more volatile threat conditions when large 

discrepancies between expected and observed outcomes happen. Within all predator conditions, the 

ventral striatum and putamen were also significantly activated in correlation with the PE signal. This is 

consistent with previous studies where learning under uncertain environments occurs through reward 

based pathways48,49.  On the other hand, parametric modulation using learning rates established vmPFCAnt 

as a hub for MOS decision making when facing predictable attack distances.   

 
The hippocampus also emerged as a central region involved in MOS decisions. First, decoding of choice 

was higher than chance level in the hippocampus, regardless of how uncertain the attacking locations were. 

However, the hippocampus only showed functional connectivity with the vmPFCPost in the uncertain, 

leptokurtic attacking condition. The first finding resonates with the idea that the hippocampus has long 

been thought of as a predictive map and center for planning when considering future actions based on 

immediate feedback from the environment17,18,22.  It was thus universally involved regardless of the 

uncertainty level of the attacking environment.  However, our results indicate that activity in the 

hippocampus becomes more coordinated with the vmPFCPost in situations which require more intensive 

planning, as evidenced by the distinct functional connectivity to the hippocampus when the subjects are 
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encountering a more unpredictable, leptokurtic, attacking threat. Indeed, our finding corresponds to 

previous studies using rodents where the hippocampus has been shown to specifically contribute to model 

based planning, that may include  also memory based decision making23                   . 

 
The current study offers the first insight into how spatial MOS decisions are determined in threat 

environments with different levels of predictability. It also establishes the posterior and anterior vmPFC 

subregions as centers modulating the push and pull between risky and safe choices, where the hippocampus 

is involved in both processes in a more universal manner. More work is needed to further validate the 

functional separation of vmPFC subregions in terms of their roles during decision making under threat. 

These new insights, however, suggest a dissociable role of the vmPFC in anxiety, where the vmPFCPost  is 

involved in heightened threat signals, while the vmPFCAnt  may be involved in down regulation of threat via 

safety signals. 
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Supplementary  Figure 1:  MOS choices under different levels of electrical shocks. (A) : X axis 

represents MOS decision choices, while Y axis represents choice frequency aggregated through 
all participants and trials. Orange and blue bars deceits conditions from 2-shock and 1-shock 
respectively. While in the 2-shock condition, participants’ MOS choices were significantly larger 
than the 1-shock condition (p < 0.001).  (B): Same frequency distribution displayed in dot plot.   
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Supplementary  Figure 2. Behavior fitting for the reinforcement learning model. Graph showing 

the average trajectory of chosen MOS (red line) and model-predicted MOS (blue line) across all 

participants. X axis represents trial number, while Y axis represents the probability of choosing 

MOS category 1. It can be observed that fitting  improves as trial number increases.  
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Table S1.  Activation Table for SVC corrections 

P < 0.05, SVC correction 

Region Left/Right Cluster size t-score Coordinates 

    x y z 

vmPFC (anterior) left 11 4.35 -2 46 -10 

vmPFC (posterior) left 31 5.07 0 26 -12 

Hippocamps left 38 3.87 -28 -24 -13 

Amygdala right 15 3.03 22 -2 18 

Caudate left 13 5.42 -14 1 21 

       

Supplementary  table 1:  Small volume correction statistics for the ROIs listed in the main paper. 
Thresholded at P < 0.05 FEW. For the contrasts SVCs, coordinates indicates peak coordinate 
from the resulting cluster.  
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Table S2.  Activation Table for PPI analysis 

P < 0.05, FDR corrected 

VMPFC(anterior) Leptokurtic      

Region Left/Right Cluster size t-score x y z 

Middle Temporal Gyrus right 15 4.14 45 0 -24 

Fusiform Gyrus right 14 4.98 36 -42 -18 

Lingual Gyrus left 43 4.21 -18 87 -9 

Medial Frontal gyrus right 125 4.4 6 57 18 

       

VMPFC(posterior) Leptokurtic      

Region Left/Right Cluster size t-score x y z 

Amygdala right 32 4.95 18 15 -3 

Superior Frontal gyrus left 89 4.19 -30 57 -6 

Fusiform Gyrus left 26 3.38 -51 -6 -27 

Inferior Occipital Gyrus right 17 4.02 48 -84 -12 

Hippocampus right 51 4.55 21 -30 3 

       

