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Summary statement: Beltran Diaz et al. present a semi-automated pipeline for fast and versatile 

characterization of bone length from micro-CT images of mouse developmental samples. 

 

Abstract: The characterization of developmental phenotypes often relies on the accurate linear 

measurement of structures that are small and require laborious preparation. This is tedious and prone to 

errors, especially when repeated for the multiple replicates that are required for statistical analysis, or when 

multiple distinct structures have to be analysed. To address this issue, we have developed a pipeline for 

characterization of long-bone length using micro-CT scans. It involves a semi-automated algorithm that 

uses the Mimics Innovation Suite package (Materialise) for automatic thresholding and fast interactive 

isolation and 3D-model generation of the main limb bones. All the image-processing steps are included in a 

user-friendly Python script. We show that the appropriate combination of scanning and in silico analysis 

conditions yields fast and reproducible length results, highly correlated with the measurements obtained via 

ex vivo skeletal preparations. Moreover, since micro-CT is not destructive, the samples can be used 

afterwards for histology or other applications. Our new pipeline will help developmental biologists and 

evolution researchers to achieve fast, reproducible and non-destructive length measurement of bone 

samples from multiple animal species.  
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INTRODUCTION 

Bone-length measurement is the pillar of many research applications, such as developmental studies on 

limb patterning (Galloway et al., 2009; Summerbell, 1977) and growth (Marchini and Rolian, 2018; Rosello-

Diez et al., 2017), evolutionary studies (Kherdjemil et al., 2016; Sears et al., 2006; Sheth et al., 2012), 

disease modelling (Chen et al., 1999; Li et al., 1999; Rowe et al., 2018), adult phenotyping of mutant 

models (Boskey et al., 2003), etc. Whereas clinical musculoskeletal research often uses non-destructive 

imaging as routine (Cheng and Wang, 2018), fundamental evolutionary and development (evo-devo) 

studies often rely on differential staining of bone and cartilage (the so-called ex vivo skeletal preparations) 

(Mead, 2020; Rigueur and Lyons, 2014) and subsequent two-dimensional (2D) imaging for quantitative 

comparisons of the models of interest. Despite being broadly used, the skeletal preparation technique is 

ridden by several disadvantages. First, it is a destructive technique in the sense that the samples cannot be 

used for further histological or molecular applications. Second, it involves lengthy staining and clearing of 

cadavers, followed by laborious and damage-prone dissection of the individual bones of interest, in order to 

prepare them for imaging. Third, accurate measurements depend heavily on the imaged sample being 

positioned as flat as possible; otherwise the apparent length will be shorter than the real one due to parallax 

error. As a result, measurements are often prone to user error and require multiple measurements to 

calculate standard error. These limitations prompted us to seek alternative methods to measure bone length 

in a fast and reliable way, without destroying the sample. 

Micro-computed tomography (µCT) is a non-destructive imaging modality that uses multiple X-rays and 

computed algorithms to generate a three-dimensional (3D) image of a physical object based on the 

absorbance of X-ray energy (Christiansen, 2016; du Plessis et al., 2017). We reasoned that since µCT can 

be used to image undissected samples, it would allow us to scan multiple samples relatively fast, with the 

advantages of preserving their integrity in case they are needed for further processing. Moreover, computer-

based image processing would in principle allow us to maximize the automation of the subsequent 3D 

reconstruction and measurements. In summary, our main goal was to develop a pipeline to scan multiple 

whole-animal samples in a batch, and bulk-process the scans with minimal user intervention, to extract 

linear measurements of the bones of interest. Within this general goal, we established three aims: 1) to 

identify standard conditions (i.e. combination of scan resolution and analysis parameters) that yield low 

inter-batch variability; 2) to obtain a versatile pipeline that could be applied with minimal variation to a range 

of developmental stages; 3) to achieve enough precision to be able to detect even small phenotypes, such 

as the 5-10% bone-length differences we have previously described with some of our models (Rosello-Diez 

et al., 2018; Rosello-Diez et al., 2017). 

