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ABSTRACT 

 
RNA structures are dynamic. As a consequence, mutational effects can be hard to rationalize 

with reference to a single static native structure. We reasoned that deep mutational scanning 

experiments, which couple molecular function to fitness, should capture mutational effects 

across multiple conformational states simultaneously. Here, we provide a proof-of-principle 

that this is indeed the case, using the self-splicing group I intron from Tetrahymena 

thermophila as a model system. We comprehensively mutagenized two 4-bp segments of the 

intron that come together to form the P1 extension (P1ex) helix at the 5’ splice site and, 

following cleavage at the 5’ splice site, dissociate to allow formation of an alternative helix 

(P10) at the 3’ splice site. Using an in vivo reporter system that couples splicing activity to 

fitness in E. coli, we demonstrate that fitness is driven jointly by constraints on P1ex and P10 

formation and that patterns of epistasis can be used to infer the presence of intramolecular 

pleiotropy. Importantly, using a machine learning approach that allows quantification of 

mutational effects in a genotype-specific manner, we show that the fitness landscape can be 

deconvoluted to implicate P1ex or P10 as the effective genetic background in which 

molecular fitness is compromised or enhanced. Our results highlight deep mutational 

scanning as a tool to study transient but important conformational states, with the capacity to 

provide critical insights into the evolution and evolvability of RNAs as dynamic ensembles. 

Our findings also suggest that, in the future, deep mutational scanning approaches might help 

us to reverse-engineer dynamic interactions and critical non-native states from a single fitness 

landscape. 
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INTRODUCTION 

 

Many RNAs need to fold into defined structures to function. This includes key RNAs in 

information processing (e.g. rRNAs, tRNAs), RNAs with catalytic activity (ribozymes), and 

many smaller RNAs (e.g. microRNAs) whose biogenesis depends on base-pairing of a 

precursor molecule. The need to fold into specific structures and avoid erroneous intra- and 

intermolecular interactions constrains RNA evolution and evolvability (Chen et al. 1999; 

Umu et al. 2016), because at least some mutations will compromise folding, function, and 

fitness.  

 

Over the last decade, mutational effects on molecular fitness have been elucidated at scale for 

a handful of model RNAs using deep mutational scanning (DMS) experiments, both in vitro 

(Pitt and Ferré-D'Amaré 2010; Hayden et al. 2011; Petrie and Joyce 2014; Kobori and 

Yokobayashi 2016; Pressman et al. 2019; Andreasson et al. 2020) and in vivo (Zhang et al. 

2009; Guy et al. 2014; Li et al. 2016; Puchta et al. 2016; Domingo et al. 2018; Li and Zhang 

2018). These studies have revealed complex fitness landscapes, in which both pairwise and 

higher-order epistasis are prevalent (Weinreich et al. 2013; Lalić and Elena 2015; Bendixsen 

et al. 2017; Domingo et al. 2018).  

 

In some instances, mutational effects on fitness and the origins of epistasis can be 

rationalized with reference to a known (native) structure. It is easy to see, for example, how 

base-pairing in a conserved helix of a tRNA can be disrupted by a first mutation but then 

restored by a second, leading to positive epistasis (Li et al. 2016). Frequently, however, the 

molecular foundations of variable constraint and epistasis remain obscure. 

 

Part of the explanation for this likely rests in the fact that RNA structures are dynamic 

(Ganser et al. 2019). As an RNA interacts with itself and its binding partners – during 

biogenesis, folding, and normal function – conformational changes alter the effective genetic 

context of a given mutation, i.e. the context that determines mutational impact at a particular 

point in the life cycle of the RNA. As a consequence, a single static structure, taken as the 

sole representative from a dynamic conformational ensemble, can only ever act as a partial 

guide and will sometimes fail to inform on the context(s) in which a particular mutation 

exerts its effect(s).  
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DMS experiments allow simultaneous measurement of mutational effects across multiple 

conformational states, however transient, as long as these states affect fitness (as measured by 

the experiment). The challenge is to allocate observed patterns of constraints and epistasis to 

these transient conformational states, which, even if critical for function, are usually 

unknown and can typically not be extrapolated from knowledge of the native structure.  

 

Here, we investigate the fitness landscape of a dynamic RNA structure that, in our assay, 

assumes multiple conformational states with known relevance to fitness. We consider a 

derivative of the group I intron from Tetrahymena thermophila (Figure 1A), a self-splicing 

ribozyme whose functional elements and key catalytic steps have been dissected in great 

detail using a combination of genetic, biochemical and structural approaches (Cech 1990). To 

measure molecular fitness and characterize epistatic interactions, we use a previously 

developed heterologous reporter system where the intron is embedded in a kanamycin 

nucleotidyltransferase (knt) gene (Figure 1B), placed on a plasmid and transformed into E. 

coli. This system couples self-splicing activity to fitness (Figure 1C) as intron removal is 

required for the reconstitution of the knt open reading frame whose translation enables 

growth in the presence of kanamycin (Guo and Cech 2002).  

 

We investigate two sub-regions in the intron, N2..N5 and N18..N21, which come together to 

form the P1 extension (P1ex), a 4-bp helix adjacent to the 5’ splice site (Figure 1A). 