VMPFC(anterior) Normal-matched      

Region Left/Right Cluster size t-score x y z 

Superior Temporal Gyrus left 12 4.28 -33 15 -27 

Medial Frontal Gyrus right 101 4.57 45 42 -3 

Medial Frontal Gyrus right 224 4.45 6 72 0 

Thalamus left 44 4.34 -18 15 15 

       

VMPFC(posterior) Normal-matched      

Region Left/Right Cluster size t-score x y z 

Medial Frontal Gyrus left 66 3.26 -3 60 -15 

Putamen right 35 3.63 24 15 -9 

Precuneus right 50 4.27 3 -51 18 

       

VMPFC(anterior) Normal-half      

Region Left/Right Cluster size t-score x y z 

Superior Temporal Gyrus right 26 4.18 33 9 -18 

Inferior Frontal Gyrus right 57 4.63 45 45 -3 

Medial Frontal Gyrus right 69 3.98 6 72 0 

       

VMPFC(posterior) Normal-half      

Region Left/Right Cluster size t-score x y z 

Puamen right 19 4.71 21 9 -6 

Anterior Cingulate  left 24 4.99 0 24 -3 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.05.137075doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.05.137075
http://creativecommons.org/licenses/by-nc-nd/4.0/


Precentral Gyrus right 16 4.16 39 -6 30 

Hippocampus left 21 3.96 -20 -30 0 

 
Supplementary  table 2:  psychophysiological Interactions for each predator type, seeding from 

anterior and posterior vmPFC. Thresholded at P < 0.05 FDR. For the contrasts SVCs, 
coordinates indicates peak coordinate from the resulting cluster.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S3.  Activation Table for Parametric Modulation with RL Prediction Error 

P < 0.05, FDR correction 

Region Left/Right Cluster size t-score Coordinates 

    x y z 

Fusiform Gyrus left 22 4.14 -57 -21 -27 

Parahippocampal Gyrus right 45 4.431 12 -6 -15 
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Middle Temporal Gyrus left 25 4.18 -63 -15 -12 

Inferior Frontal Gyrus right 64 4.68 63 9 12 

Precentral Gyrus left 34 3.87 -60 0 18 

 
Supplementary  table 3:  Activated regions associated with prediction errors in the RL model. 

Thresholded at P < 0.05 FDR. For the contrasts SVCs, coordinates indicates peak coordinate 
from the resulting cluster.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S4.  Activation Table for Parametric modulation with escape choices 

P < 0.05, FDR correction 

Move to Danger       

Region Left/Right Cluster size t-score x y z 

Medial Frontal Gyrus left 38 4.29 -9 69 -3 

Superior Temporal Gyrus left 44 4.57 -36 -33 9 

Inferior Frontal Gyrus left 91 4.89 -45 36 12 
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Middle Frontal Gyrus right 25 4.51 33 39 -15 

Insula left 67 4.66 -60 -9 9 

       

Move to Safety       

Region Left/Right Cluster size t-score x y z 

Fusiform Gyrus left 45 4.94 -36 -51 -18 

Inferior Frontal Gyrus right 47 4.88 33 24 -19 

Medial Frontal Gyrus left 22 4.83 0 33 -21 

Hippocampus right 11 4.01 33 -15 -15 

Thalamus right 69 4.19 12 15 12 

 
Supplementary  table 4:  Activated regions associated with parametric modulation of MOS choices 

(moving to danger or safety). Thresholded at P < 0.05 FDR. For the contrasts SVCs, coordinates 
indicates peak coordinate from the resulting cluster.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Methods 

 
 

Experimental Methods 

We tested 24 subjects were recruited according to the guidelines of the California Institute of Technology 

Institutional Review Board after providing informed consent. Data from two subjects were lost due to 
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incomplete scanning sessions. Our final sample consisted of 22 subjects (10 females, age = 24.3 +- 8.1 

years).   

