
Unlocking Elementary Conversion Modes: ecmtool unveils all capabilities

of metabolic networks

Tom J. Clement1,�, Erik B. Baalhuis2, Bas Teusink1, Frank J. Bruggeman1, Robert Planqué1,2, Daan
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Abstract

The metabolic capabilities of cells determine their biotechnological potential, fitness in ecosystems,

pathogenic threat levels, and function in multicellular organisms. Their comprehensive experimen-

tal characterisation is generally not feasible, particularly for unculturable organisms. In principle,

the full range of metabolic capabilities can be computed from an organism’s annotated genome using

metabolic network reconstruction. However, current computational methods cannot deal with genome-

scale metabolic networks. Part of the problem is that these methods aim to enumerate all metabolic

pathways, while computation of all (elementally balanced) conversions between nutrients and products

would suffice. Indeed, the elementary conversion modes (ECMs, defined by Urbanczik and Wagner) cap-

ture the full metabolic capabilities of a network, but the use of ECMs has not been accessible, until now.

We extend and explain the theory of ECMs, implement their enumeration in ecmtool, and illustrate

their applicability. This work contributes to the elucidation of the full metabolic footprint of any cell.

Keywords: Elementary Conversion Modes, Metabolic characterization, Elementary mode analysis,

Genome-scale analysis, Stoichiometric network analysis, Unculturable organisms, Macrochemical equa-

tions
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Introduction

Metabolism underlies most cellular behaviours. Which chemical compounds a microbe can exploit for

growth, which products it can make and at which yields, is essential information for understanding the

microbe’s roles in ecosystems, its responses to varying conditions, and its potentials for biotechnology

and bioremediation. In the case of pathogens, metabolic capabilities are informative about the niches

in which they can thrive. The functioning of multicellular organisms relies on how the capabilities of

different cell types complement each other. A computational method that can enumerate all metabolic

capabilities of any cell, from its annotated genome sequence, is therefore of key importance.

In the pre-genomic era, a cell’s metabolic capabilities were investigated using experimental physio-

logical information and elemental balancing of nutrients and products. Cellular metabolism was seen as

a black box: without having knowledge of the metabolic details, so-called macrochemical equations were

calculated which specify the stoichiometry of the conversion of nutrients into biomass (cells) and byprod-

ucts [1, 2, 3, 4, 5, 6]. Precise measurements of heat exchange, nutrient uptake and product formation

could be used to develop thermodynamic theories of cellular growth [7], which led to the improvement

of biotechnological processes [5, 8]. These methods could not always be applied: they were not exhaus-

tive, and required experimental data and basal knowledge of metabolic pathways. This information is

often lacking, in particular for unculturable and extremophile microorganisms, or for cells that only

survive in multi-species communities or as part of a multicellular organism. In addition, when several

substrates can be consumed or multiple byproducts can be produced, a unique macrochemical equation

can not be derived, and the methods need to be augmented with experimental data [3]. Nowadays, in

the post-genomic era, in which the genome of any organism can be sequenced, the potential exists for

comprehensive and unsupervised enumeration of all macrochemical equations of any cell. Yet, despite

its great benefits, no such method is currently used, partially because most efforts focus on computation

of a highly redundant capability set.

All metabolic reactions that a cell can catalyse can be determined from the metabolic-gene annota-

tions of its genome. This allows for the reconstruction of the metabolic network, which can nowadays

almost be done purely computationally [9] (see [10] for a recent review). The resulting genome-scale

metabolic networks, or genome-scale stoichiometric models, have been determined for thousands of

species. Since such a model specifies all metabolic reactions, it determines all possible pathways from

substrates to products, which are conveniently described by the set of all elementary flux modes (EFMs)

[11, 12, 13, 14, 15, 16]. The enumeration of all EFMs of large metabolic networks is not possible, due to

a severe combinatorial explosion in their number [17], so that most research has focused on calculating

only subsets of EFMs [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. However, since many EFMs
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share the same overall substrates-to-products conversion and, therefore, indicate the same metabolic

capability, their enumeration is not always required. Instead, for many applications it suffices to focus

on all possible overall conversions that a cell can catalyse.

The complete metabolic capabilities of a cell can thus be studied by focussing on all conversions

from substrates to products. An exhaustive list of these is obtained by enumeration of the Elementary

Conversion Modes (ECMs), defined in 2005 by Urbanczik and Wagner [31]. ECMs are not defined in

terms of the metabolic routes through the network; rather, they are defined in terms of the end results

only: the feasible stoichiometries between substrates and products – the net conversion (see Box 1 for

explanation). Thus, ECMs focus on the connection of an organism with its environment rather than on

the metabolic pathways with which it achieves this.

ECMs can be seen as analogous objects to EFMs: the ECMs form a minimal set that generates all

steady-state substrate-to-product conversions, i.e., all macrochemical equations, while the EFMs form

the minimal set that generates all steady-state flux distributions. However, the set of ECMs is much

smaller than the set of EFMs. First, because many different EFMs map to the same overall conversion.

Second, because ECMs are objects in the lower-dimensional space of external metabolite changes, rather

than in the space of reaction rates. For these reasons, the combinatorial explosion that prohibited the

enumeration of all EFMs on a genome-scale network might disappear when enumerating ECMs.

Although ECMs were already defined in 2005 [31], and despite their potential for broad applicability,

we could find only one study in which they were used [32]. This might be because the concept was never

made accessible for a broad audience, even though it was rigorously defined mathematically. Mostly, it

might be due to the absence of a readily usable computational tool that computes ECMs for general

metabolic networks.

In this work, we unlock the potential of ECMs by making the theory accessible and enumeration

possible for any systems biologist. We reformulate and extend the ECM theory of Urbanczik and Wagner,

provide additional explanations in Boxes 1-3, and supply extensive Supporting Information where all

enumeration steps are explained and mathematically supported. Most importantly, we present a Python-

based enumeration program: ecmtool. Our software accepts metabolic models in the SBML-format

as input [33], and gives an exhaustive and exact list of ECMs as output. Ecmtool provides both an

indirect and a direct method. The indirect method is based on the algorithm proposed in [31] and is

fast for small to medium-scale networks; the direct method uses a novel algorithm that lends itself to

massive parallelisation and is therefore scalable to much larger networks. We validate the correctness

of the computed ECMs on the medium-scale e coli core-network [34], and test the scope of ecmtool

by enumerating the ECMs of networks of various sizes and complexity. In addition, we provide a hide-

method that allows focusing on the conversions between a user-defined subset of the external metabolites.
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This method enables the enumeration of ECMs on genome-scale models. Finally, in a collaborative,

parallel study on rhizobial bacteroids, we showed that ECMs can now truly be applied to gain biological

insight [35].