Importantly, following cleavage at the 5’ splice site, P1ex needs to dissociate to allow 

formation of a second helix (P10), where one half of P1ex (N18..N21) pairs with bases at the 5’ 

end of the 3’ exon (Michel et al 1989) (Figure 1A). Constraints on the two sub-regions are 

therefore asymmetric (with additional constraint on N18..N21) and pleiotropic (as N18..N21 

function as part of P1ex and subsequently P10). Although the presence of neither P1ex nor 

P10 is strictly required for splicing (Been and Cech 1985; Price and Cech 1988; Cech 1990), 

both helices contribute to splicing efficiency, as they facilitate splice site alignment and exon 

ligation and reduce non-productive alternative interactions, including the use of cryptic splice 

sites (Michel et al. 1989; Suh and Waring 1990; Narlikar et al. 2000; Bell et al. 2004; 

Karbstein et al. 2007). Mutations in P1ex and P10 have previously been shown to affect rates 

of catalysis at different stages of splicing (Doudna et al. 1989; Guo and Cech 2002; Bell et al. 

2004; Karbstein et al. 2007), which is relevant for knt production and, subsequently, fitness 
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(Guo and Cech 2002). Prior work has also provided prima facie evidence for antagonistic 

pleiotropy, inferring from a small collection of individual mutants that overly stable pairing 

in P1ex might be selected against because it impedes dissociation and therefore P10 

formation (Guo and Cech 2002; Michael A Bell et al. 2004).  

 

Measuring fitness for a large number of intron genotypes that vary at N2..N5 and N18..N21, we 

dissect the resulting fitness landscape to demonstrate that fitness effects of specific mutations 

can be allocated to distinct conformational states and that DMS data can be used to 

investigate pleiotropic trade-offs at sites involved in more than one fitness-relevant structure. 

Our results provide a proof-of-principle that DMS simultaneously captures fitness effects 

arising from multiple transient conformational states. They also suggest that, in the future, 

DMS could be used alongside evolutionary analysis, structural modelling, and biochemical 

approaches to infer transient states at scale.  

 

 

RESULTS & DISCUSSION 

We used targeted saturation mutagenesis via overlap extension PCR to generate a large 

library of intron variants (see Methods), using a previously characterized mutant with high 

splicing activity [Tet-119(C20A), Figure 1A] as our master sequence. Introns differ in the 

two sub-regions N2..N5 and N18..N21 but are otherwise isogenic. The library was transformed 

into E. coli and each biological replicate split into four aliquots, which were spread on agar 

plates that did or did not contain kanamycin and incubated at either 30ºC and 37ºC (Figure 

1B, Methods). After overnight incubation, genotype frequencies under selective and non-

selective conditions were assayed via high-throughput amplicon sequencing (see Methods). 

Under non-selective conditions (without kanamycin, -kan), where production of functional 

KNT protein is not required for survival, our library is nearly combinatorially complete. 

Across 6 biological replicates and 31,269,777 sequencing reads (at 30ºC, Table S1), we fail 

to detect only 3 of all 48=65,536 possible genotypes (>99.99% completeness). As a 

consequence of the library generation protocol, and similar to prior work (Pitt and Ferré-

D'Amaré 2010), sequences closer to the starting template are more common, increasing our 

power to investigate sequence space closer to the splice-competent master genotype (Figure 

S1, Methods).  
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Different genotypes with higher or lower fitness can be thought of as conceptually equivalent 

to different transcript species that increase or decrease in abundance. We therefore analyzed 

the data using a method commonly employed for counts-based differential expression 

analysis (DESeq2) (Love et al. 2014). This approach has several advantages, including well-

established statistical foundations to determine significant changes in the face of biological 

variability and simplicity of implementation. We note that fitness estimates derived using 

DESeq2 are highly correlated to estimates from an alternative method (Bolognesi et al. 2019) 

that explicitly models the main sources of variability in DMS data (r2=0.91, P<2.2*10-16; 

Figure S1, Methods).  

 

Under selective conditions (+kan), colony formation is much reduced (Figure S2) and the 

majority of genotypes (42193/65536=64%) experience a significant drop in frequency (at 

Padj<0.05), while only 6.5% (4286/65536) become significantly more common, leading to a 

precipitous decline in overall genotype diversity (Figure 2A,B). Changes to the composition 

of the genotype pool are similar across replicates, as quantified using Bray-Curtis 

dissimilarity (Figure 2C). Individual P1ex genotypes previously found to exhibit increased 

splicing efficiency have concordant effects in our assay (Figure S3). Similar to the fitness 

landscapes of other RNAs and proteins, the distribution of fitness effects across genotypes is 

bimodal [reviewed in (Kemble et al. 2019)] and average fitness decreases as the number of 

mutations away from the master sequence (=Hamming distance) increases (Figure 2A,D).  

 

 

Fitness effects across mutant genotypes support selection against excess stability in P1ex 

 

Prior work on both tRNA and snoRNA found fitness defects to be more pronounced at 37ºC 

compared to 30ºC (Puchta et al. 2016; Li and Zhang 2018), consistent with destabilization of 

folded structures as a key determinant of mutant fitness. We observe the opposite (Figure 

2A). While fitness estimates for individual genotypes are highly correlated between 30ºC and 

37ºC (Figure S4, ρ=0.75, P<2.2*10-16), fitness impacts are quantitatively milder, on average, 

at the higher temperature. This is in line with suggestions that excess stability of P1ex 

secondary structure compromises efficient splicing (Guo and Cech 2002), as kinetic traps 

should, on average, be easier to escape and misfolding issues be less severe at 37ºC. In 
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support of this explanation, we find greater predicted stability and higher GC content to be 

associated with larger decreases in fitness (Figure 3A,B; Methods). At the same time, 

genotypes that cannot form any on-target base-pairs also exhibit low fitness (0 strong/weak 

base-pairs in Figure 3C). In contrast, genotypes where helices are formed, but the constituent 

base-pairs are weak (A-U), as found in the T. thermophila native structure (Figure S5), 

typically do well (Figure 3C).  