 

 

Stimuli, apparatus and procedure 

A complete pipeline of experimental procedures can be found in figure 1. Participants completed a computer-

based task while in an fMRI scanner. The task was set under the scenario where subjects place themselves 

at a desired location towards a safety exit while facing a potentially dangerous predator. The closer they 

place themselves to the safety exit, the more likely they will be able to escape from the predator after the 

trial starts, but the low the resulting reward will be. The goal of the task was to earn as much money as 

possible while avoiding being caught by the virtual predator. Prior to the beginning of the trial, the 

participants were presented with a 2 second cue indicating one of the three different predator types that 

would be presented in the upcoming trial. These predators differ in the location they speed up. These 

locations correspond to three distributions – a leptokurtic distribution, a normal distribution with 

matching variance, and a normal distribution with only half of the variance. (In the rest of the paper, we’ll 

refer to the normal distribution with matching variance as normmatch , and the normal distribution with 

half variance as normhalf) The participants were then shown a two-dimensional runway (90 units distance, 

where a unit is the smallest increment on the runway), with a triangle icon representing the position of the 

participant toward the end of the runway (at 80 or 0 units distance, depending on which direction the trial 

goes. A random starting location is then assigned based on which direction they start), and a circle icon 

representing the position of a predator at the left side of the runway (at 1 unit distance). This predator had 

two distinct modes of movement. In ”approach'' mode, the predator would proceed rightward along the 

runway at 4 units per second. At a randomly chosen distance (i.e. the attack distance) according to the 

leptokurtic, normmatch    and normmatch  distribution, The predator would switch to “chase'' mode, at which 

point it would advance at 10 units per second. The position where it swtiches to the “chase” mode is drawn 

either from the leptokurtic, normmatch or normhalf distributions depending on the actual attacking condition. 
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Before the above mentioned chasing sequence starts, the participants were told to make a decision of where 

they want to start by pressing left or right arrows, to move from their randomly assigned initial location to 

a location they desire. The direction of the chase was counter balanced by adjusting the relative location of 

the predator, participant and the safety zone so that half of the chase was from the left to the right, and the 

other half were opposite. After participants responded with their preferred margin of safety choice (MOS 

choice), they skip the actual animation of the chase (which was shown in full during the practice session), 

and was shown the final result of the trial: whether they got caught or not, and how much reward they 

earned.  

 

The experiment starts with the subjects being shown that if captured, they will receive 1 or 2 shocks, 

and high or low reward if they escape (Fig. 1B).  They will then be presented with one of three different 

colored spheres, each representing different attack distributions of the virtual predators.  They will then be 

asked to rate how confident they are of escape. Next, the subject will be asked to make safety decisions by 

either staying or switching to a riskier position that is further away from the safety exit or stay or move 

closer to the safety exit. To motivate risky decisions, the subject will acquire more money if they are more 

risky (i.e. move further from safety), which follows a simple linear relationship as a function of MOS choice 

(10 cents minimum, 2o cents maximum). They will then be asked to move the cursor to the decided safety 

position.  After a jittered ITI, the subject will observe the outcome. If caught, they will receive a shock(s) 

and lose their money on this trial.  This will repeat for another nine trials, before the subject is introduced 

to a new set of reward and shock contingences as well as a new virtual predator. The virtual predator attack 

distribution is either (i) normal distribution with half variance, (ii) leptokurtic (positive kurtosis with fatter 

tails) or (iii) normal distribution with matched variance with the leptokurtic distribution.  Leptokurtic 

distributions are rare in the natural environment, where distributions are often normally distributed and 

easier to learn.  
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A total number of 460 trials (400 experimental trials and 60 control trials) were administrated 

throughout 4 sessions (2 sessions per day with two days).  The computer task was programmed in Pygames 

with Python.  

 

fMRI data acquisition. We will collect the fMRI images using a 3T Prisma scanner in the Caltech 

Brain Imaging Center (Pasadena, CA) with a 32-channel head receive array. BOLD contrast images will be 

acquired using a single-shot, multiband T2*-weighted echo planar imaging sequence with the following 

parameters: TR/TE = 1000/30 ms, Flip Angle = 60°, 72 slices, slice angulation = 20° to transverse, 

multiband acceleration = 6, no in-plane acceleration, 3/4 partial Fourier acquisition, slice thickness/gap = 

2.0/0.0 mm, FOV = 192 mm × 192 mm, matrix = 96 × 96). Anatomical reference imaging will employ 0.9 

mm isotropic resolution 3D T1w MEMP-RAGE (TR/TI/TE = 2550/1150/1.3, 3.1, 4.0, 6.9 ms, FOV = 230 

m x 230 mm) and 3D T2w SPACE sequences (TR/TE = 3200/564 ms, FOV = 230 mm x 230 mm). 

