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ABSTRACT 1 

Short tandem repeat (STR) expansions cause several neurological and neuromuscular disorders. 2 

Screening for STR expansions in genome-wide (exome and genome) sequencing data can enable 3 

diagnosis, optimal clinical management/treatment, and accurate genetic counselling of patients 4 

with repeat expansion disorders. We assessed the performance of lobSTR, HipSTR, RepeatSeq, 5 

ExpansionHunter, TREDPARSE, GangSTR, STRetch, and exSTRa – bioinformatics tools that 6 

have been developed to detect and/or genotype STR expansions – on experimental and simulated 7 

genome sequence data with known STR expansions aligned using two different aligners, Isaac 8 

and BWA. We then adjusted the parameter settings to optimize the sensitivity and specificity of 9 

the STR tools and fed the optimized results into a machine-learning decision tree classifier to 10 

determine the best combination of tools to detect full mutation expansions with high diagnostic 11 

sensitivity and specificity. The decision tree model supported using ExpansionHunter’s full 12 

mutation calls with those of either STRetch or exSTRa for detection of full mutations with 13 

precision, recall, and F1-score of 90%, 100%, and 95%, respectively. 14 

We used this pipeline to screen the BWA-aligned exome or genome sequence data of 306 15 

families of children with suspected genetic disorders for pathogenic expansions of known disease 16 

STR loci. We identified 27 samples, 17 with an apparent full-mutation expansion of the AR, 17 

ATXN1, ATXN2, ATXN8, DMPK, FXN, HTT, or TBP locus, nine with an intermediate or 18 

premutation allele in the FMR1 locus, and one with a borderline allele in the ATXN2 locus. We 19 

report the concordance between our bioinformatics findings and the clinical PCR results in a 20 

subset of these samples. Implementation of our bioinformatics workflow can improve the 21 

detection of disease STR expansions in exome and genome sequence diagnostics and enhance 22 

clinical outcomes for patients with repeat expansion disorders. 23 
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INTRODUCTION 24 

Expansions of short tandem repeats (STRs; tandemly repeated arrays of 1–6 base pair (bp) 25 

sequence motifs1) can cause several neurological and neuromuscular disorders2. Accurate 26 

genotyping (i.e., the determination of the number of copies of repeat units in an STR) is critical 27 

to the molecular diagnosis of STR expansion disorders as repeat length usually shows a positive 28 

correlation with severity and negative correlation with age of onset of clinical symptoms3. 29 

Repeat length also determines an STR’s allelic class (normal, NL; intermediate, IM; 30 

premutation, PM; or full-mutation, FM), which may differ with respect to associated disease 31 

phenotype3; 4. For example, the FMR1 (MIM 309550) PM (55–200 CGG repeats) increases the 32 

risk for primary ovarian insufficiency (MIM 311360) and tremor/ataxia syndrome (MIM 33 

300623). In contrast, FMR1 FM (>200 CGG repeats) causes fragile X syndrome (MIM 300624), 34 

the most frequent Mendelian cause of intellectual disability5. PM and IM (also known as 35 

“mutable NL”) alleles that are meiotically unstable can expand into pathogenic FM in a single 36 

generation, while NL alleles rarely, if ever, do so6; 7. Expanded alleles tend to further increase in 37 

repeat length during intergenerational transmission, and, as a result, genetic anticipation (the 38 

earlier and more severe manifestation of disease symptoms with each successive generation) is 39 

common in repeat expansion disorders8. 40 

Clinical laboratories typically use polymerase chain reaction (PCR) or Southern blot (SB) 41 

(alone or in combination) to characterize expansions at known disease STR loci9. Although 42 

highly sensitive in detecting and genotyping STR expansions, PCR and SB tests have several 43 

limitations. They are time- and labor-intensive, require extensive optimization, and do not permit 44 

concurrent analyses of more than a handful of STR loci. Next-generation sequencing (NGS), on 45 

the other hand, enables exome- and genome-wide characterization of STRs. Several algorithms 46 
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have recently been developed to analyse STRs in NGS data1; 10-14. The incorporation of 47 

bioinformatics tools to screen for STR expansions may permit the diagnosis of repeat expansion 48 

disorders during routine diagnostic exome or genome sequencing, allow accurate genetic 49 

counseling of affected individuals and their families, and improve clinical outcomes. 50 

The currently-available STR analysis algorithms have different attributes that determine 51 

their utility and sensitivity in detecting and characterizing repeat expansions in NGS data (Table 52 

1). Methods like STRetch11 and exSTRa12 identify STR expansions via case-control analysis, 53 

with a caveat of either underestimating the repeat lengths of some expanded STRs11 or not 54 

genotyping STRs12. Methods that genotype STRs are known to perform better across certain 55 

repeat length ranges depending on the read type evidence considered. For instance, tools relying 56 

on reads that fully encompass an STR (“spanning reads”) to compute repeat length15-17 can size 57 

alleles within the length of an Illumina read (125–150 base pairs [bp]) but they perform poorly in 58 

detecting pathogenic FM expansions that exceed read length. More recent methods1; 10; 18; 19 that 59 

leverage on additional read types such as flanking or partially flanking reads (those that map to 60 

unique flanking sequences), in-repeat reads (IRR; those that are entirely composed of STRs with 61 

a mate that maps to the STR’s flanking sequence), and/or IRR pairs (both reads of a pair 62 

mapping to the STR) can size STRs that exceed read length. ExpansionHunter10; 19 and 63 

GangSTR18, in particular, enable the recovery of IRR and IRR pairs, which originate from an 64 

expanded STR but may incorrectly map to other STR (or “off-target”) regions with longer tracts 65 

of the same repeat motif. By allowing the inclusion of off-target sites (OTS) in analysis, 66 

ExpansionHunter and GangSTR facilitate sizing STRs that are longer than an Illumina 67 

sequencing library fragment length (350–500 bp). 68 
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In terms of utility, some of these methods can analyse STRs in both exome sequencing 69 

(ES) and genome sequencing (GS) data11; 12; 18, while others are designed specifically for GS1; 10; 70 