The need to avoid an overly stable P1ex helix is further evident when looking at patterns of 

epistasis. In contrast to most other RNA DMS studies (Bendixsen et al. 2017), we observe an 

enrichment for positive rather than negative pairwise epistasis when considering single and 

double mutations away from the master sequence (Figure 3D). In some instances, positive 

epistasis corresponds to cases where a base-pair is broken by each of two individual 

mutations but restored when these mutations are combined. However, we observe multiple 

cases of strong positive epistasis that do not conform to this model. Notably, many such cases 

involve A20C and G3U (Figure 3E), the only two mutations capable of generating a helix 

with four paired bases. Any further mutation elsewhere in the two sub-regions will abolish 

perfect complementarity in P1ex. Almost always, the reduction in fitness upon adding this 

second mutation is less severe than expected under an additive model of mutational effects, in 

line with selection against excess stability. This highlights that positive epistasis can result 

not only from selection to maintain base pairing but also from selection to prevent it. 

 

 

Machine learning facilitates allocation of mutational effects to distinct conformational states 

 

Although simple metrics like stability and GC content are related to fitness, they are overall 

poorly predictive (GC content: ρ=-0.10; predicted stability: ρ=0.17, Figure 3A,B), suggesting 

a more complex landscape of constraint than one exclusively defined by a P1ex structural 

stability threshold. To better understand how specific mutations affect fitness and whether 

they do so in a P1ex and/or P10 context, we sought to determine the contribution of 

individual nucleotides to fitness systematically and in a genotype-specific manner. To this 

end, we trained extreme gradient boosted decision tree (XGboost) models (Chen and Guestrin 

2016) to predict fold-changes (+kan vs. -kan) solely from nucleotide identities at 

N2..N5/N18..N21. For both 30ºC and 37ºC, we find that fold-changes predicted from the models 

are well correlated with observations (30ºC ρ=[0.63, 0.84], P<2.2x10-16; 37ºC ρ=[0.63-0.83], 
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P<2.2x10-16, see Methods for calculation of correlation ranges). We estimate that these 

models account for ~80% of the explainable genetic variance. Providing additional RNA-

wide properties as features for prediction (e.g. RNAfold-predicted stability or ensemble 

diversity) does not improve model performance (Table S2), suggesting that the models 

capture key emergent properties from the underlying primary sequence. In addition, 

confining analysis to genotypes whose change in relative abundance was judged significant 

by differential abundance analysis, does not improve prediction accuracy (Table S2). This 

suggests that noise from lowly abundant genotypes does not compromise predictive power 

and even contains latent information that enables more accurate prediction across genotype 

space.  

 

The contribution of individual features to prediction accuracy can be assessed globally by 

considering the gain in classification accuracy when a leaf in the tree is split according to that 

feature. However, computing such gains does not provide directionality of effect nor the 

ability to assess contribution locally, i.e. on a genotype-by-genotype basis. We therefore 

additionally computed Shapley additive explanation (SHAP) values (Lundberg and Lee 2017; 

Lundberg et al. 2020), which provide a framework for interpreting the impact of individual 

features on model prediction in a machine learning context, and contain information about 

both sign and magnitude of the contribution.  

 

In our case, a feature corresponds to having or not having a particular nucleotide, e.g. a 

cytosine, at a given site, e.g. N21. In some instances (e.g. G5, Figure 4A), nucleotide identity 

affects fold-change prediction consistently in the same direction across genotypes, although 

the precise contribution might vary from genotype to genotype (equivalent to magnitude 

rather than sign epistasis). In other cases (e.g. U3, Figure 4A), the identity of a nucleotide at a 

particular site only substantively contributes to predictions for a small number of genetic 

backgrounds.  

 

Figure 4B summarizes the average contribution of each site/nucleotide feature to the 

prediction by computing ΔSHAP, defined here as the mean SHAP value across genotypes 

where a given nucleotide at a given position is present minus the mean SHAP value across 

genotypes where the nucleotide at the same position is absent. Notably, the strongest positive 

contributions involve nucleotides that allow on-target base-pairing during formation of P10 
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(A18, C19, C20, A21, Figure 4B). This suggests that, even though not essential for splicing (Been 

and Cech 1985), P10 pairing is a major driver of differential fitness in our system. In contrast, 

there are no strong positive contributions from nucleotides exclusive involved in P1ex (i.e. 

N2..N5).  This supports earlier models, which argued that P1ex function is largely independent 

of sequence as long as minimal structural requirements (including avoidance of excess 

stability) are satisfied (Doudna et al. 1989; Allain and Varani 1995; Karbstein et al. 2007). 

Rather, N2..N5 is principally characterized by negative constraints, where the presence of 

specific nucleotides is associated with decreased fitness (Figure 4B).  

 

One such constraint involves bases N2 and N21, where the presence of cytosines is associated 

with a strong negative contribution to fitness (Figure 4B, Figure S6). This observation is 

consistent with prior experiments in the wildtype P1/P1ex context (Figure S5) where an 80% 

(40%) decline in splicing activity was observed when A2-U21 was replaced with G2-C21 (C2-

G21) (Doudna et al. 1989). We find fitness defects to be particularly pronounced when 

cytosines are present at both these sites (C2/C21, Figure 4D). In the master and wild-type T. 

thermophila sequence, N2 and N21 form a base-pair directly adjacent to the splice site U1-G22 

(Figure 1A, 3E). We therefore suspected that cytosines at these positions might disturb splice 

site geometry. To investigate this further, we carried out molecular dynamics simulations (see 

Methods) of all 16 possible N2/N21 combinations in an otherwise isogenic Tet-119(C20A) 

context. Considering a catalogue of features (Lu and Olson 2003) that describe base-pairing 

geometry (stagger, roll, twist, etc. see Methods) we find that C2/C21 – uniquely – leads to a 

radical structural deformation of minor groove geometry (Figure 4E,F; Figure S7; File S1), as 

the splice site U1 rotates out of the helix core and G22 mis-pairs with C2. This likely disturbs 

splice site definition and key tertiary contacts between the P1 substrate and the catalytic core 

of the ribozyme (Strobel and Cech 1993; 1995; 1996; Strobel et al. 1998), consistent with 

poor splicing.   