Participants viewed the screen via a mirror mounted on the head coil, and a pillow and foam cushions were 

placed inside the coil to minimize head movement. Electric stimulation was delivered using a BIOPAC 

STM100C. 

 

Data Analysis 

All statistical analyses for the behavioral data were carried out in R, using the packages `ezANOVA' , 

`coxme', and `lme4' . Where appropriate, Greenhouse–Geisser corrections were performed to account for 

violations of sphericity, and the correction factor values ($\epsilon$) and original degrees of freedom are 

reported. Partial eta-squared effect sizes are reported only for significant analyses. Where appropriate, we 

corrected for multiple comparisons using Holm-Bonferroni. 

 

Analysis of fMRI data was carried out using scripted batches in SPM8 software (Welcome Trust Centre 

for Neuroimaging, London, UK) implemented in Matlab 7 (The MathWorks Inc., Natick MA). Structural 

images were subjected to the unified segmentation algorithm implemented in SPM8, yielding discrete 
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cosine transform spatial warping coefficients used to normalize each individual’s data into MNI space. 

Functional data were first corrected for slice timing difference, and subsequently realigned to account for 

head movements. Normalized data were finally smoothed with a 6-mm FWHM Gaussian kernel. 

 

 A multivariate pattern analysis was performed using PyMVPA (Hanke et al., 2009). We extracted the 

beta values associated with experimental conditions of all the voxels in each ROI, removing the mean 

intensity for each multi-voxel activity pattern. For each participant, the brain response pattern analyses of 

classification training and testing with linear support vector machines (SVMs) were conducted using a 

leave-one-run-out cross-validation procedure. Furthermore, to evaluate whether stimulus contrast 

modulates brain response patterns, cross-validations that use low-contrast condition data for training and 

high-contrast condition data for testing, and vice versa, were also conducted. ANOVAs were then conducted 

to compare classification accuracies. 

 

To localize the functional ROIs, a whole-brain searchlight was first performed to identify brain regions 

sensitive to MOS decision information, where a classifier predicting each trial’s association with one of the 

six MOS decision category was constructed.  For each voxel in native space, we built a spherical region of 

interest (ROI, radius 6 mm) centering on the voxel, extracted t values in this ROI to each of the 50 MOS 

decisions and calculated one minus Spearman rank correlations of all decision pairs within this ROI to 

construct a neural RDM. The relationship between the neural RDM and the theoretical RDM was then 

assessed using partial Spearman correlation, which produced a correlation coefficient for this voxel. 

Moving the searchlight center throughout the cortex, we obtained a whole-brain r-map in the native space. 

Note that the searchlight analysis was restricted to the voxels with a probability higher than 1/3 in the 

native gray matter image generated from the segmentation step. For a group-level random-effects analysis, 

the r maps in the native space were Fisher-z-transformed, normalized to the MNI space using the forward 

deformation field and spatially smoothed using a 6 mm full-width at half maximum Gaussian kernel. 

Clusters surviving the cluster-level FWE correction at P < 0.05 were reported. For each subject, we then 
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identified the voxels whose neural RDMs showed a significantly positive correlation with the RDM in the 

above-mentioned searchlight analysis (P < 0.05, FDR corrected). These voxels together with their adjacent 

voxels within a 6-mm-radius sphere were considered as individual subjects’ functional ROI. (figure 3 b c d 

e). 

Classification accuracy 

To explore the regions involved in the decision making process under threat within the Margin of 

Safety framework, we examined MVPA classification accuracies using both whole brain searchlight analysis 

and ROI analysis. We extracted voxel-wise fMRI responses to margin of safety trial (decision phase) as 

classification samples. For each participant and each run, we designed a general linear model (GLM). The 

GLM contained 3 regressors indicating the decision phases (duration = 4 s) of the 3 distribution types, as 

well as 4 regressors indicating the indication phase (duration = reaction time), motor phase (duration = 4 s), 

and feedback phase (duration = 3 s). All the regressors were convolved with a canonical hemodynamic 

response function. In addition, six motion-correction parameters and the linear trend were included as 

regressors of no interest to account for motion-related artifacts. For each voxel, the parameter estimates of 

the 3 regressors corresponded to the fMRI responses to each of the 3 distributions in each run. The fMRI 

responses to each distribution item were then entered into the classification analysis as classification 

samples. 