19. Some tools have specific NGS data requirements; for example, ExpansionHunter is designed 71 

for PCR-free GS, and exSTRa has only been extensively tested on bowtie-220 alignments. Also, 72 

most methods have been recognized to perform less optimally on GC-rich STR expansions10; 12. 73 

These varied attributes and performance characteristics have led to the acknowledgment that a 74 

single bioinformatics tool is less likely to be able to identify pathogenic STR expansions of all 75 

repeat lengths and sequence content/composition in NGS data12. Recently, Tankard et al 76 

recommended a consensus calling approach using at least two out of four tools (TREDPARSE1, 77 

ExpansionHunter, STRetch, and exSTRa) to characterize expansions of known disease STRs12. 78 

However, it is not clear which of these (or other) STR methods alone or in combination yield 79 

optimal sensitivity and specificity. 80 

In this study, we employed a decision tree classifier to identify the optimal tool(s) for 81 

classifying expanded FM and non-expanded alleles at known disease STR loci with high 82 

accuracy, precision, recall, and F1-score. We performed our analysis on the STR calls from nine 83 

different tools1; 10-12; 15; 17-19; 21 made on the GS data of patients with well-characterized STR 84 

expansions in one of eight different loci (AR, ATN1, ATXN1, ATXN3, DMPK, FMR1, FXN, or 85 

HTT)10 and simulated GS data harboring expansions of the GC-rich FMR2 or C9orf72 STR loci. 86 

These data were aligned using two different aligners, Isaac22, an ultra-fast aligner, and BWA-87 

MEM23,  recommended by the GATK best practices guidelines24 and widely used in GS 88 

studies25, to see if the choice of the aligner influences the performance of the STR methods. 89 

First, we tested the classifier on the results generated by the implementation of tools using 90 

default parameter settings. We then tweaked several parameters, such as the inclusion/exclusion 91 
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of OTS and using a different FM repeat length threshold to define expansions at selected loci and 92 

implementation of exSTRa with a control cohort, to optimize the sensitivity and specificity of the 93 

STR tools included in this study. Once we established the parameters that yielded the best 94 

results, we input the data generated with these settings into the classifier and found a significant 95 

improvement in our model’s ability to detect FMs compared to our default parameter assessment. 96 

We then applied our decision tree model of STR algorithms to screen for expansions in known 97 

disease STR loci in the GS or ES data of 306 families (patient-parent trios (patient and both 98 

biological parents) or quads (patient, sibling, and both biological parents)) with a proband who is 99 

suspected to have a genetic disorder. 100 

METHODS AND APPROACHES 101 

GS Datasets with a Known Repeat Expansion 102 

The GS datasets with a known repeat expansion analysed in this study include the BWA and 103 

Isaac alignments of: 1) the European Genome-phenome archive (EGA) dataset10 104 

(EGAD00001003562), which consisted of data from 118 PCR-free GS of Coriell samples, each 105 

with an AR, ATN1, ATXN1, ATXN3, DMPK, FMR1, FXN, or HTT expansion (Supplementary 106 

Table 1a); and 2) C9orf72 or FMR2 expansions of varying repeat lengths simulated using the 107 

ART NGS read simulator26 (Supplementary Table 1b) as outlined in Supplementary Methods. 108 

The simulated GS data were included in our analysis to assess the performance of the STR 109 

algorithms on expansions of extremely high GC content (100%) that may be refractory to 110 

detection.  111 
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Patient Cohorts and ES and GS Data Generation 112 

The patient cohorts screened for known STR expansions in this study consist of the ES data of 113 

146 trios or quads from the Clinical Assessment of the Utility of Sequencing and Evaluation as a 114 

Service (CAUSES) study and the GS data of 160 trios or quads from the Integrated 115 

Metabolomics And Genomics In Neurodevelopment (IMAGINE) or CAUSES studies. Subjects 116 

enrolled in the CAUSES study were children who were suspected on clinical grounds to have a 117 

single gene disorder but in whom conventional testing had not identified a genetic cause. 118 

Subjects enrolled in the IMAGINE study had impairment of motor function with onset before 119 

birth or within the first year of life and additional clinical features that made perinatal 120 

complications such as hypoxia or intracranial hemorrhage an unlikely explanation for their 121 

problems. Most of the subjects enrolled in the CAUSES or IMAGINE studies had intellectual 122 

disability. The ES or GS data from the unaffected parents were used to verify the inheritance or 123 

unstable transmission of variants. These studies were approved by the Institutional Review 124 

Board of the BC Children’s and Women’s Hospital and the University of British Columbia 125 

(H15-00092 and H16-02126). 126 

The trio/quad ES data were sequenced by Ambry Genetics (Aliso Viejo, United States), 127 

Centogene (Rostock, Germany), or BC Cancer Agency Genome Sciences Centre (Vancouver, 128 

Canada) to a mean coverage of ~60x. The library preparation protocols and sequencers used to 129 

generate the trio/quad ES data are described in Supplementary Table 2. 130 

The median coverage of the trio/quad GS data ranged from 36 to 80x and was generated 131 

by the McGill University and Genome Quebec Innovation Centre (Quebec, Canada). GS libraries 132 

were prepared using the NxSeq® AmpFREE Low DNA Library Kit Library Preparation Kit and 133 
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Adaptors (Lucigen, Wisconsin, US) or xGen Dual Index UMI Adapters (Integrated DNA 134 

Technologies, Coralville, US) and sequenced on an Illumina HiSeqX sequencer. 135 

The paired-end reads (125 or 150 bp) of both the ES and GS datasets were aligned to the 136 

UCSC hg19 human reference genome using BWA-MEM, and duplicates were marked with 137 

Picard27. All patient ES data underwent single-nucleotide variant (SNV) and indel analysis, and 138 

145 out of the 146 trios or quads included in this study had no clinically-relevant SNV/indel 139 

variants. We also analysed the ES data of a quad with known myotonic dystrophy (Type 1; DM1 140 

– MIM 160900) in the proband and his mother as a positive control. Our patient GS data 141 

underwent SNV, indel, structural, and mitochondrial variant analysis, with a causal variant 142 

identified in about half of the trios (unpublished data). We included the GS data of all cases in 143 

this study. 144 

Bioinformatics Tools for STR Analysis 145 

The STR analysis tools implemented in this study include lobSTR15, HipSTR28, RepeatSeq17, 146 