 

Finally, G5 makes a strong negative contribution to fitness, both on average and across 

genotypes (Figure 4A,B). It is interesting to note in this regard that in many naturally 

occurring introns, including the native T. thermophila intron (Figure S5), no pairing is 

observed at N5-N18 resulting in a P1ex helix that is only three bases long. This suggests that 

having a base-pair at this position and/or extending the helix beyond three bases often 

interferes with efficient splicing (Figure S6). However, unlike in the case of N2-N21, the 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 6, 2020. ; https://doi.org/10.1101/2020.06.06.130575doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.06.130575
http://creativecommons.org/licenses/by/4.0/


 10 

negative contribution of G5 is not mirrored on the other side of the helix (at N18); we therefore 

predict that G5 might have negative fitness consequences outside the P1ex context that 

remain to be deciphered.   

 

Asymmetric fitness effects allow inference of pleiotropy  

 

As described above, we detect mutational effects that are attributable to either P1ex or P10 

formation. At the same time it is also evident that trade-offs exist to enable the successive 

formation of the two structures, as illustrated by the divergent preferences for strong base-

pairs (Figure 4C). Given its pleiotropic role in participating in both P1ex and P10, N18..N21 is 

at the center of this trade-off and has to satisfy an additional layer of constraint. We asked 

whether this may be reflected in the relative contributions that different site/nucleotide 

features in N2..N5 versus N18..N21 make to predictions. We find this to be the case: a 

significantly larger proportion of gains in the model is attributable to N18..N21 (Figure 5A). 

This asymmetry is also reflected in patterns of epistasis. When we consider pairwise 

interactions within N2..N5 (with N18..N21 fixed as ACAU), within N18..N21 (with N2..N5 fixed 

as AGGU) or across helices (with one mutation each in N2..N5  and N18..N21), we find a 

tendency for positive epistasis to be more prevalent within N18..N21 than cross-helix and 

particularly compared to N2..N5 (Figure 5B, Wilcoxon text, P<0.1) Thus, positive epistasis is 

more common, on average, for mutations at nucleotides N18..N21, consistent with pleiotropic 

constraint. Distinct landscapes of epistasis in N2..N5 versus N18..N21 are also evident when we 

consider higher-order epistasis by computing the correlation of fitness effects (γ) (Ferretti et 

al. 2016) at different Hamming distances from the master sequence. Finally, to further 

illustrate asymmetric fitness effects across the P1ex helical divide, we carried out a simple 

mirror test, where we compare the fitness of a given genotype (e.g. A2AAG5/C18TTT21) to its 

mirror image across the helix axis (here T2TTC5/G18AAA21). To provide a fair comparison, 

we only considered genotypes and their mirror genotypes that are at equal Hamming distance 

(d=2) from the master sequence. In line with strongly asymmetric fitness effects motifs, we 

find only a weak, non-significant correlation between the fitness of mirrored genotypes 

(ρ=0.21, P=0.4; N=19). These results serve as a reminder that, even though restoration (e.g. 

flipping a G-C to a C-G base-pair) is commonly used to demonstrate the importance of base-

pairing and helix formation, two sides of any given helix need not necessarily be equivalent. 

In fact, we expect asymmetry to be common, caused by differential involvement in folding 
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intermediates and alternative conformational states, but also strand-specific modifications 

and interactions with chaperones and other proteins and RNAs. Asymmetric effects are likely 

prevalent even in helices where base-pairing is of pre-eminent concern. tRNAs, for example, 

are post-transcriptionally modified and interact with proteins (e.g. tRNA synthetase on 

acceptor) in an asymmetric manner. 

 

Our study provides a proof-of-principle that DMS experiments can capture multiple fitness-

relevant conformational states, including transient states, simultaneously, providing a 

window onto the fitness of RNAs in their true ensemble state. This capacity to capture 

multiple structural states in a one-pot experiment brings both opportunities and challenges. 

Challenges, because mutant fitness need not be interpretable in context of single (native) 

structure. In fact, mapping fitness effects onto a single native structure might prove 

misleading at sites where a dominant contribution to fitness comes from non-native or 

transient conformations or where mutational effects are pleiotropic. At the same time, 

capturing ensembles brings opportunities: data from DMS experiments might help us identify 

residues whose contribution to fitness is large but not easily explained when considering the 

native structure and prioritize these residues for follow-up studies. When used in conjunction 

with tools to probe and predict RNA structure and function, DMS experiments might, 

ultimately, even allow us to reverse-engineer dynamic interactions and critical non-native 

states from a single fitness landscape and provide a better, ensemble-based understanding of 

RNA evolution and evolvability. 