This work contributes to closing the gap between any cell’s genotype and phenotype. It offers a com-

putational toolkit for the exhaustive determination of metabolic capabilities, and should be particularly

valuable when experimental characterisation is impossible because cells cannot be cultured in isolation.

Box 1: Definition of ECMs

ECMs are the minimal building blocks of all net conversions by metabolic networks, and were

defined by Urbanczik and Wagner [31]. To explain their definition, we start with the stoi-

chiometry matrix N of a metabolic network. Each column of N captures for one reaction

which metabolites are consumed, which are produced, and in what ratios. To facilitate the

exposition, we here assume that all reversible reactions are split into a forward and backward

reaction, so that all reactions in N are irreversible. Some metabolites are internal to the cell

and some metabolites are external; metabolites that occur both inside and outside the cell

are considered as two metabolites: one internal and one external. We denote the index set

of internal metabolites by Int . The product of the stoichiometric matrix with the vector of

reaction rates v, gives the rates of change of all metabolite concentrations, i.e., the conver-

sion: ċ = Nv. Metabolism is assumed to be in steady state, so that all internal metabolite

concentrations are constant: ċi = 0 for all i ∈ Int . The space of all steady-state conversions,

and thus of all metabolic capabilities, is given by

C = {ċ = Nv | ċi = 0 if i ∈ Int , vj ≥ 0 for all j} . (1)

This space is called the conversion cone, and should not be confused with the flux cone which

comprises all steady-state fluxes. In fact, the conversion cone is the result of multiplying all

points in the flux cone with the stoichiometric matrix, see SI Section 2 for more explanation.

Definition 1. The set of Elementary Conversion Modes (ECMs) is the minimal set of con-

versions {ecm1, . . . , ecmK} such that each steady-state conversion can be written as a positive

sum of ECMs, without the production of any external metabolite being cancelled in that sum.

Some readers might note that this definition of ECMs is similar to the definition of EFMs.

This is because both can be defined as elementary vectors [36, 37]: ECMs are the elementary
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vectors of the conversion cone, while EFMs are the elementary vectors of the flux cone. The

values in an ECM indicate the changes of metabolite concentrations, while the values in an

EFM indicate reaction rates.

We will explain the two parts of Definition 1 using the toy network example of Figure 1,

in which the external metabolites A,B,BM are interconverted via internal metabolites C, D,

and E.

All steady-state conversions together form the conversion cone, which is a “convex polyhedral

cone’’ (shaded area in 1b)). As a consequence, the steady-state conversions can be fully

described by the extreme rays of this cone (blue and green in the figure). Indeed, any steady-

state conversion can be written as a positive sum of the extreme rays. By the first part of

Definition 1, this means that these extreme rays are Elementary Conversion Modes. The

example therefore has at least two ECMs: A B (blue) and 2 B BM (green).

It is important to note that any positive sum of steady-state conversions is again a steady-

state conversion. This makes sense in biological terms: a conversion lies in the cone if there

exists a set of reactions that gives rise to the conversion, and satisfies the irreversibility and

steady-state constraints from Equation (1). So, if we have several sets of reactions that corre-

spond to conversions, their sum will correspond to the summed conversion. However, a sum in

which some extreme conversions are added negatively does not necessarily result in a feasible

conversion, because the resulting conversion might not be feasible without using an irreversible

reaction in the negative direction.

Figure 1: a) The Elementary Conversion Modes for a small network are shown in blue, green
and red. Notice that the red ECM can be written as a positive combination of the blue and
green ECM, but that this cancels the production of B. b) The cone of steady-state conversions
is shown in gray, and is spanned by the blue and green ECM. The red ECM lies in the interior
of the cone on the intersection with the Ḃ = 0 -plane.
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Now consider the conversion 2 A BM (red). This conversion can be written as a positive

sum of the two previously found ECMs: 2( A B) + (2 B BM) (2 A BM). However, in

summing these ECMs, the metabolite B is cancelled, since it is produced and consumed. Since,

the ECMs are intended to capture a complete set of minimal building blocks of biologically

realistic conversions, taking only the extreme rays does not suffice: we also want to describe

the possibility of producing BM from A without simultaneously excreting and consuming B.

The second part of the ECM-definition therefore ensures that these conversions are added to

the set of ECMs as well: the ECMs should generate all conversions without cancellation of the

production of any metabolite. If we would take a combination of the blue and green extreme

conversions, this would always (partly) cancel the production of B, since B is produced in the

blue conversion and consumed in the green conversion. Therefore, the red conversion is also

an ECM: since this conversion does not produce or consume B, a positive combination with

the other ECMs does not induce a cancellation. In total, we thus have three conversions, as

listed in Figure 1a).

In mathematical terms, one could obtain the full set of ECMs by calculating the extreme

conversions per orthant, and then taking the union of all these extreme conversions. The re-

quirement that no metabolite production is cancelled, implies that all steady-state conversions

can be written as a positive sum of ECMs in which each metabolite is either produced by all

ECMs in the sum, or consumed by all ECMs in the sum. In this manner, cancellations no

longer occur (see [37]).

Results

Cells have orders of magnitude fewer metabolic capabilities (ECMs) than flux

routes (EFMs)

The number of ECMs increases much slower with metabolic-network size than the number of Elementary

Flux Modes (Figure 2). For example, the number of elementary modes in the e coli core model [34]

reduces from 100,274 EFMs to 689 ECMs. The number difference is likely even greater for larger genome-

scale metabolic networks. This makes ECM visualization possible, which facilitates their exploration and

analysis (Figure 3). This illustrates that it is more direct and efficient to enumerate ECMs, which are

the metabolic capabilities of a cell, instead of EFMs, which are flux routes that often have an identical
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metabolic capability, i.e. net conversion of cellular nutrients into products (Figure 2A).

Figure 2: The number of ECMs remains orders of magnitude lower than the number of
EFMs. a) Because many different EFMs refer to the same overall metabolic capability, the number of
ECMs is much lower than the number of EFMs. b) EFM-vs-ECM numbers in the e coli core-network.
c) Subnetworks of the e coli core-network were selected (see SI 10.1) to illustrate how the number of
ECMs and EFMs scales with network size.