TREDPARSE1, ExpansionHunter10; 19, GangSTR18, STRetch11, and exSTRa12. The key features 147 

of these tools and the commands and parameters used to execute them are described in Table 1 148 

and Supplementary Table 3, respectively. We first used ExpansionHunter (EH) version 2 in this 149 

study10 and later included the improved iteration (version 3) of EH optimized to genotype STRs 150 

with complex or mixed repeat motifs19. 151 

Disease STR Catalogs 152 

The STR analysis tools assess known disease STRs included within a pre-defined catalog 153 

supplied by the authors. The known pathogenic STR loci included in these catalogs, as well as 154 

their allelic categories and corresponding repeat lengths, are summarized in Supplementary 155 

Table 4. Notably, the region files for ExpansionHunter only included pre-defined OTS for FMR1 156 
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and C9orf72 loci, while GangSTR included OTS in the region files of all 12 pathogenic STR loci 157 

provided with the tool. Some of the region files of known disease STRs analysed in this study 158 

(AR, ATN1, FXN, and FMR2) were missing for GangSTR. Therefore, we added these loci and 159 

included their OTS as described in Mousavi et al. (2019)13. 160 

Interpretation of FMs and non-FMs 161 

The data from the genotyping methods were classified as “FM” if the estimated repeat lengths of 162 

the STRs exceeded their respective FM thresholds (Supplementary Table 4). STRetch and 163 

exSTRa calls were classified as “FM” if the p-values post-multiple-testing-adjustment were 164 

significant (<0.05). For STRetch, we used the control file (containing data from 143 healthy 165 

individuals) provided with the tool. 166 

Decision Tree Classification 167 

Decision tree analysis is a supervised machine learning (ML) classification method29. We 168 

employed this approach to infer the best model or the best combination of STR analysis tools to 169 

detect FM expansions with optimal sensitivity and specificity. We used the Python Scikit-Learn 170 

ML library30 to implement the decision tree classifier and used the STR calls from the 171 

EGA/simulated GS to train and test the classifiers on the data from the Isaac and BWA 172 

alignments. 173 

For our preliminary decision tree analysis, we used the outputs generated using the 174 

default parameters for each of the STR analysis tools. We compiled the results generated by the 175 

STR analysis tools on the Isaac and BWA-aligned GS data. We labeled the EGA and simulated 176 

genome’s true STR expansion status or class label (FM or non-FM for a given locus). 177 

Essentially, the single known or characterized STR expansion in each of the EGA and simulated 178 

genomes was assigned to the “FM” class, while the status of the other STR loci was assigned to 179 
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“non-FM”. The data from the STR callers were then transformed into binary flags: 1 indicating 180 

at least one of the two alleles was called as “FM”, and 0 indicating both alleles were “non-FM”. 181 

From there, we removed all rows with missing values and supplied the data to the classifier. We 182 

divided our dataset into 80 and 20% to train and test the classifier, respectively, and then 183 

implemented the classifier. We used the Gini index approach to ascertain the efficiency of an 184 

attribute (i.e., the STR caller) in differentiating samples belonging to the FM and non-FM 185 

classes. To evaluate the performance of the classifier, we extracted different metrics, including 186 

precision (true positives TP/(TP + false positives [FP])), recall (TP/(TP + false negatives [FN])), 187 

accuracy, and F1-score (2*((precision*recall)/(precision+recall))), and analysed the receiver 188 

operating characteristic (ROC) curve, a ratio of sensitivity (TP/(TP + FN)) and inverted 189 

specificity (1-(TN/(TN + FP))), and the precision-recall curve, a ratio of precision and recall or 190 

sensitivity. To avoid over-fitting of the data and to evaluate the robustness of the classifier, we 191 

performed 10-fold cross-validation on the training dataset and identified the best model for 192 

targeted disease STR analysis in both Isaac and BWA-aligned GS data. 193 

We next ascertained whether tweaking some of the parameters would improve the 194 

performance of the STR analysis tools and the resultant decision tree model. First, we assessed 195 

the performance of ExpansionHunter with OTS on selected STR loci that are known to harbor 196 

expansions exceeding sequencing fragment lengths. This was to retrieve unmapped and 197 

mismapped IRR/IRR pairs and improve the repeat length estimation and detection of FMs. 198 

Second, we used a PM or IM repeat length threshold instead of FM threshold for FMR1 and 199 

FMR2 STR loci to classify expanded alleles and documented the sensitivity as well as the FP 200 

rates of the genotypers. Third, we tested exSTRa’s performance on BWA-aligned GS with 201 

control data from a cohort of 100 healthy individuals. We could not perform a similar analysis on 202 
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Isaac-aligned GS due to the lack of Isaac-aligned GS data of healthy subjects. We carefully 203 

evaluated how these parameter tweaks influenced the performance of the STR analysis tools and 204 

selected the optimized outcomes to rerun our decision tree classifier. The precision, recall, 205 

accuracy, and F1-score metrics of this newer model generated on the test dataset and cross-206 

validation on the training dataset were then compared to our preliminary decision tree analysis 207 

with default parameters. 208 

Screening for Known Disease STR Expansions in Patient Data 209 

Finally, we screened our patient trio/quad ES and GS data for known disease STR expansions 210 

using the tools identified by the classifier. Of the probands analysed in this study, 60 have had 211 

clinical FMR1 STR testing, three have had clinical SCA STR panel tests, one has had a clinical 212 

FXN STR test, and four others have had clinical DMPK STR tests. All of these clinical PCR-213 

based STR tests were negative for a pathogenic expansion, except for a confirmed DMPK FM in 214 

a proband and his mother. All individuals who were expansion-negative at the tested locus were 215 

used as negative controls. 216 

For all the expanded STRs identified in the patients, we analysed the parental genotype 217 

calls to verify the inheritance or unstable transmission of the alleles. Subjects with potential 218 

expansions of known disease STRs were identified for orthogonal validation to ascertain the 219 

specificity of our decision tree. Molecular testing (PCR and capillary electrophoresis) of some of 220 

the identified STR candidates was performed by Centogene (Germany).  221 
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RESULTS 222 