 

 

METHODS  

 

Construction of mutant intron library 

 

The plasmid backbone of Tet-119 is derived from E. coli-Thermus thermophilus shuttle 

vector pUC19EKF-Tsp3 (Wayne and Xu 1997), which contains a ColE1 ori, an ampicillin 

resistance marker gene, and the knt-intron sequence under the control of a slpA promoter 

(Guo and Cech 2002). The knt-intron construct was made previously by inserting the intron 

sequence at nucleotide 119 downstream of the translational start site of knt. To maintain base-

pairing with the 3’ exon to form P10 and so as not to introduce amino acid substitutions into 
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KNT, nucleotides 15-20 were altered from 5’-TACCTT-3’ (in the wild-type T. thermophila 

intron variant) to 5’-ACGACC-3’. Due to the change in nucleotides 19-20 from 5’-TT-3’ to 

5’-CC-3’, nucleotides 3-4 were altered from 5’-AA-3’ to 5’-GG-3’ to maintain base-pairing 

within the P1ex region. However, E. coli strains bearing this intron variant were not viable 

when challenged with kanamycin, indicative of insufficient splicing activity (Guo and Cech 

2002). Tet-119(C20A) was subsequently identified in a screen for mutants that rescued the 

splicing defect (Guo and Cech 2002).  

 

Upon receipt of Tet-119(C20A), a gift from Feng Guo (UCLA), we amplified the entire knt-

intron sequence (using primers knt-rz-f and knt-rz-r, Table S3) and subcloned it into the 

NdeI/XhoI sites of a pET-22b(+) plasmid (Merck Millipore) so that its expression is driven 

by an IPTG-inducible T7 promoter. To make the mutant library, all eight nucleotides in the 

two sub-regions were mutated into all possible substitutions (48 variants) using overlap 

extension PCR (Ho et al. 1989; Williams et al. 2014) coupled with oligonucleotides 

containing mixed bases at these sites (Figure S8, Table S3). Note that this procedure, in 

contrast to protocols employing doped oligonucleotides, will preferentially amplify 

sequences closer to the starting template as oligos closer to the starting template will bind the 

template better during PCR. 

 

Oligonucleotides were from Integrated DNA Technologies, and all PCRs were carried out 

using Q5 High-Fidelity DNA polymerase (New England Biolabs). All DNA fragments were 

purified from agarose gel (Monarch DNA Gel Extraction kit, New England Biolabs) to 

reduce carry-over of residual contaminants.   

 

The mutated pool of introns was then ligated into pET-22b(+), and the ligated products were 

electroporated into competent E. coli DH5a (New England Biolabs) cells according to standard 

procedures (Sambrook and Russell 2012). After electroporation, cells were recovered in SOC 

medium at 37ºC for 1 hour. Recovered cells were then grown on LB agar containing 100 ug/mL 

carbenicillin at 37ºC for 16 hours. The next day, the total number of transformed colonies was 

estimated to be ~5.5 x 105, corresponding to at least 8-fold oversampling of the target library 

size of 48 variants. All transformed colonies were scraped off the agar plates and pooled in 10 

mL LB + 100 ug/mL carbenicillin. Half of the pooled cells were archived at -80ºC, and the 

remaining half was harvested for plasmid extraction (QIAprep Spin Miniprep).  
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Growth under selective and non-selective conditions 

 

The extracted plasmids from the mutant library were re-electroporated into E. coli BL21(DE3) 

as previously described. For each transformation, 13 fmol of the plasmid library (corresponding 

to 59 ng) was mixed with 100 uL of electrocompetent bacterial suspension. After 

electroporation, cells were recovered in SOC medium at 37ºC for 1 hour prior to a brief 

centrifugation (2,500xg, 5 min). The supernatant was removed, and the cells were washed 

gently with LB. After resuspending the washed cells in 0.5 mL LB, half of the suspended cells 

(0.25 mL) were used for experiments at 37ºC, the other half for experiments at 30ºC. For each 

temperature, a 125-uL aliquot was spread on an LB agar containing 25 ug/mL kanamycin, 

while another 125-uL aliquot was spread on an LB agar without kanamycin. Other supplements 

in both media, were 100 ug/mL carbenicillin, 50 uM IPTG and 0.2% rhamnose. Agar plates 

were then incubated overnight at either 37ºC or 30ºC. A total of six replicate transformations 

were carried out, but with only two replicate transformations being conducted in the same day. 

After incubation, colonies that formed on the agar plates with or without kanamycin were 

scraped off and pooled using 3 mL LB containing 100 ug/mL carbenicillin accordingly. An 1-

mL aliquot of the pooled bacterial suspension was used for plasmid extraction (QIAprep Spin 

Miniprep) whereas the remaining pooled aliquot was archived at -80ºC.  

 

Library preparation and sequencing 

 

An aliquot (3 fmol each) of the plasmids extracted from the selected and non-selected 

populations was used for PCR (24 cycles) to amplify a 204-bp sequence spanning the P1ex 

region using a pair of adapter-linked primers (C20Aseq-f and C20Aseq-r, Table S3). The 

resulting amplicons from each replicate/strain were cleaned up using the Monarch PCR & 

DNA Cleanup kit (New England Biolabs). Next, Illumina indices (Nextera XT dual indexing) 

were incorporated into the adapter-linked amplicons in a second PCR (8 cycles), and the 

resulting index+adapter-linked amplicons were purified using Ampure XP beads. Index 

incorporation was confirmed with Agilent Bioanalyser HS-DNA. After quantifying the DNA 

concentration of the index+adaptor-linked amplicons using Qubit assays analysis (High 

Sensitivity DNA Assay), each was normalized to 2.5 nM and then combined to make an 
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equimolar pool. The amplicon pools were subjected to 100-bp paired-end sequencing on an 

Illumina HiSeq 2500 v4 sequencer. To guard against batch effects, we sequenced samples 

according to a balanced design where each of the 24 samples (6 replicates x 2 temperatures x 

2 conditions), along with samples from other conditions not described in this manuscript, was 

split into three, and one third each allocated to one of three HiSeq lanes for sequencing. Split 

samples cluster tightly together on PCA, suggesting that batch effects are negligible (not 

shown). Raw reads have been deposited in the NCBI Sequence Read Archive under accession 

PRJNA636762. Read/genotype counts after filtering (see below) are provided in Table S1. 