In µCT, the ability to independently analyse distinct tissues relies on their accurate separation through 

so-called segmentation (Bouxsein et al., 2010; Weissheimer et al., 2012). Since bone is a high-density 

tissue, it presents with high intensity in CT scans and can be readily segmented through threshold-based 

methods where grayscale values determine what is bone and what is background (Campbell and 

Sophocleous, 2014). There are several modalities of segmentation. Manual segmentation involves the 
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manual selection of the areas of interest section by section, and is therefore quite laborious and subjective, 

thus prone to user error (Rathnayaka et al., 2011). Semi-automated methods, on the other hand, use 

algorithms like edge detection (Rathnayaka et al., 2011) and/or local differences in grey values (Zhang et 

al., 2010) with some user input for initial parameters. Another common method is automated segmentation, 

whereby image-processing algorithms are used to segment elements of interest with minimal to no-user 

interaction (Heidrich et al., 2013; Okada et al., 2008; Šajn et al., 2007; Yiannakas et al., 2016). Algorithm-

based automatic segmentation, however, requires the user to have programming knowledge and a 

thorough understanding of mathematical algorithms related to the image processing software being utilised 

(Rathnayaka et al., 2011). 

There are a wide range of software solutions that can analyse CT data in the form of digital imaging 

communications in medicine (DICOM) files to segment a variety of high-contrast tissues like lungs 

(Reynisson et al., 2015; Weissheimer et al., 2012), liver (Huhdanpaa et al., 2011; Okada et al., 2008) and 

bone (Mehadji et al., 2019; Rios et al., 2014; Taghizadeh et al., 2019). After some pilot testing of both open-

source and commercial solutions, we settled on the Mimics Innovation Suite (Materialise, Leuven, Belgium) 

as the one that most readily suited our needs. Mimics has been previously benchmarked against other 

programs like Syngo (An et al., 2017), OsiriX (Reynisson et al., 2015) and ITK-snap (Weissheimer et al., 

2012), and some of its key features are its flexibility, ease of use, sensitive and controlled segmentations 

(Reynisson et al., 2015; Weissheimer et al., 2012) and the possibility to integrate Python scripting modules 

to further extend its automation capabilities. 

Here we present a semi-automated analysis pipeline for the fast and robust characterisation of long-bone 

length, using Python scripting and segmentation tools of the commercially available software package 

Mimics, which can be used by non-experts. 

 

RESULTS 

Developing a script for bone-length measurement on µCT scans with minimal user input 

A Python script was written that utilises Mimics capabilities to segment and measure the mouse bones of 

interest (humerus, radius, ulna, tibia and sometimes clavicle) from CT scans. This script is called BASILISC 

(Bone Automated Segmentation and Interactive Length Interrogation on Standardized CT scans). BASILISC 

is available in Github (www.github/rosellodiez/Basilisc), and designed to run in the Materialise Mimics 

Research software v.18 to 21, and hence there are attributes that are specific to this program. The script 

can be divided into 4 main sections: thresholding, landmarking, 3D modelling, measurement & export (Fig. 

1A). See Supplementary Video 1 for an overview of the whole procedure. 

The first Python command in BASILISC segments all the skeletal elements, using a global threshold for 

bone tissue (Fig. 1B). To increase its applicability to different developmental stages and scanning 

conditions, BASILISC was designed in such a way that the user can select among three pre-defined 

thresholds (Low, Medium, High) via a pop-up menu. These pre-defined values can be easily changed within 

the script (see Methods). The next section of the script is landmarking, which uses Mimics tools to segment 
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and uniquely label all bones of interest via a pop-up menu (Fig. 1C). The user is prompted to select a region 

(landmark) of the indicated element by simply clicking on it on one of the 2D views of the sample. BASILISC 

will automatically label and segment the selected element without further user interaction. In the third 

section of the script, once all bones of interest have been segmented and labelled accordingly, a 3D model 

of each skeletal element is created (Fig. 1D). Then BASILISC automatically fits a so-called centre line to 

each bone, running from end to end along the centre of the element. In the last section, the script 

automatically obtains the length of the fitted line and saves the measurement to a comma-separated text file 

(Fig. 1E). Once this basic method was developed, we set out to bench-mark it. 

 

 

 

Figure 1. Bone Automated Segmentation and Interactive Length Interrogation of Standardized CT 
scans. A) Diagram depicting the procedure followed by the script. B-E) Representative screenshots of key 
steps in the process: threshold pre-selection and segmentation (B), element seeding (C), centre-line fitting 
(D), table export (E). 
 