Performance of STR Algorithms on Isaac versus BWA-aligned GS Data 223 

The lobSTR, HipSTR, RepeatSeq, EH versions 2 and 3, GangSTR, TREDPARSE, STRetch, and 224 

exSTRa results of Isaac- and BWA-aligned EGA and simulated GS data are shown in 225 

Supplementary Tables 5 and 6, respectively. The spanning-read-only algorithms (lobSTR, 226 

HipSTR, and RepeatSeq) did not detect any FMs in either Isaac- or BWA-aligned GS data, as 227 

expected. Therefore, we omitted these tools from all subsequent analyses. 228 

The sensitivity of EH_v2 and EH_v3, GangSTR, TREDPARSE, STRetch, and exSTRa 229 

run with default parameters in detecting FMs in Isaac- and BWA-aligned GS is summarized in 230 

Table 2. EH_v2 and EH_v3, TREDPARSE, and STRetch exhibited consistent performance and 231 

had a sensitivity of ~70% in both Isaac and BWA alignments. GangSTR’s sensitivity was better 232 

on Isaac (55%) compared to BWA (38%) alignments. In marked contrast, exSTRa detected more 233 

FMs in the BWA (88%) than Isaac (56%) alignments (see Supplementary Figures 1a and 1b for 234 

exSTRa’s plots on Isaac- and BWA-aligned GS, respectively). On Isaac-aligned data, STRetch, 235 

EH_v2, and EH_v3 detected the most FMs, followed by TREDPARSE, exSTRa, and GangSTR. 236 

On BWA-aligned data, exSTRa detected the most FMs, followed by STRetch, EH_v2, EH_v3, 237 

TREDPARSE, and GangSTR. Notably, although exSTRa and STRetch detected more FMs, they 238 

also had the most FP calls. 239 

All FMs missed by the genotypers were under-sized and classified incorrectly as PM, IM, 240 

or NL (Supplementary Tables 7a and 7b). Additional results on the performance of the 241 

genotypers in classifying NL, IM, and PM alleles are included in Supplementary Tables 8 and 9 242 

and Supplementary Results. Among the analysed STR loci, FMR1, FMR2, and homozygous 243 

FXN FMs were particularly refractory to detection (Supplementary Tables 7a and 7b). 244 
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Decision Tree Classification 245 

We first trained and tested the decision tree classifier on the generated default-parameter results 246 

of EH_v2, EH_v3, GangSTR, TREDPARSE, STRetch, and exSTRa. After removing the rows 247 

with missing values, the compiled STR calls of the Isaac- and BWA-aligned EGA and simulated 248 

GS datasets had 1238 and 1232 rows (one row per sample per STR locus), respectively. In Isaac-249 

aligned data, EH_v2, which had the lowest Gini impurity or performed the best in classifying 250 

alleles was assigned to the root node (node #0) and correctly classified 47 out of 66 FMs and 918 251 

out of 924 non-FMs in the training dataset (Supplementary Figure 2a). STRetch (node #1) and 252 

EH_v3 (node #11) detected one of the FMs missed by EH_v2. In the test dataset, the decision 253 

tree model had precision, recall, and F1-score of 100, 90, and 95%, respectively, to detect FMs; 254 

for non-FMs, the precision, recall, and F1-score were 99, 100, and 100%, respectively. The ROC 255 

and precision-recall plots are shown in Supplementary Figure 2b. The 10-fold cross-validation of 256 

this model on the training dataset yielded a ROC_AUC (Area Under the Curve) of 85.48 ± 257 

12.58% (mean ± standard deviation). 258 

In the BWA-aligned data, EH_v3 at the root node correctly classified 43 out of 60 FMs 259 

and 921 out of 925 non-FMs in the training dataset, with exSTRa and GangSTR recovering one 260 

of the FMs missed by EH_v3 (Supplementary Figure 3a). The precision, recall, and F1-score to 261 

detect FMs and non-FMs in the test data were 95, 81, and 88% and 98, 100, and 99%, 262 

respectively. The ROC and precision-recall curves are shown in Supplementary Figure 3b. The 263 

ROC_AUC metric of the model’s 10-fold cross-validation on the training dataset was 86.24 ± 264 

8.38%. 265 

In both Isaac and BWA analyses, nearly five out of the six features (STR tools) 266 

contributed to the performance of the model (Supplementary Figures 2c and 3c), led by either 267 
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EH_v2 or EH_v3. The sensitivity for detecting FMs in BWA-aligned data was slightly lower 268 

compared to the Isaac analysis. Overall, the decision tree classifier on the Isaac and BWA test 269 

datasets generated using the default-parameter settings missed 10 to 20% of the FMs. To 270 

improve the detection sensitivity, we evaluated some parameters that we believed might help 271 

capture more of the true FMs. 272 

Tested Parameters: First we tested the effect of including OTS in the detection of FMs. While 273 

GangSTR’s region files included OTS for all analysed loci, the author-supplied JSON files of 274 

EH did not include OTS for DMPK, FXN, or FMR2 loci, which are known to harbor expansions 275 

exceeding fragment lengths. In our initial EH run without OTS, we noted reduced sensitivity in 276 

the detection of FXN and FMR2 FMs (Supplementary Table 7). Therefore, we added OTS for 277 

analysing these loci with EH_v2, which helped identify two out of three FMR2 expansions in 278 

both Isaac- and BWA-aligned data (Supplementary Table 10). For the FXN locus, there was no 279 

improvement in sensitivity, highlighting the general limitation of the genotypers in reliably 280 

detecting homozygous FXN FM expansions. Second, because the GC-rich expansions such as 281 

those at the FMR1 locus tend to be under-sized owing to reduced coverage even in PCR-free 282 

Illumina GS datasets10, we used an IM (54 repeats) and PM (60 repeats) repeat length threshold 283 

for FMR1 and FMR2 loci, respectively, instead of their FM threshold (both at 200 repeats). With 284 

this tweak, EH_v2 and EH_v3 detected all FMR1 and FMR2 FMs in Isaac- as well as BWA-285 

aligned data (Table 3). TREDPARSE detected 83 to 89% of the FMR1 FMs, but none of the 286 

FMR2 FMs, while GangSTR detected 16 to 22% of the FMR1 FMs and none of the FMR2 FMs. 287 