A major advantage of ECMs is that they can be computed for metabolic networks for which EFM-

enumeration is not possible. For example, we found 874,236 possible ECMs for the pathogen Helicobacter

pylori in a minimal medium (iIT 341 [38] 485 metabolites and 554 reactions), while EFM enumeration

ran into memory errors, most likely due to the enormous number of EFMs in this model (the full set of

ECMs is available as a supplementary file). We note that a set of hundreds of thousands of ECMs might

appear hard to analyze, but the user can easily filter out a relevant subset once such a set is obtained

(see Supplemental Figure 1 for an example).

Summarizing, the enumeration of ECMs by ecmtool allows for the determination of all the metabolic

capabilities of metabolic networks for which EFM enumeration is no longer feasible. We did find that

the number of ECMs in the genome-scale E. coli network iJR904 [39] (761 metabolites, 1075 reactions)

is still too large to be computed by ecmtool. However, even for models of this size ecmtool still provides

useful information. In Box 2 and Figures 5 and 6, we show how focussing on essential information allows

networks of this size to be analysed.

Validation of ecmtool for ECM enumeration

We validated the results of ecmtool in several ways. First, we have computed the ECMs on many small

models for which we could still check the correctness and completeness of the results by hand. Second,

we used the e coli core-model, for which we could still use the set of EFMs enumerated by efmtool,

to validate our results. The Matlab-code that we used for this validation is provided as a supplementary

file.

The correct set of ECMs should satisfy three properties: 1) each ECM must be a steady-state
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Figure 3: The full metabolic potential of the e coli core-model. a) The ECMs of the full
model are shown as the different columns; each row corresponds to a different external metabolite.
The colourscale indicates the stoichiometric coefficient of the metabolite in the conversion: blue for
production, and red for consumption. The coefficients were log-transformed to allow for visualization
of differences in both large and small coefficients (details and R-code can be found in SI 10.2); small
values are shown in gray, while zero values are white. Of the 689 elementary conversions, 613 lead to the
production of biomass. These ECMs were normalised to fix the biomass production at 1, while the other
ECMs were normalised such that the sum of absolute coefficients is 1. b) If we use the hide-method,
explained in Box 2, to hide the production of metabolites, we get 15 ECMs that span all possible ratios
in which substrates can be converted into biomass. This smaller set of ECMs is easier to compute and
easier to explore, while the steady-state assumption is still satisfied in the whole network. So, even
though the secretion of products is not reported, it has been implicitly taken into account, so that all
relations between substrates shown in a) are captured in b). c) If we use the tag-method, also explained
in Box 2, to report the activity of the pyruvate-dehydrogenase (PDH) reaction, we find 36 ECMs that
summarize all possibilities. It can be seen that the PDH-reaction is not essential for growth, but that it
seems to be necessary for efficient growth on glucose since the uptake of glucose is generally lower when
PDH is active.
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conversion, 2) each ECM must be an elementary vector, and 3) each steady-state conversion must be a

positive combination of ECMs without metabolites being cancelled in the sum.

We confirmed that all computed ECMs are steady-state conversions by checking that the net produc-

tion of internal metabolites equals zero, and that there exists a combination of metabolic reactions that

gives rise to the ECM. Then, according to the definition of ECMs given in Box 1, we proved that each

ECM is elementary by showing that it cannot be written as a positive sum of the other ECMs without

the production of any external metabolite being cancelled.

The third property was harder to validate, because how can we prove for all steady-state conversions

that they can be written as a combination of ECMs? We chose to use the set of Elementary Flux Modes

calculated by efmtool. This set spans all possible steady-state flux combinations the metabolic network

allows. For each EFM, we then calculated its overall conversion, and tried to write this conversion as

a combination of ECMs. If we allowed for an error of 10−7, then each conversion could be decomposed

into ECMs. This error margin was necessary because the results from efmtool are affected by round-off

errors. The computed ECMs do not suffer from round-off errors because the computation by ecmtool

uses fractions only. Although this slows down many of the calculations, this is necessary to maintain

the accuracy of the computed ECMs. For example, for the Double Description method it is known that

round-off errors can grow to a non-negligible size [40].

Above, we explained and validated that ecmtool finds all Elementary Conversion Modes, given an

annotated genome. The annotation is necessary for the reconstruction of the metabolic network. Strictly

speaking, this minimally requires the annotation of the metabolic genes. Since the annotation of a genome

is not always complete, we cannot guarantee that all metabolic capabilities encoded on the genome are

found. We can guarantee that all conversions are found of the genome-derived metabolic network.

Box 2: Hiding and tagging enables focusing on the most important metabolic conversions

In ecmtool, the user can choose to compute only the stoichiometric relations between a subset

of the external metabolites by ‘hiding’ the other external metabolites. The resulting set

of ECMs still gives a full summary of these relations, and complies with the steady-state

assumption on the full metabolic network. The consumption and production of the hidden

metabolites still occurs, but is not reported. As a result, the reported ECMs are not necessarily

mass-balanced, which is emphasised by the question marks in Figure 4a). An ECM computed

with the hide-method thus gives a ratio in which the non-hidden metabolites can appear in a

conversion, but it does not give any information about which hidden metabolites are consumed

or produced in such a conversion. In return, the hide-method facilitates ECM-enumeration
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on much larger networks, because fewer ECMs are needed to describe all conversion relations

between the smaller set of non-hidden metabolites. Therefore, ECM-enumeration with hidden

metabolites can take an organism’s full metabolic complexity and summarize its metabolic

capabilities regarding a few variables that are of interest.

Figure 4: a) Information about the production of F can be ignored if F is marked as internal
and a virtual reaction (cyan) is added that converts metabolite F into nothing. This strategy
aids in fast computation, because the resulting set of ECMs is generally smaller (see also the
worked-out example in the Methods-section). b) Information about the usage of a reaction
can be uncovered by coupling the production of a virtual metabolite (T1, shown in green).
The coefficient of T1 in the resulting ECMs denotes the rate of the reaction of interest.

In Figure 4a) we show how metabolite F can be hidden in the ECM-computation by adding

a reaction that converts it into nothing (sometimes called a demand reaction). In general, a

metabolite is hidden by adding a reaction that creates it from ‘nothing’, turns it into ‘nothing’,

or both, depending on whether the metabolite can only be consumed, only produced, or both,

respectively. Then, the metabolite is marked as an internal metabolite, so that the steady-state

assumption is imposed. The added reaction can always make sure that the net consumption

or production of the metabolite is zero. As a result, the hidden metabolite will vanish from

the computations in an early stage of the enumeration, thereby reducing computation time.

We illustrate this in the worked-out enumeration example in Box 3.