Standardized conditions to achieve robustness to batch effect at multiple stages 

A semi-automatic protocol to measure bone length would only be useful if it yielded consistent 

measurements for a given sample, scanned and analysed repeatedly on different days. We thus explored 

different scan resolutions and imaging thresholds to analyse technical replicates from two different postnatal 

day (P) 7 mouse specimens (see Methods), and assessed the reproducibility of the results. 40-µm scans 

showed relatively high inter-batch effect, especially for hindlimb bones, regardless of the threshold (Fig. 2A, 

B), whereas 20-µm scans yielded more consistent measurements, including hindlimb bones, especially for 

the lower threshold (Fig. 2C, D). To compare the batch effect more quantitatively, we then calculated the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2020. ; https://doi.org/10.1101/2020.06.06.137729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.06.137729
http://creativecommons.org/licenses/by-nc-nd/4.0/


coefficient of variability (CV) for each bone’s measurements across the three batches, and compared the 

CV for the different conditions and bones. A 2-way analysis of variance (ANOVA) showed that there was a 

significant effect of the imaging & analysis conditions, although the extent of it was likely distinct for the 

different bones (Fig. 2E). In summary, these results identified a 20-µm resolution and a 398-Hounsfeld units 

(HU) threshold as the optimal conditions to minimize inter-batch variability in this type of samples (i.e. P7 

mouse long bones). 

 
Figure 2. Assessment of batch effect for multiple P7 bones across different scan and analysis 
conditions. A-D) Measured length for the indicated bones of two P7 mouse pups, each scanned in 
triplicate (on three different days) at either 40 (A, B) or 20-µm resolution (C, D), and analysed with either a 
650-HU (A, C) or a 398-HU threshold (B, D). L, R: left, right. E) Top: Heatmap for the Coefficient of 
Variability (CV, %) between the three batches of the indicated measurements. Bottom: 2-way ANOVA table 
showing the contribution and associated p-value of each source of variation of the experiment. F) 
Representative examples of the generated tibial 3D models (left and right from the same specimen) and 
their fitted centrelines. 
 

Next, in order to test the versatility of BASILISC across developmental stages, we performed a similar 

batch-effect analysis at embryonic day (E) 17.5. Similar to the P7 experiment, we performed a battery of 

scan & measurement analyses exploring different resolution and threshold values (see Methods). At this 

stage, most of the conditions performed similarly in terms of reproducibility across batches, except for low 

resolution and low threshold, for which some femora were not properly segmented and as a consequence 

their length was overestimated (Fig. 3A-D). Although there was no overall difference in the CV across 

conditions (Fig. 3E), the data trends suggested that a 398-HU threshold outperformed a 226-HU threshold 

and length variation due to differences in scan resolution were minimised with a 398-HU threshold. 
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Figure 3. Assessment of batch effect for multiple E17.5 bones across different scan and analysis 
conditions. A-D) Measured length for the indicated bones of two or three E17.5 mouse foetuses, each 
scanned in triplicate (or quadruplicate) at either 40 (A, B) or 20-µm resolution (C, D), and analysed with 
either a 226-HU (A, C) or a 398-HU threshold (B, D). E) Top: Heatmap for the Coefficient of Variability (CV, 
%) between the batches of the indicated measurements. Bottom: mixed-effects model table showing the 
contribution and associated p-value of each source of variation of the experiment. F) Representative 
example of the generated tibial 3D models and its fitted centreline. 
 

Internal consistency across different stages, scan resolutions and segmentation thresholds 

One of the advantages of working with paired bones is the possibility of assessing internal consistency of 

the BASILISC method by measuring the left/right ratio for each bone and condition. We therefore calculated 

a left/right ratio for the P7 samples, including replicates, to determine how close the ratio was to the 

hypothetical value of 1 (i.e. equally long left and right paired bones) and how much variability there was 

between replicates. As shown in Fig. 4A, 20-µm scan resolution and a threshold at 398 HU again had the 

lowest inter-batch variability and the L/R ratio was remarkably close to 1. As parameters moved from these 

optimal settings, there were several bones (typically femur, tibia and sometimes radius) for which either the 

average value was not as close to 1 as for other bones, and/or the variability between batches was higher 

than 5% (Fig. 4A). Similarly, we calculated internal ratios for E17.5 bones to determine optimal scan and 

segmentation parameters. In this case we chose the ratio of each bone’s length over the clavicle bone 

length, as a normalisation approach that could be achievable in the case that contralateral bones were not 

available (as it was our case for these scavenged samples). This ratio obviously varies from bone to bone, 

but the variability of each measurement across replicates is in this case the parameter of interest to 

estimate the precision of the approach. As shown in Fig. 4B, with a threshold of 226 HU, some bones 

showed high inter-batch variability (and even artefacts in the 3D model, not shown), regardless of the 
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resolution. On the other hand, at 398 HU the 3D models were faithful and the variability quite reduced, 

especially at 40 µm. 