The identified FPs in this analysis include the known FMR1 PMs and a few borderline FMR1 IM 288 

alleles that are closer to the threshold. Lastly, we hypothesized that adding data from a control 289 

cohort to exSTRa’s analysis of BWA alignments would further improve its FM detection 290 
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potential. With controls, exSTRa yielded a sensitivity of 95% and detected all homozygous FXN 291 

FM expansions, as well as all FMR1 and FMR2 FMs (Supplementary Figure 1c). 292 

Of these parameters, using the IM/PM threshold for FMR1 and FMR2 genotype analysis 293 

and performing exSTRa’s BWA analysis with controls were useful in detecting refractory STR 294 

expansions. We fed these improved results into the classifier. In both Isaac- and BWA-aligned 295 

training datasets, EH_v2 at the root node correctly classified all but one FM and most of the non-296 

FM alleles (Figures 1a and 2a). The classifier’s precision, recall, and F1-score in the Isaac- and 297 

BWA-aligned test datasets were 83, 100, and 91% and 90, 100, and 95% to detect FMs and 100, 298 

98, and 99% and 100, 99, and 99% to detect non-FMs, respectively. The ROC and precision-299 

recall plots are shown in Figures 1b and 2b. The ROC_AUC metric for cross-validation was 300 

95.14 ± 5.12% for Isaac and 96.99 ± 3.72% for BWA. All six STR analysis tools contributed to 301 

the performance of the classifier on the improved results of Isaac-aligned GS (Figure 1c), and all 302 

but GangSTR contributed to the performance of the classifier on the BWA-aligned GS (Figure 303 

2c). Among the STR tools, EH_v2 ranked first in both Isaac and BWA alignments. This model 304 

on the optimized results of STR algorithms performed significantly better, detecting all FMs. 305 

The decision rules that emerged from this analysis suggest the best approach to categorizing FMs 306 

is to support EH_v2 and/or EH_v3 FM calls with (at least) one other tool (STRetch, 307 

TREDPARSE, exSTRa, or GangSTR for Isaac, and STRetch or exSTRa for BWA). 308 

Unsurprisingly, we also noticed a drop in precision due to the increase in FP counts, possibly 309 

precipitated by the inaccurate identification of FMR1 PM and some IM alleles.  310 
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Analysis of Known Disease STR Loci in Clinical NGS Data 311 

All our patient ES and GS data were BWA-aligned, so we followed the decision tree model 312 

generated on the BWA-aligned EGA and simulated GS datasets, which suggested using EH_v2 313 

and/or EH_v3 in addition to STRetch or exSTRa. We added some additional disease STR loci to 314 

the EH_v2 variant catalog (Supplementary Table 4), analysing a total of 21 disease STRs using 315 

all four tools in our patient cohort. 316 

First, we identified 16 EH_v2 FM expansions that were supported by at least one of 317 

EH_v3, STRetch, or exSTRa. Of the samples that were not called as expanded by EH_v2, we 318 

screened for positive calls in EH_v3, STRetch, and exSTRa outputs. STRetch and exSTRa, 319 

which had higher FP call rates in the EGA and simulated datasets, identified 298 and 442 disease 320 

STR in our patient cohort. Therefore, any positive calls made on these two tools needed to be 321 

supported by either EH_v2 or EH_v3. In total, we identified 27 samples, 17 with FM expansions 322 

of the AR, ATXN1, ATXN2, ATXN8, DMPK, FXN, HTT, or TBP locus, nine with IM or PM 323 

alleles in the FMR1 locus, and one with a borderline allele in the ATXN2 locus (summarized in 324 

Table 4). Supplementary Table 11 shows the EH_v2, EH_v3, STRetch, and exSTRa results of 325 

the identified STR candidates. 326 

We found that most probands with an identified STR candidate inherited the allele from a 327 

parent, except for the ATXN1 FM in a proband (890-P) with 39 repeats (Supplementary Table 328 

11) compared to the parental ATXN1 NL alleles that had 28 to 31 repeats (data not shown). The 329 

inherited expansions either remained unchanged or decreased by one or a few repeat units or 330 

increased by 1 to ~15 repeats during intergenerational transmission. We also found seven FM 331 

expansions in parents that were not inherited by the proband. 332 
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All individuals who tested negative in their molecular assessments for FMR1, FXN, SCA, 333 

or DMPK FM expansions were also categorized as non-expanded by our bioinformatics 334 

workflow (data not shown). In the ES data of the proband (2010-P) and his mother (2010-M) 335 

with DM1 and a DMPK FM (>50 repeats) finding on molecular assessment, EH_v2, EH_v3, and 336 

exSTRa identified the FM expansion. However, the repeat length estimated by EH_v2 and 337 

EH_v3 in 2010-P and 2010-M was ~50 repeats, which is significantly lower than the molecular 338 

findings of 150 repeats in 2010-P and 430 repeats in 2010-M (Supplementary Table 11). After 339 

including OTS to EH’s analysis of the DMPK locus, the FM estimate of EH_v2 and EH_v3 was 340 

~80 repeats (data not shown). 341 

Based on the repeat lengths estimated by EH_v2 and EH_v3, we categorized the 342 

identified FMs as reduced- or full-penetrance (Table 4; the different repeat size ranges associated 343 

with reduced- and full-penetrance of the STR expansion disorders are summarized in 344 

Supplementary Table 4). Nine of the FMs we identified in the probands and parents were in the 345 

fully-penetrant repeat size range, with another five in the reduced-penetrance range. The AR FM 346 

in a proband (1901-P) and her father (1901-F) was categorized as full-penetrance by EH_v3 (38 347 

repeats) and reduced-penetrance by EH_v2 (37 repeats). 348 

We performed PCR-based molecular tests to verify the expansion status of a subset of the 349 

identified FMs (molecular findings summarized in the last column of Table 4 and Supplementary 350 

Table 11). The HTT FMs identified by EH_v2 (37 repeats), EH_v3 (37 repeats), STRetch, and 351 

exSTRa in a proband (1530-P) and his father (1530-F) were concordant with the molecular test 352 