In the example of Figure 4a), we obtain the conversions between non-hidden metabolites A,

B and BM, ignoring the information about whether F is produced during these conversions

or not. If metabolites are hidden, the computed conversions should be interpreted with care,

acknowledging that the reported conversions are possibly not elementally balanced (since the

hidden metabolites are excluded from this report). In the example, we emphasize that we do

not know whether F was produced in the conversion by adding question marks on the right
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side of the conversion notation. If metabolites that can be consumed by the cell are also

hidden, then question marks should be placed on the left side as well.

Besides hiding metabolites of minor importance, we can keep track of reaction rates of

major importance. The tag-method, suggested in [31], adds a virtual external metabolite

that is produced whenever the reaction of interest is used. As a result, one unit of virtual

metabolite is produced when the tagged reaction runs at a rate of one. Since an ECM reports

the stoichiometric coefficients of all metabolites in the conversion, the coefficient of the virtual

metabolite in the ECM reflects the rate at which the tagged reaction must run to produce the

conversion. This method will show to which conversions the reaction of interest contributes,

possibly providing valuable information about the essentiality of that reaction. In Figure 4b),

we show an example of such reaction tagging. One of two reactions from C to D is extended

to produce virtual metabolite T1, resulting in the reaction C D + T1. Any conversion

that uses the reaction of interest produces T1, and its coefficient in the conversion is equal to

the reaction rate.

In Figure 3 we illustrate the hide- and tag-methods in the e coli core model to re-

spectively highlight the different possible combinations of growth substrates, and the

necessity of the pyruvate-dehydrogenase reaction in these conversions.

Focusing on subsets of metabolites enables genome-scale calculation of metabolic

capabilities

Focusing on the stoichiometric relations between metabolites of major importance by hiding external

metabolites of minor importance is a powerful way to scale up the size of metabolic networks that can

be dealt with in ecmtool. The ECMs that are obtained now span all possible relations between the

non-hidden metabolites, but no longer give information about what happens to the hidden metabolites

(see Box 2 for a more elaborate explanation). Importantly, the steady-state assumption remains satisfied

and all hidden metabolites can be produced or consumed, even though this production or consumption

is not reported.

To illustrate how the hide-method can help focusing on the most important metabolic capabilities of a

network, we focused on the minimal growth strategies that the pathogen Helicobacter pylori can employ.
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Figure 5: Focusing on substrate uptake shows the minimal needs of Helicobacter pylori.
We computed the ECMs, shown as different columns, for the iIT341-model by allowing for the uptake
of all metabolites of a supposedly minimal medium proposed by the developers of the model (MinII
from [38]). All output metabolites were hidden, using the hide-method outlined in Box 2. The uptake
of nine substrates is not shown here because these were equal for all ECMs, indicating that these are
directly coupled to biomass formation. The colourscale indicates the log-transformed coefficients of the
metabolites in the conversion, where metabolite production is shown in blue and consumption in red
(details and R-code can be found in the SI, Section 10.2). The ECMs are normalised such that biomass
production, if nonzero, is 1, otherwise the sum of the absolute coefficients is fixed to 1. The ECMs were
clustered using hierarchical clustering. The block-like ordering of the ECMs indicates that substrate
usage of H. pylori is largely modular: the uptake of one substrate seems independent of the uptake of
another.

12

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 17, 2020. ; https://doi.org/10.1101/2020.06.06.137554doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.06.137554
http://creativecommons.org/licenses/by/4.0/


We took the iIT341-model for which we already calculated the full set of ECMs (see Supplemental Figure

1), and hid all information about product secretion (Figure 5). The 3652 ECMs that were obtained thus

span all possible proportions in which the different nutrients can be consumed. The results show that the

only mutual dependency between the uptake of different nutrients is between D-alanine and L-alanine,

one of which should always be consumed. This independence indicates a modular design of the nutrient

uptake system of H. pylori, which might benefit its flexibility when living in the human stomach.

If we focus only on the conversion of glucose and oxygen into biomass, we could even compute the

ECMs for a genome-scale model of E. coli : iJR904 [39], containing 761 metabolites, 1075 reactions

(Figure 6). According to their definition, the resulting ECMs form a minimal spanning set of all feasible

conversions from glucose and oxygen to biomass. This implies that the set of ECMs contains the most

‘extreme’ conversions. Therefore, we can use them to draw the full Pareto front between the biomass

yield on glucose and on oxygen, extending a method used by Carlson and Srienc to genome-scale models

[41]. It turns out that this Pareto front is completely determined by 12 ECMs. For each of these ECMs,

we can find a combination of reaction rates that gives rise to this conversion. In doing so, we obtain

twelve states of metabolism that fully determine E. coli ’s flexibility to optimise its growth rate in glucose-

and oxygen-limited conditions. A Flux Balance Analysis where glucose and oxygen uptake is constrained

and biomass production is maximized, will always result in a combination of these metabolic states.

Case study: a metabolic capability study of an unculturable rhizobia strain

with ecmtool

Rhizobia are soil bacteria that can induce formation of nodule structures on plant roots, in which they

differentiate into non-dividing bacteroids. Bacteroids fix atmospheric nitrogen into ammonia and make

this available to the plant in exchange for carbon in the form of dicarboxylates [42]. Although a metabolic

network was reconstructed, physiological information about rhizobial bacteroids is lacking, because they

are difficult to isolate and extremely fragile [43]. In addition, analyzing the metabolic network with an

optimization approach like Flux Balance Analysis [44] is unfavourable because it is unclear what the

optimization objective would be. After personal correspondence, ecmtool was used by Schulte et al. to

enumerate the metabolic capabilities of Rhizobium leguminosarum [35]. This aided in exposing the role

of oxygen supply in the observed amino acid secretion and carbon polymer synthesis by bacteroids, and

in quantitatively reproducing the carbon cost of biological nitrogen fixation.
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Figure 6: Few conversions from glucose and oxygen to biomass cover E. coli ’s full flexibility.
We calculated the ECMs for the genome-scale E. coli -model iJR904 [39] by hiding all external metabolites
except for glucose, oxygen and biomass. This gives 12 ECMs that span all possible biomass-yields on
glucose and oxygen. The dots show, for the 10 ECMs that produce biomass, the necessary glucose and
oxygen uptake to produce one unit biomass. The other 2 ECMs give the most extreme conversions from
glucose and oxygen to non-biomass products, consuming only glucose (red arrow), or consuming the
most oxygen per glucose (blue arrow). The convex combinations of biomass-producing ECMs combined
with positive multiples of the non-biomass-producing ECMs, give all feasible ways to produce one unit
biomass (yellow area).
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Discussion

Relevance of ECMs

Our method enumerates and quantifies, for any organism for which a metabolic reconstruction has been

made, all possible stoichiometric relations between substrates, products and biomass. This method

does not rely on any optimality assumption, nor does it require experimentally obtained physiological

information. It uncovers the full metabolic capability of an organism, and with that the metabolic

footprint that an organism may leave in its environment.