 

Read processing and fitness estimates 

 

We quality-filtered reads and estimated fitness using two different pipelines. In the first 

pipeline, we treated the data as one would when conducting a differential expression 

experiment, where individual genotypes correspond to individual RNA species in a complex 

pool of transcripts. Reads were trimmed using Trimmomatic v 0.35 (HEADCROP:5 

MINLEN:95) and subsequently filtered for base quality >=30 at the mutated bases. Imposing 

stringent quality cut-offs across the untargeted backbone does not affect results and leads to 

the removal of many more reads and is needlessly conservative since most deviation here 

should be owing to sequencing errors. The relative fitness of each genotype (along with 

adjusted significance values, Padj) was then estimated using DESeq2 (implemented in R) as 

log2-fold change in abundance of a given genotype in six replicates treated with kanamycin 

compared to six replicates without kanamycin.  

 

For comparison, fitness estimates were computed with DiMSum v0.3.2.9000 

(https://github.com/lehner-lab/DiMSum) (Bolognesi et al. 2019), which derives final fitness 

estimates as an error-weighted sum of replicate fitness values, after computing wildtype-

normalized fold changes at the replicate level. DiMSum was run with the following 

parameters: cutadapt5First: GGGGATGATGTTAAGGCTATTGGTGTTTATGGCTCTCT, 

cutadapt5Second: 

CGGTCTTGCCTTTTAAACCGATGCAATCTATTGGTTTAAAGACTAGCTACCAGTG

CATGCCTGATAACTTTTCCCTCC, cutadaptCut3Second: 1, cutadaptMinLength: 20, 

cutadaptErrorRate: 0.2, usearchMinlen: 20, wildtypeSequence: AGGTagcaatattacgACAT, 

maxSubstitutions: 8.  
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As highlighted above, fitness estimates are highly concordant between the two pipelines 

(Figure S1). Fitness estimates for all genotypes from both methods are provided in Table S1.   

 

Computation of summary measures  

 

Shannon diversity and Bray-Curtis dissimilarity were calculated using the diversity 

(index=”Shannon”) and vegdist (method=”bray”) functions from the R package vegan. 

Skewness and kurtosis were calculated using the skewness and kurtosis functions from the R 

package moments. To allow direct comparison to prior results (Bendixsen et al. 2017), 

pairwise epistasis was calculated as log10(fmaster*fm1,2-fm1*fm2), where fmaster is the fitness of the 

master sequence and fm1, fm2,  and fm1,2, are the fitness values of the two single-nucleotide 

mutants and the double mutant, respectively, as calculated by the DiMSum pipeline. Note 

that fitness in this pipeline is evaluated relative to the master sequence whose fitness is set to 

1.   

 

Computation of RNA structural features 

Minimum free energies (MFE) of the different intron genotypes was computed using 

RNAfold from the Vienna package (v2.4.3, −−noPS -p -d2 --MEA -T 37/30), using the intron 

with ±10 flanking nucleotides, which is sufficient for splicing (Price et al. 1987). Results are 

qualitatively identical when we consider the intron along with the entire knt open reading 

frame instead (not shown).  

  

 

Machine learning 

 

Extreme gradient boosted (XGBoost) decision trees were implemented using the xgboost and 

caret packages in R, with nucleotide identities encoded via one-hot encoding. Two-thirds of 

the genotypes were used for training and one third for testing, with 5-fold cross-validation. 

Hyperparameters were tuned via grid search  [nrounds = c(100, 200, 500, 1000), eta = 

c(0.01,0.05,0.1, 0.3), max_depth = c(4,6,8, 10), subsample = c(0.5 ,0.75, 1.0), 

min_child_weight = c(5, 10, 20)]. Two parameters, colsample_bytree and gamma were set to 

1. Models were then using xgbTree using the RMSE metric to minimize (method="xgbTree", 

objective = "reg:linear", metric="RMSE"). Predictions are based on the best parameters after 
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tuning. We also carried out equivalent training for subsets of the data significant at the 

Padj=0.05 or (further restricted) Padj=0.01 level as well as on the Wald statistic provided by 

DESeq2 instead of Log2-fold changes. However, we found no improved or worse 

performance in prediction accuracy when using the Wald statistic or censored sets of 

genotypes. As highlighted above, this suggests that there is valuable latent information in 

genotypes whose change in abundance does not meet traditional significance cut-offs.   

We also trained additional models, where higher-level features (GC content, predicted 

minimum free energy, base-pairing status at particular rungs of the helix, etc.) were explicitly 

included. Inclusion did not improve predictive performance, suggesting that emergent 

properties are captured by models based solely on nucleotide identity at the eight sites. We 

found that, while inclusion of higher-order features is tempting to increase interpretability, 

this is a double-edged sword: although higher-order features with large gains can help with 

interpretation, continuous features or features with more categories can in principle provide 

more explanatory power for a continuous outcome variable than binary features or features 

with few categories. Consequently, these features may end up “hogging” predictive power, 

without necessarily providing greater insight. Exclusive use of nucleotide identities at a given 

site has the advantage of allowing direct comparison of explanatory power between all 

features in the model. 