(37 ± 1 repeats). Also, the AR FMs in a father (1901-F) and proband (1905-P) identified by 353 

EH_v2 (37 repeats), EH_v3 (38 repeats), and STRetch were consistent with the PCR result (37 ± 354 

1 repeats). On the other hand, the TBP FM in a mother (1992-M) identified by EH_v2 (52 355 
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repeats) and EH_v3 (53 repeats) could not be verified by PCR (37 ± 1 repeats). For the other 356 

identified FMs with an unknown STR expansion status, we are currently performing molecular 357 

validation. 358 

Lastly, we investigated the genotype calls of the disease STRs made by EH_v2, EH_v3, 359 

and GangSTR in our patient ES and GS datasets to see if the NL allele frequency distribution at 360 

these loci agreed with the reported population frequencies of NL alleles (Supplementary Figures 361 

4 and 5, and Supplementary Table 12). In general, the repeat length distribution pattern of the 362 

STR alleles for most loci was consistent across the ES (Supplementary Figure 4) and GS 363 

(Supplementary Figure 5) data, except for the FMR1 and FMR2 loci, which were characterized 364 

inconsistently in the ES data. EH_v3 genotyped fewer ATXN8 alleles and also had a different 365 

repeat length distribution profile for the ATXN7 and HTT loci in the ES data. For the CSTB locus, 366 

more 1-repeat genotype calls were made by the tools in the ES data, while we found none in the 367 

GS data. More than half of the individuals in our clinical cohort are of European ancestry, so we 368 

compared the frequency of the three most common alleles ascertained in the GS data to the 369 

common NL allele in the Caucasian population reported in the literature (Supplementary Table 370 

12). Except for a few loci, the repeat lengths of the most common alleles determined by the tools 371 

were generally in good agreement with the reported repeat length of the common NL allele in the 372 

Caucasian population. 373 

DISCUSSION 374 

The contribution of STR expansions to disease is just beginning to be understood. Hitherto, ~40 375 

neurological disorders have been found to have a causal STR expansion mutation underlying 376 

their pathogenesis2, with some recent studies reporting the identification of novel pathogenic 377 

STR expansions through NGS or the more advanced third-generation long-read sequencing 378 
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technologies31-35. The challenges in detecting and characterizing the repeat lengths of STR 379 

expansions in short-read NGS are well recognized36. However, recent algorithmic improvements 380 

facilitate the detection of STR expansions that exceed read and/or fragment lengths, providing us 381 

the opportunity to analyze a larger panel of known disease STR loci simultaneously through ES 382 

and GS1; 10-14. Some of these methods may also be useful in scanning the entire genome or exome 383 

for novel disease-causing STR expansions11; 13. 384 

Of the available STR algorithms, EH, GangSTR, and TREDPARSE are particularly 385 

valuable for identifying disease-causing expansions because these programs leverage evidence 386 

beyond the reads that span an STR, enabling the genotyping of larger repeat expansions. Other 387 

methods like STRetch and exSTRa detect STR expansions but do not reliably genotype them 388 

(STRetch) or do not genotype them at all (exSTRa). 389 

Our assessment of the performance of these STR tools on GS datasets with known repeat 390 

expansions mapped using two different aligners, Isaac and BWA, showed that the choice of 391 

aligner impacts the sensitivity of GangSTR and exSTRa. GangSTR performed better on Isaac 392 

alignments, whereas exSTRa performed better on BWA alignments. 393 

Generally, of all the analysed disease STR loci, the detection of homozygous FXN FMs 394 

and the GC-rich FMR1 and FMR2 FMs were the most challenging. We modified some 395 

parameters to increase the FM detection potential at these loci and found that exSTRa’s 396 

sensitivity improved with control datasets, detecting all FXN, FMR1, and FMR2 FMs in the 397 

BWA-aligned data. Also, reducing the repeat length thresholds from FM to PM/IM size ranges 398 

enabled the detection of FMR1 and/or FMR2 FMs with EH_v2, EH_v3, and TREDPARSE. 399 

Using this reduced cut-off also might detect some IM and PM carriers who, although not 400 

affected, may be at risk of having affected children if their IM/PM allele is highly unstable 401 
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and/or susceptible to late-onset conditions37. Early detection and genetic counselling of these at-402 

risk individuals might, therefore, help IM/PM allele carriers make informed reproductive 403 

decisions and avoid affected pregnancies37. 404 

The ML decision tree analysis on the STR results generated using the afore-mentioned 405 

parameter modifications detected all FMs with EH_v2 and/or EH_v3 with support from one 406 

other tool (STRetch, TREDPARSE, exSTRa, or GangSTR for Isaac, and STRetch or exSTRa for 407 

BWA). EH contributed significantly to the better overall performance of the classifier on both 408 

Isaac and BWA alignments. Applying these decision rules to our clinical cohort, we identified 27 409 

individuals with an expansion in a known disease STR locus. Of these, 17 individuals had an FM 410 

expansion of the AR, ATXN1, ATXN2, ATXN8, DMPK, FXN, HTT, or TBP locus, nine 411 

individuals had an FMR1 allele in the IM or PM size range, and one individual had a borderline 412 

ATXN2 allele. 413 

Using our approach, we were able to confirm the presence of a clinically-validated 414 

DMPK FM in the ES data of a proband and his mother with DM1 and also confirm the inherited 415 

HTT and AR FM in two families using clinical PCR and capillary electrophoresis. We classified 416 

a TBP FM detected by EH_v2 and EH_v3, but unverified by PCR, as a false-positive. 417 

Importantly, none of the 68 individuals who previously had a negative clinical FMR1, FXN, 418 

SCA, or HTT test result were falsely-identified as “expanded” by our computational workflow. 419 

For the analysis of the DMPK locus with EH (the default catalog file of which does not 420 

include OTS), we recommend including OTS as this could result in a significant improvement in 421 

the repeat length estimation, particularly in the GS data, and yield clinically-relevant 422 

information. Although the threshold for defining pathogenic DMPK FMs that cause DM1 is only 423 

50 repeats, the different clinical forms of DM1 (mild, classic, and congenital), associated with 424 
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varying severity and age of onset of symptoms, are caused by DMPK FMs in the range of 50-425 

