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Summary

Understanding how the brain represents the identity of complex objects is a central
challenge of visual neuroscience. The principles governing object processing have
been extensively studied in the macaque face patch system, a sub-network of
inferotemporal (IT) cortex specialized for face processing (Tsao et al., 2006). A
previous study reported that single face patch neurons encode axes of a generative
model called the “active appearance” model (Chang and Tsao, 2017), which
transforms 50-d feature vectors separately representing facial shape and facial
texture into facial images (Cootes et al., 2001; Edwards et al., 1998). However, it
remains unclear whether this model constitutes the best model for explaining face
cell responses. Here, we recorded responses of cells in the most anterior face patch
AM to a large set of real face images, and compared a large number of models for
explaining neural responses. We found that the active appearance model better
explained responses than any other model except CORnet-Z, a feedforward deep
neural network trained on general object classification to classify non-face images,
whose performance it tied on some face image sets and exceeded on others.
Surprisingly, deep neural networks trained specifically on facial identification did not
explain neural responses well. A major reason is that units in the network, unlike
neurons, are less modulated by face-related factors unrelated to facial identification
such as illumination.
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Introduction

Primates are able to recognize objects invariant to changes in orientation and
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position. Neurons in macaque face patch AM represent facial identity independent of
head orientation (Freiwald and Tsao, 2010), therefore providing a unique opportunity
to study how invariant object identity is represented in the brain. One intuitive
computational strategy for invariant face recognition is to separate information about
facial shape from that about facial texture. Changes in head orientation or expression
can produce changes in facial shape but leave unaltered the underlying texture map
of the face (arising largely from physical features such as skin pigmentation, the
shape and thickness of eyebrows, eyes, lips, and so on). An effective computational
approach to decouple shape and texture information contained in a face is the “active
appearance model,” a scheme for representing faces by projecting them onto two
sets of axes, one describing the shape and one describing the shape-free
appearance of a face (Cootes et al., 2001; Edwards et al., 1998). While some shape-
related features can vary depending on facial identity (e.g., inter-eye distance), and
some appearance-related features can vary for the same facial identity (e.g.,
illumination), the decoupling between shape and texture parameters accomplished
by the active appearance model nevertheless approximately aligns with the needs of
invariant face identification.

A recent study used facial images synthesized by an active appearance model to
explore the coding scheme of AM face cells (Chang and Tsao, 2017). The study
found that the active appearance model provides a remarkably simple account of AM
activity: AM cells are approximately encoding linear combinations of axes of this
model. However, this study left several issues unaddressed. First, the study used
synthetic faces generated by the active appearance model rather than real faces.
The code for real faces in the macaque brain may be different from that for synthetic
faces. Furthermore, since the faces tested were directly controlled by parameters of
the active appearance model, this may have given an unfair advantage to this model
over other models for explaining face cell responses. Second, while the study
compared the active appearance model to a few other models, it notably did not
evaluate state-of-art deep networks trained on face recognition. Convolutional neural
networks (CNNs) trained to perform face recognition now achieve close-to-human or
even better performance (Parkhi et al., 2015; Taigman et al., 2014), naturally raising
the question, how similar are the representations used by these artificial networks
compared to those used by the primate face patch system?

Here, we set out to compare a large set of different models for face representation in
terms of their power to explain neural responses from macaque face patch AM to
pictures of real faces. The models tested include the original active appearance
model used by Chang and Tsao (Chang and Tsao, 2017), referred to below as the
“2D Morphable Model”, an Eigenface Model (Sirovich and Kirby, 1987; Turk and
Pentland, 1991), a 3D Morphable Model (Blanz and Vetter, 1999; Paysan et al.,
2009), several CNN models (Krizhevsky et al., 2012; Parkhi et al., 2015; Simonyan
and Zisserman, 2015; Kubilius et al., 2018), a β variational autoencoder (Higgins et
al., 2017), and a model implementing Hebbian learning on V1-like representations
(Leibo et al., 2017).

Results

We collected 2100 real faces from multiple online face databases, including the
FERET face database (Phillips et al., 2000; Phillips et al., 1998b), CVL face database
(Solina et al., 2003), MR2 face database (Strohminger et al., 2016), PEAL face
database (Gao et al., 2008), AR face database (Martinez and Benavente, 1998),
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Chicago face database (Ma et al., 2015), and CelebA database (Yang et al., 2015)
(Figure 1A). Responses of 159 face-selective cells in macaque face patch AM were
recorded from two monkeys while presenting the facial images (Figure 1B). To find
the optimal set of axes explaining neuronal responses, we extracted feature vectors
from several different models, including 2D Morphable Model (Cootes et al., 2001),
3D Morphable Model (Blanz and Vetter, 1999), Eigenface Model (Sirovich and Kirby,
1987; Turk and Pentland, 1991), AlexNet (Krizhevsky et al., 2012), VGG-face (Parkhi
et al., 2015), VGG-19 (Simonyan and Zisserman, 2015), CORnet (Kubilius et al.,
2018), β-VAE (Higgins et al., 2017), and a model implementing Hebbian learning on
V1-like representations (Leibo et al., 2017; Figure 1C). These models each
parameterize faces using very different principles. The Eigenface model has the
simplest form, consisting of principal components of pixel-level representations of
facial images. The 2D and 3D Morphable Models are generative face models that
convert a set of parameters into a facial image. AlexNet, VGGs, and CORnet are
neural network models each trained on a different task: AlexNet, VGG-19, and the
CORnets are all trained to classify images into 1000 non-face object categories.
VGG-face is trained to identify 2,622 celebrities..The CORnet family includes three
networks: CORnet-Z, CORnet-R, and CORnet-S. All three models have four areas
that are identified with cortical areas V1, V2, V4, and IT. CORnet-Z has a purely
feedforward structure, while CORnet-R and S contain recurrent connections within
areas. β-VAE is a deep generative model that learns to faithfully reconstruct the input
images, while being additionally regularized in a way that encourages individual
network units to code for semantically meaningful variables. The Hebbian learning
model is a biologically plausible model accounting for mirror-symmetric view tuning in
face patch AL and view invariance in face patch AM. We chose these models
because they are well known CNN models trained on object categorization (AlexNet,
VGGs and CORnets), important computational models for face recognition
(Eigenface, 2D Morphable Model, 3D Morphable Model, and Hebbian learning
model), or a state-of-art neural network model for unsupervised disentangled
representation learning (β-VAE).