 

To calculate the predictive power of the model (prediction accuracy), one would ordinarily 

predict fold-change values for the test set (the genotypes left out during training of the model) 

and compare this to the observed changes. When we do so we obtain correlation coefficients 

ρ>0.83 for both 30ºC and 37ºC data.  Note that, in terms of the variance of fitness across 

genotypes explained by the model, this estimate arguably better approximates the genetic 

variance (Vg) rather than total phenotypic variance (Vp=Vg+Ve). This is because computing 

fold-changes across several replicates should reduce the environmental part of the variance 

(Ve). To be more conservative, we also calculated fold-changes from five of the six 

replicates, trained the model on those fold-changes and then tested model performance on the 

nominal fold-change of the remaining replicate. As expected – given that a single-replicate 

estimate is bound to be noisier than cross-replicate estimates, correlation coefficients here 

drop slightly, to ρ>0.63 for both 30ºC and 37ºC.  

 

Molecular dynamics simulations 
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The starting structure for simulations was constructed by templating the sequence of the 

P1/P1ex region of Tet-119(C20A) onto a previously solved P1/P1ex NMR structure (PDB 

1HLX) (Allain and Varani 1995). We then constructed 16 models comprising every single 

and double base mutation at nucleotides N2 and N21. All models were parameterized using the 

Amber RNA OL3 potentials for RNA (Banáš et al. 2010), solvated with 14 Å of TIP3P water 

and neutralized with NaCl. Energy minimization was performed for 2000 steps using 

combined steepest descent and conjugate gradient methods. Following minimization, 20 ps of 

classical molecular dynamics (cMD) was performed in the NVT ensemble using a Langevin 

thermostat (Davidchack et al. 2009) to regulate the temperature as we heated up from 0 to 

300 K. Following the heat-up phase, we preformed 100 ns of cMD in the isobaric/isothermal 

(NPT) ensemble using the Berendsen barostat (Berendsen et al. 1998) to maintain constant 

pressure during the simulation. All simulations were preformed using GPU (CUDA) Version 

18.0.0 of PMEMD (Götz et al. 2012; Le Grand et al. 2013; Salomon-Ferrer et al. 2013) with 

long-range electrostatic forces treated with Particle-Mesh Ewald summation . RNA base pair 

properties were calculated using CPPTRAJ (Roe and Cheatham 2013) and visualized using 

VMD (Humphrey et al. 1996).  
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Figure 1. Determining the fitness landscape of a dynamic RNA structure. (A) The sequence and secondary structure of the Tet-119(C20A)
group I intron with its 5’ and 3’ exonic context. Secondary structure conformations during sequential formation of P1ex and P10 are
highlighted in the blow-ups. The two sub-regions that were subjected to mutagenesis (N2..N5 and N18..N21) are shaded grey.
(B) Schematic representation of the knt-intron construct, library generation, and selection protocol. (C) In the presence of kanamycin,
self-splicing activity (molecular fitness) of the group I is coupled to organismal fitness as intron removal is required for reconstitution
of the knt open reading frame.  
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Figure 2. Fitness across intron genotypes. (A) Distribution of fitness effects at 30ºC and 37ºC. (B) Shannon diversity of intron
genotype pools under different conditions. (C) Similarity in genotype pool composition across all replicates and conditions
measured as Bray-Curtis (BC) dissimilarity, where BC=1 indicates maximum dissimilarity between samples. (D) Fitness of intron
genotypes at 30ºC as a function of Hamming distance (i.e. the number of mutational steps away from the master sequence). 
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Figure 3. Causes and correlates of variable fitness across intron genotypes (A) Fitness weakly correlates with predicted minimum free
energy of the intron. Note that the predicted minimum free energy of the master sequence ΔG = -362.8 (B) Fitness varies according to
the number of guanosine or cytosines (#GC) in the N2..N5 and N18..N21 regions. (C) Fitness varies as a function of the number of strong
or weak base-pairs that could be formed in P1ex assuming that base-pairing follows the established master/wildtype pattern (see Figure
1A). (D) Distribution of pairwise epistasis values for genotypes that are two mutations away from the master sequence (Hamming
distance = 2). ε values above 0 indicate positive epistasis, those below 0 indicate negative epistasis. (E) Pairwise epistasis for genotypes
in (D) by position and mutation. Diagrams on the left highlight the N3/N20 couple, where mutations that are predicted to lead to base-
pairing are associated with positive epistasis. 
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Figure 4. Assessing the contribution of individual nucleotide identities to fitness across multiple structural conformations. (A) Contribution
to XGBoost-predicted relative fitness across all intron genotypes, as measured by Shapley’s additive explanation (SHAP) scores, of three
example site/nucleotide features. More positive SHAP scores are associated with higher fitness. (B) The average contribution across all
genotypes of all individual site/nucleotide features, measured as ΔSHAP = SHAPpresent - SHAPabsent, where SHAPpresent and SHAPabsent 
correspond to the mean SHAP score of all genotypes where a given nucleotide at a given site is present and absent, respectively. (C) Fitness
landscape as a function of the number of strong (G-C) base-pairs that can form in P1ex and P10, assuming bases are aligned as they are in
the master/wildtype structure (see Figure 1A). (D) Fitness as a function of N2/N21 genotype, with a focus on cytosines. (E) Minor groove
width associated with different N2/N21 genotypes as determined using molecular dynamics simulations (see Methods). (F) Three overlaid
representative conformations of the P1/P1ex helix (randomly sampled from the final 50 ns of each simulation) for the master sequence
and the C2/C21 genotype. 
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Figure S1. (A) Correlation of fitness estimates derived from the DiMSum pipeline and using the DESeq2 framework. (B) Biased
distribution of read counts prior to and after selection. As a consequence of library generation, genotypes closer to the master sequence
are, on average, more common even prior to selection.    
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Figure S2. The effect of intron insertion into knt on colony formation in E. coli.  
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Figure S3. Relative fitness of the Tet-119 genotype and previously described single-mutation derivatives, including our master
sequence Tet-119(C20A) (Guo and Cech 2002). All derivatives have previously been shown to have higher splicing activity than
Tet-119 and all exhibit higher fitness in our assay. 
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Figure S5. The sequence and secondary structure of P1 and P1ex in the native Tetrahymena thermophila group I intron
and its pre-rRNA environment.
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Figure S6. Fitness binned according to the types of on-target base-pairing interactions that can be formed by N2-N21 and N5-N18.
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Figure S7. Stretch and stagger measured at the splice site (U1-G22) for all possible nucleotide combinations at N2/N21.
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Figure S8. Generation of mutant library using site-saturation mutagenesis via a two-step PCR. Solid arrows denote oligonucleotides. In
the first step, two pairs of oligonucleotides containing mixed bases (https://www.idtdna.com/pages/products/custom-dna-rna/mixed-bases)
are used to amplify two separate fragments (purple and pink) containing one P1ex sub-region each. The 3’ end of the purple fragment and
the 5’ end of the pink fragment share a 12-bp overlapping region, which allow self-annealing and subsequent 3’ extension during the
second PCR. As a result, the assembled amplicons contain two varying sub-regions. The purple fragment is amplified using primers
Frag1-f and Frag1-r, whereas the pink fragment is amplified using primers Frag2-f and Frag2-r (Table S3).
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Table S1. Fitness of individual genotypes across conditions. (see supplementary file) 
 