~150, ~100-~1000, and >1000 repeat units, respectively38. We show that with OTS, EH performs 426 

better at sizing DMPK FMs that ranged from ~130 to over 2000 repeats in the EGA GS data and 427 

yields estimates that correlate better with the FM repeat lengths in these individuals 428 

(Supplementary Figure 6). 429 

Although the methods presented in this study perform well in detecting and sizing FMs, 430 

for some disease STR loci, the difference between a non-FM and an FM, or between a reduced-431 

penetrance and full-penetrance FM is only a few repeat units, making it difficult to discriminate 432 

these borderline alleles of clinical significance. This limitation is also inherent to PCR-based 433 

tests as DNA polymerase slippage during STR amplification may result in under- or over-434 

estimation of an STR’s size by one or two repeat units39. 435 

In summary, implementation of a clinical bioinformatics workflow, such as the approach 436 

outlined in this study, to screen for STR expansions in ES and GS data can help identify disease-437 

associated variants that would otherwise have gone undetected, promote cascade testing, and 438 

improve diagnostics and treatment/management of repeat expansion disorders.  439 
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TABLE 1. Features of some publicly available STR analysis algorithms. 
 

 
*Corrects the noise (stutters) introduced during PCR amplification-based library preparation 
Library prep: library preparation protocol; rcmd: recommended; PL: programming language used  
Y: Feature included; N: Feature not included 
n.a.: not applicable; GW: genome-wide; GS: genome sequencing; ES: exome sequencing; IRR: in-repeat reads; RL: read-length; FL: 
fragment-length; Not limited: not limited by either RL or FL; ECDF: Empirical Cumulative Distribution Function; t-sum: aggregated 
T statistic 
 

Features lobSTR RepeatSeq HipSTR TREDPARSE ExpansionHunter STRetch exSTRa GangSTR

Outputs repeat 
length?

Y Y Y Y Y Y Y

Sequencing reads Single & Paired-end Single & Paired-end Single & Paired-end Paired-end Paired-end Paired-end Paired-end Paired-end

Sequencing 
platforms supported

Illumina, Sanger, 454, 
and IonTorrent

Illumina Illumina Illumina Illumina Illumina Illumina Illumina

Library prep. 
supported

PCR & PCR-free n.a. PCR & PCR-free PCR & PCR-free PCR & PCR-free PCR & PCR-free PCR & PCR-free PCR & PCR-free

Library prep. (rcmd) None None None None PCR-free PCR-free None None

Aligners (rcmd) lobSTR, BWA-MEM Novoalign, Bowtie 2 Indel-sensitive aligner None None None Bowtie2 None

Analysis approach Targeted & GW Targeted & GW Targeted & GW Targeted Targeted GW Targeted & GW Targeted & GW

NGS data type 
supported

GS GS GS GS GS GS & ES GS & ES GS & ES

NGS data format .bam or .fastq/.fasta .bam .bam .bam .bam or .cram .bam or .fastq .bam .bam

Built-In stutter 
correction model*

Y Y Y

Test of significance Y Y

Read types used Spanning Spanning Spanning
Spanning, flanking or 

partial, paired-end 
reads, IRR

Spanning, flanking, 
IRR/IRR pairs

Anchored IRR
Flanking, anchored 

IRR
Spanning, flanking, 

IRR/IRR pairs

Phasing Y

PL C++ C++ C++ Python C++ Java Perl & R C++

Sizing limitation RL RL RL FL Not limited FL n.a. Not limited

Control dataset Not required Not required Not required Not required Not required Required Not required Not required

Complex repeats n.a. n.a. n.a. n.a. Y n.a. n.a. N

Output files .vcf, .allelotype.stats .repeatseq, .calls, .vcf .vcf .vcf, .json .vcf, .json, .log .tsv
p values, ECDF, tsum 

plots
.vcf

Customized regions 
file

Possible Possible Possible Possible Possible
Possible, but not 
recommended.

Possible Possible
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TABLE 2. Full-mutation (FM) samples detected in the Isaac- and BWA-aligned European Genome-phenome Archive (EGA) and 
simulated genomes by the STR tools (ExpansionHunter versions 2 and 3 (EH_v2 and EH_v3), GangSTR, TREDPARSE, STRetch, 
and exSTRa) implemented using default parameters. The analysed EGA and simulated dataset had 86 samples with at least one known 
FM allele. The number of true-positives detected by the tools, sensitivity, and the number of false-positives identified in our default 
analysis of the Isaac- and BWA-aligned genomes are shown. 
 

 
 
  

Detected FM 
Samples

True FM 
Samples Sensitivity False-Positives

Detected FM 
Samples

True FM 
Samples Sensitivity False-Positives

EH_v2 65 86 0.755813953 6 64 86 0.744186047 6
EH_v3 64 86 0.744186047 5 64 86 0.744186047 5

GangSTR 47 86 0.546511628 8 33 86 0.38372093 8
TREDPARSE 62 86 0.720930233 3 62 86 0.720930233 10

STRetch 65 86 0.755813953 26 65 86 0.755813953 26
exSTRa 48 86 0.558139535 33 76 86 0.88372093 35

Isaac BWA
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TABLE 3. Classification of the FMR1 and FMR2 ExpansionHunter versions 2 and 3 (EH_v2 and EH_v3), GangSTR, and 
TREDPARSE genotype calls using lowered thresholds to detect FMs in the Isaac- and BWA-aligned EGA and simulated genomes of 
samples with known FMR1 and FMR2 FM expansions. The number of FMs misclassified as normal (NL) or intermediate (IM) alleles 
are shown. The true number (n) of known FM alleles in the FMR1 and FMR2 genes is indicated in parenthesis. False-positive (FP) 
calls made by the tools are also reported. 
 