ECM enumeration stands in a long tradition of methods that pursue this goal [45]. Some of these

methods attempt to find an exhaustive list of reaction pathways that a cell is capable of, for example

calculating Extreme Currents [46], Elementary Flux Modes [11], or Elementary Pathways [47]. These

methods all have in common that scaling to genome-scale metabolic networks is impossible because of

the rapid growth of the number of pathways with network size [17]. Other methods try to view the

cell as a black box and focus on what is consumed and what is produced, leading to the concepts of

macrochemical equations [3, 5], direct overall reactions [2], and eventually to Elementary Conversion

Modes [31]. ECM enumeration is the only method that provides a complete set of metabolic capabilities,

takes reaction irreversibility into account, and scales to genome-scale networks.

Applications of ECM enumeration

The enumeration of ECMs facilitates the exploratory study of metabolic networks: investigation of

the ECMs could spark new hypotheses and show unexpected connections. It therefore complements

optimization approaches like Flux Balance Analysis [44] that are efficient at answering questions that

are known beforehand. Even in the case that optimization approaches are more efficient, elementary mode

analysis provides additional insight. For example, EFM-analysis was used to understand an adaptive

growth strategy of Lactobacillus plantarum that was observed experimentally and predicted by Flux

Balance Analysis (FBA) [48]. In this specific case, the analysis could be restricted to primary metabolism

which facilitated the EFM-computation, but this restriction is often biologically unreasonable. In the

future, ECMs could replace EFMs, such that this approach can be more generally applied. Carlson and

Srienc [41] used the set of Elementary Flux Modes in a relatively small E. coli model to investigate

optimized E. coli growth in carbon- and oxygen-limited conditions. Using this approach, they could

simplify their analysis by selecting four Elementary Flux Modes that together determined all optimal

growth strategies in different glucose- and oxygen-limited conditions. In Figure 6 we showed that with

ecmtool this approach can be generalized to genome-scale models.
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Most analyses of metabolic networks require a priori physiological information that is often not

available. For example, it is often required to impose constraints on exchange fluxes, to choose a reaction

rate that needs to be optimized, or at least to know which metabolites can be produced [3]. This hinders

the investigation of species that are insufficiently characterized and difficult to culture. Moreover, for

many organisms it is doubtful whether reaction rates are optimized at all, for example for pathogens or the

composing cells of higher eukaryotes. ECMs do not require extensive information, solely a reconstructed

metabolic network. The decisive role that ECM enumeration can play in the study of unculturable and

non-optimized organisms is exemplified by the recent application of ecmtool to investigate the symbiotic

relationship of unculturable bacteroids with plants [35].

An overview of all feasible overall reactions might furthermore be useful when studying interacting

species, such as crossfeeding species, host-pathogen interactions, or multi-species communities. The pos-

sible interactions are determined by what is consumed and produced by the individual species, which is

exactly the information offered by the ECMs. Indeed, knowing the capabilities of one and the incapa-

bilities of another might lay bare dependencies on which a stable community is built.

Methods to scale ECM computation even further

Although ECM-computation increases the size of models for which metabolic capabilities can be charted,

all ECMs of genome-scale networks with thousands of reactions can still not be computed. We hope that

this last scaling step can be made in the future. Even if this step cannot be made, the hide-method

described in Box 2 enables focusing on the most relevant set of external metabolites while the steady-state

constraints are still satisfied in the whole network. In Figures 3 and 5 we illustrate with an E. coli core

model and a genome-scale H. pylori -model that this method can be used to obtain a much smaller set of

conversions that spans all stoichiometric couplings between the user-defined external metabolites. This

has not been possible with any other method. Moreover, when we focussed only on the relations between

glucose, oxygen and biomass production, the hide-method allowed us to scale ECM computation to the

genome-scale E. coli model (Figure 6).

ECM enumeration ignores all information about the activities of reaction rates. If the hide-method

is used, even the consumption and production of the hidden metabolites is ignored. For example, if we

hide everything but glucose, oxygen and biomass, the ECMs show that the cell is capable of converting

glucose and oxygen into biomass in the reported ratios. However, we get no information about which

other metabolites can be consumed and produced during this conversion. Therefore, the ECMs obtained

while hiding metabolites are generally not elementally balanced, illustrated by the question marks in

Figure 4a). This might limit their use if one is for example interested in the thermodynamic properties
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of the conversion. However, for each ECM of interest, some flux distributions that lead to it can be

reconstructed. These flux distributions can then be used to determine the overall conversion. The

reconstruction could be done by imposing the conversion ratios from the ECM as equality constraints

on the model. Then, solving an FBA-problem would give one candidate flux distribution, performing a

Flux Variability Analysis [49] would give the feasible ranges of all fluxes, and it might even be possible

to find all elementary pathways that lead to this ECM by computing the Elementary Flux Vectors

[50, 51]. In addition, if one is particularly interested in the activities of a certain set of reactions in the

conversions, this can be reported by using the tag-method, which is explained in detail in Box 2. In

Figure 3c) we used the tag-method to highlight the use of the pyruvate-dehydrogenase reaction in the

e coli core-network.

Conclusion

In this work we presented ecmtool, a computational tool that calculates all overall chemical conversions

that a cell might catalyse – all its metabolic capabilities – from its metabolic network alone. We hope

that ECM enumeration will in the future become a standard step after metabolic network reconstruction,

so that the metabolism of all known organisms will be fully characterized.

Methods

Here, we will describe only the most important conceptual steps of the Elementary Conversion Modes computa-

tion. The method that was implemented in ecmtool is more elaborately described and explained in the Supple-

mentary Information. In developing this method we strongly benefited from the pioneering work by Urbanczik

and Wagner, who did not only define ECMs, but also described many of the enumeration steps. Unfortunately,

their enumeration tool, implemented in a mixture of Mathematica, Matlab, and C does no longer function, but

many of the ideas could be used. In the following, we will mention which conceptual steps were based on ideas

from Urbanczik and Wagner, and which were added by us.