In summary, these results suggest that a 398-HU threshold works well across a range of stages (E17.5 

to P7). Whereas the optimal resolution seemed to be more stage-specific, we concluded that 20 µm is a 

good compromise value for the range of stages we analysed. 

 
Figure 4. The comparison of intra-specimen ratios reveals the most reproducible conditions for 
scan and analysis. A) Left/right ratio of bone length (mean±SD) for the indicated bones and conditions at 
P7. Hu/Ra/Fe/Ti, Humerus/Radius/Femur/Tibia. S1-S2, specimens 1 and 2. B) Similar to A), except the ratio 
of length of the indicated bones to the length of the clavicle is shown for scans of E17.5 embryos. 
 

Comparison of bone lengths obtained via BASILISC and skeletal preparations on the same samples 

We next compared the bone lengths obtained by BASILISC with the lengths obtained from the same 

samples via skeletal preparations and digital measurement, a method frequently-used in developmental 

biology studies. We used eight long bones from three different specimens at P7. The linear relationship 

between both measurements was very good in all conditions (Fig. 5, p-value for Pearson correlation 

<0.0001 in all cases), and the slopes were not significantly different (p=0.3298), with an average common 

value of 0.9642. As expected, however, the BASILISC measurements that used lower thresholds tended to 

overestimate bone length (as the resulting 3D model includes less dense tissue), as indicated by the 

differences in the intercepts with the axes (Fig. 5, p<0.0001). Overall, the conditions that yielded 

measurements more reliably correlated to the skeletal preparations were 20-µm resolution and 398-HU 
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threshold. 

 
Figure 5. Correlation between BASILISC and the measurements obtained via classic skeletal 
preparations. The graph shows the bone length measurements obtained via skeletal preparations (prep.) 
(X axis) and BASILISC (Y axis), for four different combinations of imaging resolution and segmentation 
threshold (averages of 2-3 technical replicates are shown). The dashed black line represents a 1:1 
correlation, for reference. Solid coloured lines represent the regression line for each combination, and the 
dashed ones are the 95% confidence interval of the regression. The coefficient of determination (R2) is 
indicated next to the graph legend. The table shows the slope and Y-intercept for each of the BASILISC 
conditions used. 
 

DISCUSSION 

Here we have presented a fast and easy method to determine calcified bone length from µCT scans of 

whole mouse samples, without the need for dissecting the limbs, skinning or eviscerating the bodies. We 

tested our algorithm on a range of developmental stages (E17.5 through P7) that covers 9 days of very fast 

growth (Sanger et al., 2011). 

 

Advantages over classic skeletal preparations 

As any developmental biologist working on limb patterning and/or growth has experienced, analysing 

one litter’s worth of samples by the classic method of skeletal preparation, limb microdissection, photograph 

acquisition and length measurement on the 2D pictures takes at least ten days and close to twenty hours of 

dedicated hands-on work (Rigueur and Lyons, 2014). With the BASILISC approach, decapitation and 

fixation of the mouse bodies takes just a few minutes per litter; scan time is roughly ten minutes per sample 

(plus thirty minutes of set up per imaging session); data loading and analysis takes ~5 minutes per scan. On 

average, this amounts to three-four hours of hands-on work per litter. Another advantage is that the 

measurement is three-dimensional, as opposed to two-dimensional, and therefore impervious to orientation 
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errors. Lastly, the scan is not destructive, and therefore the samples can be later on processed for histology 

or other procedures (Baier et al., 2019; Hopkins et al., 2015). 