 

Naturally, there are two main questions we prioritized. First, what brain regions are involved in 

determining which distribution type the participant is facing and second, what brain regions are involved 

in determining the MOS decision the participant is making. Thus, we used two sets of classification labels 

corresponding to the two questions: 1) normmatch , normhalf , and leptokurtic distribution 2) the 50 possible 

discrete MOS choice options.  
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We employed a linear support vector machine with a cost parameter C = 1 as a classifier. Classification 

accuracy was estimated using a leave-one-run-out cross-validation: for each of the four runs, a classifier 

was trained on the other three runs and tested on the remaining focal run; and the procedure was repeated 

for the four runs (accuracy scores were averaged). 

 

To validate whether the classification performance was significantly above chance, we further 

conducted Monte Carlo permutation-based statistical tests. This method entailed running a classification 

analysis 1000 times with randomly permuted experimental condition labels, allowing us to construct null 

distributions that were used to examine whether a classification accuracy was significantly above chance at 

an α of p < 0.05. 

 

Univariate analyses. 

We also ran a univariate analysis pipeline to decompose the neural circuits employed when facing 

uncertain and stable threats. Preprocessed imaged were subjected to a two-level general linear model using 

SPM8. The first level contained the following regressors of interest, each convolved with the canonical two 

gamma hemodynamic response function: a 2-second box-car function for the onset of the trial (where the 

color of the incoming attack is shown); a 4 second (duration jittered) box-car function for the decision 

period; a 4-second boxcar (function for the time window where participants actually select their starting 

positions. Mean-centered trait anxiety ratings, and parameters in the reinforcement learning model were 

included as orthogonal regressors. In addition, regressors of no interest consisted of motion parameters 

determined during preprocessing, their first temporal derivative and discrete cosine transform-based 

temporal low frequency drift regressors with a cutoff of 192-seconds. 

 

Beta maps were used to create linear contrast maps, which were then subjected to second-level, 

random-effects one-sample t tests. In Addition, A flexible factorial model was used to examine the main 

effects of attack type, reward level and shock level. Interaction effects between attack type, reward level and 
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shock level were also examined using the factorial model. The resulting statistical maps were thresholded 

at P < 0.05 corrected for multiple comparisons (false discovery rate [FDR] corrected). 

 

Connectivity Analysis 

Based on the key regions obtained during MVPA searchlight analysis, we further performed 

connectivity analysis using gPPI (gPPI; http://www.nitrc.org/projects/gppi), which is configured to 

automatically accommodate more than two task conditions in the same PPI model by spanning the entire 

experimental space, compares to the standard implementation in SPM8. The connectivity model is based 

on the underlying concept using the following models:  

 

𝑌𝑘 = 𝐻(𝑥𝑎) 

                                                            𝑌𝑖 = [𝐻(𝑥𝑎 ∗  𝑔𝑝)] ∗  𝛽𝑖 + [𝑌𝑘𝐻(𝑔𝑝)𝐺] ∗ 𝛽𝐺 + 𝑒𝑖 

 

where H is the HRF in Toeplitz matrix form; Yk is the BOLD signal observed in the seed region; xa is 

the estimated neural activity from the BOLD signal in the seed region (Gitelman et al., 2003); Yi is the 

BOLD signal observed at each voxel in the brain; βi is a matrix of the beta estimates of the 

psychophysiological interaction terms; βG is a matrix of the beta estimates of the seed region BOLD signal 

(Yk), covariates of no interest (G), and task regressors that are the convolution of psychological vectors 

H(gp); and ei is a vector of the residuals of the model. In the gPPI approach, gp is a vector formed by 

multiplying the condition ON times (onset times plus stimulus duration — when the stimulus or 

psychological state is presented to the participant or when the participant experiences a defined 

psychological/experimental state) by a weighting vector. 
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