The minimal ingredients for computing ECMs

To start the computation of ECMs we need the following ingredients

1. a stoichiometry matrix,

2. reversibility information of all reactions,

3. information on which metabolites are external or internal,

4. information on whether external metabolites can be produced, consumed or both
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Our Python-implementation can automatically extract these from an SBML-file (Systems Biology Markup Lan-

guage [33]). In the case that it is not clear whether a reaction is reversible or not, the reaction can be assumed to

be reversible. Incorrectly marking a reaction as reversible can only lead to some ‘false positives’: computed ECMs

that are in fact not possible, but not to ‘false negatives’. Since marking a metabolite as internal or external is

sometimes ambiguous and context-dependent, we here use our own definition: a metabolite is internal whenever

the steady state assumption should be met, so that its production and consumption should balance out.

Splitting external metabolites into inputs and outputs enables ECM compu-

tation by extreme ray enumeration

The ECMs, formally defined in Box 1, can be described as the elementary vectors [?] in the space of all steady-state

conversions. This space is given by:

C = {ċ = Nv | ċi = 0 if i ∈ Int , vj ≥ 0 for all j} , (2)

where N is the stoichiometry matrix, and Int the index set of internal metabolites. We have, for simplicity,

assumed all reactions to be irreversible, but this is not necessary.

We first consider the case that the space of steady-state conversions is contained in one orthant, i.e., that

for each dimension, i, all conversions are either nonnegative (ċi ≥ 0), or nonpositive (ċi ≤ 0). In that case,

the elementary vectors coincide with the spanning rays: a well-defined minimal set of vectors with which we

can generate the cone by taking conical combinations (weighted sums with positive weights). Enumerating the

extreme rays of a polyhedral cone is a known mathematical problem described for example by Fukuda [52].

However, the set C is generally not contained in one orthant, because some external metabolites can be used

as an input (ċi < 0) in some conversions, and as an output (ċi > 0) in others. This adds ECMs that are not

spanning rays of C, so that extreme ray enumeration is no longer enough.

We devised a new method to solve this problem: we extend the network slightly to make a new C that

is contained in one orthant. Let Aex be an external metabolite that is both an input and an output. We

connect Aex to two virtual metabolites: Aex,in and Aex,out, through two irreversible reactions: Aex,in → Aex and

Aex → Aex,out. Finally, we mark Aex itself as an internal metabolite, such that it has to be kept in steady-

state. As a consequence, conversions in which Aex was produced must now produce Aex,out to maintain the

steady-state assumption. Likewise, conversions in which Aex was consumed must now consume Aex,in. As such,

all information about Aex is stored in the production of Aex,out and the consumption of Aex,in, while these new

external metabolites can only be produced or consumed. Therefore, the new space of steady-state conversions is

contained in a single orthant, so that we can proceed the ECM-computation by enumerating the spanning rays

of this space. After the calculation we can then undo the splitting of metabolites so that we obtain the full set

of ECMs (we prove this in Supplemental Information Section 3.3).
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Finding the ECMs is finding a generator representation of C

The space of steady-state conversions C is a so-called pointed polyhedral cone. Such a cone can be described in

two ways: with an inequality representation or with a generator representation [53].

The inequality representation is a set of vectors {a1, . . . ,aM} that give the bounds that constrain the cone.

All elements in the cone: ċ ∈ C, must satisfy ai · ċ ≥ 0 for all i. Or, as a matrix equation:

C =

ċ ∈ Rn

∣∣∣∣∣∣∣∣∣∣
Aċ ≥ 0, A =


aT
1

...

aT
M


 (inequality representation). (3)

In the generator representation one gives a set of vectors, {r1, . . . rK}, with which all elements in the cone can

be generated by taking conical combinations:

C =

{
ċ = Rλ

∣∣∣∣ λi ≥ 0, R =

[
r1 . . . rK

]}
(generator representation). (4)

Since we have split the external metabolites into inputs and outputs before, computing the ECMs now amounts

to obtaining a minimal generator representation of C, because the generators, ri, are then precisely the ECMs.

The main computation step: impose equality constraints on a large set of

generators

Following Urbanczik et al. [31], we will start the computation with a cone that is too large, but for which we

already have a generator representation. To be precise, we will start with the cone generated by the columns of

the stoichiometry matrix:

C0 = {ċ = Nλ | λi ≥ 0} . (5)

This cone is the space of all conversions that can result from combinations of reactions of the metabolic network,

no matter if these conversions meet the steady state requirement or not. Therefore, this cone does contain the

steady state conversion cone, C, because it contains all possible conversions in steady-state. However, to get a

good description of C, we should still impose the steady state constraint. To compute the ECMs, we should

therefore keep track of how our set of generators changes while we impose the steady-state equalities ċi = 0 for

each internal metabolite.

Concluding: we start with a set of generators of the cone C0, we impose the set of equalities given by ċi = 0,

and are then interested in the generators of the resulting cone. We have implemented two methods for this main

part of the computation: an indirect method which was extended from suggestions in literature [31, 52], and a

direct method which we developed ourselves. These methods are described elaborately in SI Sections 7 and 8, but

we will also shortly explain both below. We chose to implement both methods because their merits complement

each other. The indirect method is fast on small- to medium-scale networks, and might therefore be preferred

over the direct method. The method is called indirect, because it first computes a large intermediate result which
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is then used to compute the ECMs. However, the intermediate result might be much larger than the final result,

so that the indirect method can run into memory issues while calculating the intermediate result, even though

the final result is not that large. Our newly developed direct method performs better on larger networks, and

especially when many metabolites are hidden using the hide-method, because it avoids such large intermediate

results.

The indirect method

As we will explain below, the indirect method twice uses the Double Description (DD) method [54, 40]. The

DD-method computes a minimal set of generators from an inequality representation of a cone. This part of the

computation is done using polco [55].

Although our actual starting point is a generator representation of C0, it is useful for now to imagine that we

already have an inequality representation of C0. We will later explain how we obtain this representation. This

inequality representation would be a set of vectors h1, . . .hM , such that

C0 =

ċ ∈ Rn

∣∣∣∣∣∣∣∣∣∣
H ċ ≥ 0, H =


hT

1

...

hT
M


 . (6)

Given this representation, it is easy to impose a steady-state constraint ċi = 0, by adding the elementary

unit vector êi = [0, · · · , 0, 1, 0, · · · , 0]T both positively and negatively to the set of inequalities. This enforces

0 ≤ êi · ċ = ċi, and 0 ≤ −êi · ċ = −ċi, such that we have actually imposed ċi = 0. In our implementation, we

have sped up the computation by imposing the steady-state constraint through removing the ith column from the

inequality constraint matrix H. We prove in SI Section 7.3.1 that this is equivalent. Removing these columns can

make many of the rows in the constraint matrix redundant. For this, we have developed a redundancy removal

algorithm that minimizes the size of the inequality constraint matrix, see SI Sections 5.6 and 7.3.3.