 

Comparison to previous automation approaches 

In principle, the ideal pipeline for the kind of analysis that we perform here would be a fully automated 

method that recognised each of the long bones from a full-body scan, measured their length and exported 

those measurements without user intervention. In fact, there have been very impressive attempts at 

achieving this goal, combining object-based image analysis (that utilises shape and context-dependent 

information in addition to pixel intensity values) with machine learning. For example, Heidrich et al. (Heidrich 

et al., 2013) used Cognition Network Technology to extract objects and their properties from µCT data of 

chicken embryos at multiple stages, and then used these data to train a machine learning tool for automatic 

long bone classification. BASILISC is obviously far from achieving that level of automation, and 

implementing machine learning would probably require working with another software package. However, 

one of the strengths of BASILISC stems from its simplicity, as it can be used directly on any set of data, with 

minimal modification of the script. Contrary to this simplicity, the pipeline described in (Heidrich et al., 2013) 

required a large training set of close to 3,000 instances, and also complex iterative thresholding methods. 

Moreover, although the classification achieved via this complex process was remarkably accurate, it still 

required supervision and was only applied to a reduced developmental window. 

In contrast to other automation procedures where edge detection has been used to determine optimal 

thresholds (Rathnayaka et al., 2011; Zhang et al., 2010), here we rely on a global threshold optimized by 

trial and error to find an optimal range of grey values. BASILISC could be further refined by implementation 

of widely used edge detection algorithms to further improve the segmentation process and potentially 

increase the accuracy of the measurements obtained. However, since intensity can vary across the length 

of long bones (Rathnayaka et al., 2011), edge detection would require the use of multiple thresholds to 

reduce the degree of error in segmentation. Thus, here we opt for a single global threshold to extend the 

capabilities of the algorithm for a range of developmental stages. 

To our knowledge this is the first algorithm that makes use of the Python library within the Mimics 

software to automate the segmentation, 3D modelling and analysis of length of skeletal elements. 

Previously, Mimics has been complemented with other scripting languages like MATLAB (Huhdanpaa et al., 

2011) for image processing before segmenting the data, or software like Creo elements (Rios et al., 2014) 

to analyse scans after they have been segmented. In the latter case, though, the reference points for length 

measurement had to be manually selected, which is a time-consuming step to do in 3D. Through BASILISC, 

segmentation and length measurements can all be obtained within the one program and extensive 

programming knowledge is not required. Furthermore, we provide a processing pipeline that extends from 

optimized scanning conditions of mouse samples across a range of developmental stages, to streamlined 

image processing and data analysis, making BASILISC a readily available tool for the research community. 

Of course, for BASILISC to have widespread use, it would need to be applied to open-source software. 
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While this is in principle possible, said software would need to fulfil two requirements: utilise Python scripts, 

and have similar segmentation and masking tools as Mimics. We are currently exploring a few promising 

open-source options. 

 

Comparison with ‘real’ length measurements 

Strictly speaking, the ‘true value’ of bone length cannot be obtained with absolute certainty by any 

method, as no measurement is devoid of error. For example, the classic skeletal preparation method 

involves quite a harsh procedure, including increasing gradients of glycerol that can shrink the sample up to 

3-6% (Mabee et al., 1998). However, given the widespread use of skeletal preparation, flat mounting and 

imaging to obtain 2D length estimations, we compared the measurements obtained by the BASILISC 

approach with the length obtained by skeletal preparations (Rigueur and Lyons, 2014). Of note, all 

conditions showed remarkable correlation between both methods, with 20-µm resolution and 398-HU 

threshold yielding measurements very well correlated to those obtained via skeletal preparations across the 

whole range of lengths analysed. One important consideration is that the centreline fitting method generates 

the longest possible distance, which in some cases is not strictly running parallel to the element’s main axis 

(e.g. Fig. 2F). This obviously generates a small bias in the measurement, but as long as the same method 

is used to compare different experimental conditions, this bias will be consistent and is not expected to 

contribute to the observed biological effect. 

 

Limitations and future improvements 

Some long bones are often segmented together in our pipeline, most often tibia and fibula (Fig. 2F and 

3F), and for young stages radius and ulna. This is because their automatic separation would require too 

high a threshold. While radius and ulna can be quickly separated manually using the Split_mask function 

(see Methods), this is not feasible for the tibia and fibula, because their interaction surface is too large. This 

issue has some impact on the tibial measurements, because the fibula protrudes a bit farther than the tibia 

on the distal end (Fig. 2F and 3F). However, the effect is quite minor and we showed that under the right 

conditions the error is very consistent, as the left/right ratio for the tibia is quite tightly centred on 1 (Fig. 2). 