 
Table S2. XGBoost models  
 

Measure predicted Features Temperature Genotypes 
included 

Spearman’s 
correlation 
(predicted v 
observed) 

Fold-change 
(DESeq2) 

Nucleotide 
identities only 30ºC all 0.84 

Fold-change 
(DESeq2) 

Nucleotide 
identities only 37ºC all 0.83 

Fold-change 
(DESeq2) 

Nucleotide 
identities only 30ºC Padj<0.05 0.77 

Fold-change 
(DESeq2) 

Nucleotide 
identities only 37ºC Padj<0.05 0.74 

Fold-change 
(DESeq2) 

Nucleotide 
identities only 30ºC Padj<0.01 0.75 

Fold-change 
(DESeq2) 

Nucleotide 
identities only 37ºC Padj<0.01 0.71 

Fold-change 
(DESeq2) Extended* 30ºC Padj<0.05 0.77 

Fold-change 
(DESeq2) Extended* 37ºC Padj<0.05 0.74 

Fold-change 
(DESeq2) Extended* 30ºC Padj<0.01 0.76 

Fold-change 
(DESeq2) Extended* 37ºC Padj<0.01 0.71 

Wald statistic 
(DESeq2) 

Nucleotide 
identities only 30ºC all 0.81 

Wald statistic 
(DESeq2) 

Nucleotide 
identities only 37ºC all 0.80 

 
 
*extended runs include the following features together with nucleotide identities: RNAfold-
predicted ensemble free energy,  RNAfold-predicted ensemble diversity, number of possible 
strong (G-C) on-target base-pairs in P1ex, number of possible weak (A-U) on-target base-
pairs in P1ex, number of possible wobble (G-U) on-target base-pairs in P1ex, number of 
opposing bases that would not form a base-pair in P1ex, base-pairing status of N2-N21 (strong, 
weak, wobble, none), base-pairing status of N3-N20, base-pairing status of N4-N19, base-pairing 
status of N5-N18, number of possible strong (G-C) on-target base-pairs in P10, number of 
possible weak (A-U) on-target base-pairs in P10, number of possible wobble (G-U) on-target 
base-pairs in P10, number of opposing bases that would not form a base-pair in P10, base-
pairing status of N20 with P10, base-pairing status of N19 with P10, base-pairing status of N18 
with P10, Hamming distance, GC content of the N2-N5/N18-N21 genotype. 
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Table S3. Oligonucleotides used in this study. “f” indicates a forward primer and “r” indicates a 
reverse primer. Mixed bases are in blue. The restriction sites are underlined. The Illumina 
adapter sequences are boxed. 
 
Oligonucleotide Sequence (5’ ® 3’) 
 
Subcloning of the knt-intron sequence into pET-22b(+) plasmid 
knt-rz-f GTGTGAGGCATATGAATGGACC 
knt-rz-r TAGAGGTCTCGAGTTAAAATGGTATGCGTTTTGAC 
  
Generation of mutagenic Fragment 1 (Figure S7) 
Frag1-f GATCAGCCCACTGACGCGTTGC 
Frag1-r CGTAATATTGCTNNNNAGAGAGCCATAAACACCAATAG 
  
Generation of mutagenic Fragment 2 (Figure S7) 
Frag2-f AGCAATATTACGNNNNGGAGGGAAAAGTTATCAGGC 
Frag2-r ACCTGAGATGCATAATCTAGTAGAATCTC 
  
Amplification of P1ex sequences from plasmid pools 
C20Aseq-f TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGGGATGATG

TTAAGGCTATTGGTGTTTATGG 
C20Aseq-r GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGGTCTTGCC

TTTTAAACCGATGCAATC 
  

 
 
 
 
File S1. Molecular dynamics simulation of C2/C21 genotype, highlighting rotation of U1 out of 
the helix core.  
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