Comparing (2) and (6), we see that by imposing these steady state constraints for all internal metabolites we

go from an inequality representation for C0 to an inequality representation of the cone of steady-state conversions

C. From this, we can use the Double Description method to compute a minimal set of generators for this cone,

yielding the ECMs.

It remains to be shown how we obtain an inequality representation of C0 from the generator representation

we start with. For this, we use that C0 has a dual cone associated to it: C∗0 , which has two important properties

(see SI 1.3 for more information and explanation):

1. the dual of the dual cone is again the cone: (C∗0 )∗ = C0,

2. the vectors in the generator representation of a cone form an inequality representation of the dual cone,

and vice versa: gen(C0) = ineq(C∗0 ).

Our computation starts from a generator representation of C0 (5), but by property 2 this is also an inequality
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representation of its dual C∗0 . By applying the Double Description method on this inequality representation, we

can find a generator representation of C∗0 . This generator representation is, again by property 2, an inequality

representation of the dual of this dual cone. By property 1, we have thus obtained an inequality representation

of C0, which was exactly what we needed. The steady-state constraints can now be imposed and the ECMs

computed, as explained above.

Note that this indirect method heavily relies on the Double Description method. We found that polco [55]

functions well and is reasonably fast, but can run into memory issues when the networks for which we try to

compute the ECMs get too large. We found that these memory issues were caused by the size of the inequality

representation needed to describe C0, i.e., the issues arise in the first application of the DD-method. This therefore

causes a computational limitation even though the generator representation of C (which we are eventually after)

can be much smaller. This lack of control of the size of our intermediate results forms an important disadvantage

of the indirect method. Therefore, we developed the direct method for the computation of ECMs for larger

networks.

The direct method

Just as the indirect method, the direct method starts with the cone C0 introduced in (5), generated by the columns

of the stoichiometry matrix N . We collect these generators in a matrix R(0). Then, we iteratively impose the

steady-state constraints, ċi = 0, for all internal metabolites i. Imposing such a steady-state constraint means

that we take the intersection of the cone C0 with the hyperplane ċi = 0. The intersection is again a cone, called

C(1), which is generated by a new set of generators that we collect in a matrix R(1). Proceeding with R(1) and

imposing more steady-state constraints, we will eventually end up with a set of generators for the steady-state

conversion cone C.

One such iteration thus starts with a set of generators of C(i−1), collected in R(i−1). Now, we distribute

these generators in three groups: a plus-group, a zero-group and a minus-group, depending on if the generators

have ċi > 0, ċi = 0, or ċi < 0, respectively. The generators in the plus- and minus-groups do not satisfy the

steady-state constraint, and should therefore be dropped. However, each combination of a plus-generator with

a minus-generator can provide a candidate generator that does satisfy ċi = 0. These candidates, combined with

the generators that were already in the zero-group, must contain all generators of C(i).

However, when we combine all generators from the plus-group with the minus-group to create new generators,

we will not get a minimal set of generators. In other words, the cone C(i) could also be generated by a smaller

number of generators. This might not seem like a large problem, but the number of unnecessary generators (also

called redundant generators) grows exponentially with the number of iterations, quickly causing computational

infeasibility. Therefore, we have developed an adjacency test. This test determines for each candidate, i.e., an

appropriate combination of a plus-generator with a minus-generator, if it is redundant. It does so by checking if

the candidate can be written as a combination of other generators. If so, then the candidate is redundant, and
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should be left out of R(i). This test is implemented by performing a linear optimization for each candidate. In

SI Section 8.1 we have added figures to explain our method. There, we also elaborate on the linear optimization,

and explain how we optimized it to be fast enough.

Although performing many linear optimizations is in principle a very slow process, there is an important ad-

vantage: the different optimizations can be done completely independently. Therefore, we were able to parallelise

this direct method so that it can now be run on large computation clusters.

Network compression facilitates ECM computation on large networks

ECM theory focuses on the overall conversions between external metabolites, instead of on how these conversions

come about internally. This distinction can be exploited to simplify the network even before we start the main

computation steps described above. We have implemented several compression steps that together bring large

networks back to a workable size. Most of these compression steps were suggested by Urbanczik et al. [31].

We have added the removal of cycles, the removal of redundant reactions, and part of the removal of infeasible

reactions. In the Supplementary Information (Section 5) we provide proofs and more extensive explanations.

Infeasible reactions can be removed

The flux vectors that give rise to the ECMs should satisfy the steady state and the irreversibility constraints.

If we can prove that a reaction can never be active in a solution that meets both of these constraints, then

this reaction can be safely removed. In principle, the feasibility of a reaction can be tested by running a linear

optimisation: for reaction i we would maximise vi such that vj ≥ 0 for irreversible reactions j, and such that

Nintv = 0, where Nint is the part of the stoichiometry matrix corresponding to internal metabolites. If the

optimal solution does not give vi strictly larger than zero, then reaction i is infeasible and can be removed from

the network. In Section 5.1 of the SI we describe a computationally efficient way of achieving the same.

Redundant reactions can be deleted

We can delete redundant reactions; a reaction is called redundant if it can be written as a conical combination

of other reactions. Because the function of these reactions can always be replaced by the combination of the

other reactions, it does not add functionality to the network and can therefore be removed. Redundant reactions

in systems with fewer than about 10,000 reactions can be removed using a program called redund from lrslib

[56], so that this suffices during this compression step. As we have mentioned above, we also apply redundancy

removal during both the direct and the indirect method, and here the number of reactions can become much

larger than 10,000. This is the reason that we also developed our own parallelisable redundancy test (see SI 5.6

for an explanation).
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Reversible reactions can be used to cancel a reaction and a metabolite

Each reversible reaction can be used to cancel itself and one metabolite it connects to. Say that a reversible

reaction, R1, produces an internal metabolite A, and say that there are several other reactions producing or

consuming A. We prove in Section 5.3 of the SI that we can, without changing the ECMs of the network, add

or subtract reaction R1 to these other reactions such that the production or consumption of A is cancelled.

After doing this for all reactions connected to A, R1 is the only reaction left that produces A. This implies

that no reaction flux is possible through R1 in a steady-state solution, because the production of A cannot be

compensated by another reaction. Therefore, we can delete both R1 and A from the network without affecting

the ECM-results.

Dead-end metabolites and connecting reactions can be deleted

Sometimes an internal metabolite can only be produced and not consumed, or vice versa. In this case, the

reaction flux through the reactions connected to this metabolite has to be zero in any steady-state solution.