Therefore, the slightly overestimated tibial lengths can still be used for comparison purposes between 

different genotypes and/or treatments. The decision to invest more time in splitting them as opposed to 

accept the error is up to the user and depends on two main aspects: the degree of accuracy desired and the 

time investment required to correct the error in all samples. In our case, we opted not to correct this 

segmentation error, as the minor gain in accuracy would be outweighed by the extra time investment. 

The aforementioned limitation would be corrected with an automatic classification system based on 

machine learning (Heidrich et al., 2013), but the implementation of these methods is still not supported in 

the Mimics scripting module. If this capability is implemented in the future, it could speed up image 

processing even further, as in theory no user intervention would be required to seed landmarks on the 

bones of interest. 
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Other applications 

The current BASILISC pipeline only measures length of the elements, because it fits a centreline to the 

3D models of the bones. However, it could in principle be adapted to measure width, by fitting a cylinder to 

the model and interrogating the width of the cylinder. This approach would require careful selection of the 

fitting parameters, so that the surface of the cylinder coincides with the surface of the 3D model. Along 

these lines, we have tentatively fitted vertebral bodies to the shapes of spheres (not shown), in order to 

calculate the distance between the centres of the spheres as a proxy for inter-vertebral distance. This 

application could be useful for developmental biologists studying axis elongation and segmentation. 

 

SUPPLEMENTARY INFORMATION 

Supplementary Video 1 caption. Overview of the BASILISC process performed on one of the scans used 

for this study. The messages prompted by the script were taken as screenshots and added to the video clip. 

Please note that an artefact of the video capture causes the mouse cursor to be shown slightly displaced 

from its real position.   

 

MATERIALS AND METHODS 

Animal experiments 

Mouse embryo and pup samples were scavenged from other experiments in the Rosello-Diez lab, approved 

by the Animal Ethics Committee at Monash University (protocol 17048). Wild-type E17.5 samples were 

obtained from Asmu:Swiss crosses. P7 samples consisted of tTA-negative littermates (phenotypically wild-

type) obtained from crosses of females containing the left-lateral plate mesoderm specific Pitx2-Cre 

(Shiratori et al., 2006) and a cartilage-specific Col2a1-tTA (Rosello-Diez et al., 2018) with males bearing a 

TigreDragon-DTA allele (Ahmadzadeh et al., 2020). 

 

Micro-CT scans 

A Siemens Inveon PET-SPECT-CT Small Animal scanner in CT modality was used for all experiments. 

Parameters: 20- and 40-µm resolution, 360 projections at 80 kV, 500 µA, 600 ms exposure with a 500ms 

settling time between projections. Binning was applied to vary resolution with 2x2 for 20µm and 4x4 for 

40µm scans and data was reconstructed using a Feldkamp algorithm. The samples (beheaded embryo and 

pup bodies) were placed in supine position over custom-fitted foam bedding, so that the limbs were not in 

contact with any hard surface. 

 

Mimics software and pipeline 

Mimics Research (v21.0; Materialise, Leuven, Belgium) equipped with the scripting module was used to 

develop the analysis pipeline and the Python script described here. See Results for an overview and each 

step in the process is outlined in detail below. 
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Thresholding: As soon as the DICOM data is uploaded into Mimics, the first step is to distinguish the 

bones from all the other tissue by defining a range of Hounsfield Units (HU) that corresponds to bone 

density. The first Python command in BASILISC creates a mask labelled "ALL", which will segment all the 

skeletal elements present, creating a global threshold specific to this mask. Since the goal was to measure 

the developing mineralised part from end to end, this step had to detect immature trabecular bone at the 

ends of the growing elements. In our uncalibrated µCT scans, we realised that the custom minimum 

threshold for bone tissue defined by Mimics (226 HU) often over-represented the actual bone tissue in the 

scans as it selected a greater area of tissue. The optimal lower threshold for the developmental stages of 

interest had thus to be determined empirically. Although Mimics can take both gray scale values (GV) and 

HU units, the input in the script can only be into GV, and therefore the first step was to transform the data 

into GV to adequately segment all bones from the rest of the tissue. This is achieved through the "segment" 

attribute seen on the last line of code for this section. In principle, different optimal thresholds exist for 

different scanning conditions and certainly for different developmental stages, as the ratio between woven 

and lamellar bone decreases, and hence BASILISC was designed in such a way that the user can select 

among three pre-defined thresholds via a pop-up menu. This can be easily changed within the following 

section of the script (pre-defined values appear in orange font): 