 
 
  

FM Threshold
Allelic classification FM IM NL FP FM NL FP FM IM NL FP FM NL FP

EH_v2 18 . . 20 3 . 2 18 . . 16 3 . 0
EH_v3 18 . . 22 3 . 0 18 . . 22 3 . 0

GangSTR 4 . 14 7 0 3 0 3 . 15 0 0 3 0
TREDPARSE 15 1 2 8 0 3 0 16 . 2 13 0 3 0

Isaac BWA
FMR1 (n=18)

54 repeats
FMR2  (n=3)

60 repeats
FMR1 (n=18)

54 repeats
FMR2  (n=3)

60 repeats
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TABLE 4. STR candidates identified in our patient cohort. Probands with an identified STR candidate are 
given a “-P” suffix in the “Sample ID” column, siblings, “-S”, mother, “-M”, and father, “-F”. The genes 
harboring the STR candidate identified by our bioinformatics workflow and the inheritance pattern deciphered 
by comparing the proband’s STR call with that of the parents are reported. “Sequencing” column shows the 
technology used: genome sequencing (GS) or exome sequencing (ES). The “Pathogenic SNV/indel/SV Finding” 
column indicates whether the proband has had a definite, probable, certain, or no diagnosis of a single 
nucleotide variant (SNV), indel, or structural variant (SV). Phenotypic presentations reported in the probands, 
STR Finding from our bioinformatics analysis, and the results from the molecular validation (if available) are 
also presented. 
 

 
RP: reduced penetrance; FP: full penetrance 
*Father was not tested 
^RP alleles have 33-34 repeats and FP alleles have >= 37 repeats 

Sample ID Gene Inheritance Sequencing
Pathogenic 
SNV/indel/SV Finding

Phenotype detail STR Finding
Molecular 
Validation

1901-P AR Inherited GS No
Short stature, delayed gross motor, speech and language development, spasiticity, cerebral 
palsy, and hypertonia

FM (RP)

1901-F AR . GS . . FM (RP)

890-P ATXN1 De novo ES No
Optic atrophy, findings suggestive of congenital stationary night blindness, growth restriction, 
no dysmorphic features, and diffuse mild hypomyelination

FM (FP) Pending

532-M ATXN1 . GS . . FM (FP) Pending
2560-M ATXN1 . ES . . FM (FP) Pending
1411-F ATXN1 . ES . . FM (FP) Pending

821-P ATXN2 Inherited ES No
Mild intellectual disabilities, systemic hypertension, cutis aplasia, congenital heart defect, limb 
anomalies, significant family history of her father with alopecia, learning problems, early onset 
hypertension, and differential diagnosis of autosomal dominant Adams-Oliver syndrome

FM (FP) Pending

821-M ATXN2 . ES . . borderline^ Pending

1099-P ATXN8 * ES No
Hearing loss, cataract, myopia, visceral (kidney and spleen) cysts, proteinuria, and dysmorphic 
facial features

FM (RP) Pending

235-P ATXN8 Inherited GS No
Mild to moderate intellectual disability, history of psychosis, family history: a sister who also 
has intellectual disability and history of psychosis, and a brother with mild developmental 
delays

FM (RP) Pending

235-M ATXN8 . GS . . FM (RP) Pending

2010-P DMPK Inherited ES Definite
Myotonic dystrophy type 1, inguinal hernias, joint hypermobility, strabismus, mild intellectual 
disability, and dysmorphic facial features

FM (FP) FM (FP)

2010-M DMPK . ES . . FM (FP) FM (FP)
699-M FMR1 . GS . . PM Pending

148-M FMR1 . GS . . PM
Pending (Proband 
is negative for 
FMR1  FM)

800-F FMR1 . GS . . IM or PM Pending

800-P FMR1 Inherited GS Definite
Macrocephaly, seizures, optic nerve hypoplasia, hyporeflexia, profound intellectual disability, 
cortical visual impairment, and spastic tetraplegia

IM or PM Pending

480-P FMR1 Inherited GS Probable
Moderate intellectual disability, language delay, autism, borderline macrocephaly, low set ears, 
down slanting palpebral fissures, high palate, and soft skin

IM or PM Pending

712-M FMR1 . GS . . IM or PM
Pending (Proband 
is negative for 
FMR1  FM)

925-P FMR1 Inherited GS No
Intellectual disability, developmental delay including speech delay, dysmorphic features, and 
behavioural challenges

NL or PM Negative for FM

925-S FMR1 Inherited GS No Intellectual disability, autism, developmental delay, and dysmorphic features IM Pending
925-M FMR1 . GS . . PM Pending
1987-F FXN . GS . . NL/FM Pending

1530-P HTT Inherited GS Uncertain
Global developmental delay, seizures, gliosis, developmental regression, encephalomalacia, 
hirsutism, nystagmus, optic atrophy, cyanosis, abnormal muscle tone, scoliosis, hearing 
impairment, and otitis media

FM (RP) FM (RP)

1530-F HTT . GS . . FM (RP) FM (RP)
1992-M TBP . GS . . FM (FP) Negative for FM
2990-M TBP . ES . . FM (FP) Pending

FM (RP/FP)
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Figure 1. Decision tree classification of the STR calls of the Isaac-aligned EGA and simulated genome sequence (GS) data by 
ExpansionHunter versions 2 and 3 (EH_v2 and EH_v3), GangSTR, TREDPARSE, STRetch, and exSTRa using modified parameters. 
Panel (A) shows the decision tree generated by the classifier on the training dataset. Node #0 at the top of the tree is the root node. 
Each node lists an STR tool (feature). The “samples” number represents the total number of data points present within a particular 
node, and “value” shows the number of expanded (or full-mutation or FM) and non-expanded (non-FM) data points. The shade of the 
colour of each node reflects the proportion of expanded to non-expanded data points, with deeper blue and orange meaning more non-
expanded and expanded data points, respectively. Gini index shows the impurity at each node. The terminal nodes shown in the last 
rows are the leaves. Leaves with a Gini of 0 have data points belonging to either the expanded or the non-expanded class. Panel B 
shows the ROC and precision-recall plots generated by the classifier on the test dataset. Panel C shows the ranking of the STR tools 
that contributed to the decision tree model.
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Figure 2. Decision tree classification of the STR calls of the BWA-aligned EGA and simulated GS data by ExpansionHunter versions 2 
and 3 (EH_v2 and EH_v3), GangSTR, TREDPARSE, STRetch, and exSTRa using modified parameters. The decision tree generated by 
the classifier on the training dataset (A), ROC and precision-recall plots generated by the classifier on the test dataset (B) and ranking of 
the STR tools that contributed to the decision tree model (C) are shown.
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