Therefore, we can delete the metabolite and all connecting reactions without affecting the set of ECMs.

Reactions with a unique function can be used to cancel a reaction and a metabolite

Say that we have a reaction R1 which is the sole reaction that produces a metabolite A, but that there are several

reactions that consume A. Then, again without affecting the set of ECMs, we can add R1 to these consuming

reactions such that the consumption of A is exactly cancelled. The reaction R1 is now the only reaction left that

produces A, and can therefore not be active in a steady-state solution. We can thus cancel both R1 and A.

Cycles of k reactions can cancel k − 1 reactions and metabolites

A cycle is a set of reactions that can be used in a certain ratio such that nothing is produced nor consumed. Say

that the reactions R1, . . . , Rk form a cycle, so that with appropriate weights λi we have λ1R1+· · ·+λkRk = ∅ → ∅.

In addition, say that R1 produces an internal metabolite A. In Section 5.5 of the SI we show that we can now

use a trick similar to what we used with the reversible reactions. We use λ1R1 as the forward reaction, and

λ2R2 + · · · + λkRk as the backward reaction to cancel the production and consumption of A. After doing this,

R1 will again be the only reaction producing A, so that we can delete both R1 and A from the network. Since

we compensated for the action of R1 in the rest of the network, we will be left with a cycle using the reactions

R2, . . . , Rk, on which we can use the same trick again. In this way, we can delete k − 1 reactions and k − 1

metabolites.
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Box 3: A worked-out example of ECM enumeration with the direct method

To show how ECM enumeration works in practice, we will here work out some steps of the computation

of ECMs for the network given by the following stoichiometry matrix:

N =



v1 v2 v3 v4 v5 v6 v7

A −1 −1 0 0 0 0 0

E 0 0 0 0 −1 0 0

F 0 0 0 0 0 −1 0

BM 0 0 0 0 0 0 1

B 1 0 −1 0 −1 −1 0

C 0 1 0 −1 0 0 0

D 0 0 1 1 0 0 −1

G 0 0 0 0 1 1 −1



(7)

which is also shown as the first network of Figure 7a). All reactions are assumed irreversible, external

metabolites A, E and F can only be used as inputs, and BM can only be used as an output. For the

enumeration, we will use the direct intersection method, and we will not apply any of the network

compression steps (examples of these steps can be found in SI 5).

Figure 7: A worked-out example of ECM enumeration on a small network. All
steps are described in the main text. Metabolites that are underlined are marked as external.
The metabolites for which we impose the steady-state constraint in the next step are circled.
Dotted arrows indicate conversions that were found to be redundant, and are thus deleted.

The stoichiometry matrix gives a list of generators that generates all conversions before we have

imposed the steady-state constraints: R(0) = N . On this collection of generators, we impose the
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steady state constraint for metabolite B, i.e., Ḃ = 0. In the stoichiometry matrix we can see that

there are three reactions, v2, v4, v7, that do not produce or consume B, and therefore already satisfy

this constraint. Of the other reactions, v1 produces B and v3, v5, v6 consume B. Each pair of a

producing and a consuming reaction generates a candidate that satisfies the steady state constraint,

so this gives us 1× 3 = 3 candidates:

� v1 + v5: A + E G ,

� v1 + v6: A + F G ,

� v1 + v3: A D .

All candidates are tested for redundancy by the adjacency test described in SI Section 8.1. This test

indicates if the candidate can be written as a positive combination of already existing reactions. The

first two reactions are non-redundant, and thus added to the next list of generators, but the third

reaction can be written as a sum of v2 and v4, and is therefore not added. We get:

R(1) =



v2 v4 v1+v5 v1+v6 v7

A −1 0 −1 −1 0

E 0 0 −1 0 0

F 0 0 0 −1 0

BM 0 0 0 0 1

C 1 −1 0 0 0

D 0 1 0 0 −1

G 0 0 1 1 −1



, (8)

which is depicted as the second network in Figure 7a).

This process is then repeated for internal metabolites C, D and G, eventually giving

R(1) =



A −2 −2

E −1 0

F 0 −1

BM 1 1


, (9)

containing all ECMs, namely 2A + E BM , and 2A + F BM .

In Figure 7b) we illustrate the ECM enumeration when we use the hide-method to ignore

the consumption of E and F . Hiding these metabolites is done by extending the metabolic network

with reactions that create E and F from nothing, and marking the metabolites as internal. We thus
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get:

N =



v1 v2 v3 v4 v5 v6 v7 v8 v9

A −1 −1 0 0 0 0 0 0 0

E 0 0 0 0 −1 0 0 1 0

F 0 0 0 0 0 −1 0 0 1

BM 0 0 0 0 0 0 1 0 0

B 1 0 −1 0 −1 −1 0 0 0

C 0 1 0 −1 0 0 0 0 0

D 0 0 1 1 0 0 −1 0 0

G 0 0 0 0 1 1 −1 0 0



(10)

When we now start by imposing the steady state constraints for metabolite E, we see that only v5

and v8 do not satisfy this constraint. Combining these reactions gives the candidate: v5 + v8: B

G , which is added to the new list of generators. When we then impose the steady state constraint for

metabolite F , we get the same candidate v6 +v9: B G , but since this is not a new conversion it is

not added to the list of generators. It can thus be seen that hiding metabolites E and F immediately

reduces the computational complexity, because now only one reaction from B to G remains, while

without the hide-method there were two such reactions. Moreover, after imposing the remaining

steady state constraints, we find only one ECM: 2A + ?? G , where the question marks indicate

that we do not know whether more metabolites are consumed because this information is hidden.

Although it would not give problems in this example, we can in general not hide a metabolite by

simply removing it from the network. This is because information about whether the metabolite can

be used as an input, as an output, or both, would be lost from the computation. With the current

method, this information is stored in the directionality of the added reaction.

The ECM-computation was implemented in Python

We implemented our algorithms in a publicly available Python-program called ecmtool. It is freely available on

GitHub at https://github.com/SystemsBioinformatics/ecmtool, and can additionally be installed through the

Python package manager pip. The direct and indirect computation method are both available within the program.

A manual is available as Section 11 of the SI, and some worked-out examples are provided as supplementary files.
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Supplementary Files

1. Document with supplementary figure, and detailed theoretical background for all methods used in ecmtool

2. User manual

3. Matlab-scripts used for validation of ECMs

4. Python-script used for creating subnetworks of the e coli core-network

5. R-scripts used for clustering ECMs
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