 
Landmarking: The purpose of this step is to segment and uniquely label all the bones of interest, using 

Mimics tools. This is achieved using a function that prompts the user (via a pop-up window) to select a 

landmark on the bone of interest. The first step in landmarking is to select the bones of interest to create a 

list of "landmarks". This list contains the unique name of each selected bone and defines the order of 

segmentation during the process. The "indicate_landmark" function guides the user through each of the 

bones to be segmented by means of a dialogue box, asking the user whether a given element is present in 

the scan or not and with two active buttons: "Select" & "Skip" (Fig. 1C). The user has the option to skip an 

element if a given bone is not present in the scan, this would then be excluded from the analysis. If the 

"Select" button is activated, a second dialogue box prompts the user to select a region (landmark) of the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2020. ; https://doi.org/10.1101/2020.06.06.137729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.06.137729
http://creativecommons.org/licenses/by-nc-nd/4.0/


indicated element by simply clicking on it on one of the 2D views of the sample. BASILISC will automatically 

label and segment the selected element without further user interaction, through the Mimics "region_grow" 

function. A FOR loop has been included in the BASILISC script when executing the "indicate_landmark" 

function, so that the steps above are recursively followed for each of the bones of interest sequentially, 

using the name of each bone as an index within the FOR loop. 

Generation of 3D models: Once all the elements of interest have been segmented and labelled 

accordingly, a function has been created in BASILISC that creates 3D models of each element, 

"create_3D". A FOR loop in the script steps through each of the segmented bones and creates a 3D model 

of each at the highest possible resolution (Fig. 1D). This provided the most accurate measurements 

possible and since a limited number of bones are analysed, computing time to create each 3D model did 

not increase significantly. 

Measurement: Once BASILISC has automatically made 3D models, it will fit a centre line to each bone 

within the "create_3D" function. This is achieved through the "analyze.create_line_fit_to_surface" attribute in 

Mimics. The script has been designed to then automatically obtain the length of the fitted line and save the 

measurement in a text file (Fig. 1E). Since this step is included within the function described above, which 

includes a FOR loop, the line is fitted as each 3D element is made, and the measurement is recorded 

progressively. The text file created will have the name of the given part, e.g. RIGHT HUMERUS, followed by 

a comma and the corresponding length of the element. This step is done automatically without any user 

input required after the landmarking step has been finalized. As the file created is only labelled with the 

name of the developmental stage created, the user should change the name of the text file to be sample 

specific before analysing the next sample. 

 

Manual corrections during image analysis 

For E17.5 samples, the radius and ulna are segmented together at the thresholds we use, but they could be 

easily separated using the Split mask function of Mimics, as their interaction surface was quite reduced. 

 

Pipeline benchmarking 

For Figures 2 and 3, each specimen was scanned in triplicate or quadruplicate (on three or four different 

days), at two resolutions each (20 and 40 µm), and each of the 6 scans was segmented at two different 

lower thresholds (650 and 398 HU for P7, 398 and 226 HU for E17.5) to perform length measurements. 

Humerus, radius, femur, tibia and clavicle (the latter only for E17.5) were analysed for two (P7) or three 

(E17.5) different specimens. 

 

Skeletal preparations 

After embryo collection, the skin, internal organs and adipose tissue were removed. The samples were then 

fixed in 95 % EtOH overnight at room temperature. To remove excess fat, the samples were then incubated 

in acetone overnight at room temperature. To stain the cartilage, the samples were submerged in a glass 
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scintillation vial containing Alcian blue solution (0.04 % (w/v), 70 % EtOH, 20 % acetic acid) and incubated 

at least overnight at room temperature. The samples were destained by incubating them in 95% EtOH 

overnight, and then equilibrated in 70% EtOH, prior to being pre-cleared in 1% KOH solution for 1-10h at 

room temperature (until blue skeletal elements were seen through). The KOH solution was replaced with 

Alizarin red solution (0.005 % (w/v) in 1% KOH) for 3–4h at room temperature. The Alizarin red solution was 

then replaced with 1-2% KOH until most soft tissues were cleared. For final clearing, the samples were 

progressively equilibrated through 20% glycerol:80% (1%KOH), then 50% glycerol:50% (1% KOH) and 

finally transferred to100% glycerol for long-term storage. 
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