To quantify how well each model can explain AM neuronal responses, for each
model, we learned a linear mapping between features of that model and the neural
population response vector. To avoid overfitting, we first reduced the dimensionality
of each model by performing principal components analysis (PCA) on model
responses to the 2100 faces, yielding N features for each face and each model. Then
a 50-fold cross-validation paradigm was performed: responses of each neuron to
42*49=2058 faces were fit by linear regression using the N features, and then the
responses of the neuron to the remaining 42 faces were predicted using the same
linear transform. To quantify prediction accuracy, we compared the predicted
population response vector to each face with the actual population response vector
to the face as well as the population response vector to a random distractor face
(Figure 1D). If the angle between prediction and target was smaller than that
between prediction and distractor, the prediction was considered correct.

To compare different models, we used the top 50 PCs of features from each model,
as in a previous study (Chang and Tsao, 2017). We found the best model was one of
the CORnet models, CORnet-Z, followed by the 2D Morphable Model (Figure 2A).
Interestingly, we found that VGG-face, a deep network trained to identify individual
faces, performed worse than the other models, while CORnet-Z, which was trained to
classify 1000 classes of non-face objects, performed better than any other model. A
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confounding factor is that the images we used came from multiple face databases
which have variable backgrounds. Some of the models may use background
information more than other models for prediction. Hence performance differences
between models could have been driven by representation of the background. In
theory, the background should not be relevant to a model of face representation.

Thus we next extracted features from facial images without background (see
Methods), and repeated the comparison of different models. The ordering of model
performance was largely preserved after background removal (Figure 2B). However,
after background removal, the performance of the 2D Morphable Model was not
significantly different from CORnet-Z (p=0.76); this is consistent with the fact that the
2D Morphable Model only accounts for intensity variations of faces, but not
background.

In the above two cases, we found the performance of the 3D Morphable Model was
much lower than the 2D Morphable Model. However, there is an important difference
between the 2D and 3D Morphable Models: the latter does not fit hair-related
features. To compensate for this difference, we further tested the models on hairless
facial images derived from fits using the 3D Morphable Model (Figure 2C, left). We
performed the analysis using either 50 PCs or 110 PCs (the dimension of the 3D
Morphable Model). In both cases, the 3D Morphable Model outperformed VGG-face,
VGG-19, CORnet-R, CORnet-S, Eigenface (Figure 2C). In the case with 110 PCs, it
even outperformed AlexNet, CORnet-Z and the 2D Morphable Model (Figure 2D).
For faces without hair, the 2D Morphable Model also performed significantly better
than all of the neural network models.

Furthermore, the use of the facial images generated by the 3D Morphable Model
allowed us to test a Hebbian learning model recently proposed to account for face
patch responses (Leibo et al., 2017). This model posits that the weights of face cells,
learned through Hebbian learning, converge to the top PCs of the neuron’s past
inputs, and these inputs should generically constitute short movies of faces rotating
in depth. The 3D Morphable Model allowed us to readily synthesize a set of facial
images at multiple views and thus test the Hebbian model (see Methods). The
Hebbian model performed better than the VGGs, CORnet-R and Eigenface models,
comparably to CORnet-S (p=0.09 for 50 PCs and p=0.17 for 110 PCs), and worse
than the 2D Morphable Model, 3D Morphable Model, AlexNet, and CORnet-Z (Figure
2C,D; note that the difference between the Hebbian model and AlexNet was not
significant for 50 PCs, with p=0.06).

Finally, we performed a more detailed comparison between the 2D morphable model
and another generative model, β-VAE, whose latent units are encouraged to encode
semantically meaningful variables, otherwise known as disentangled variables. β-
VAE contains an encoder that transforms the image input into a vector of
disentangled latent variables and a decoder that transforms the vector back into an
image. The encoder is implemented with a convolutional neural network, similar to
other network models. A recent analysis of the same data set as in the present paper
found that a subset of single AM cells have selectivity remarkably matched to that of
single β-VAE latents, suggesting that AM and β-VAE have converged, at least
partially, upon the same set of parameters for describing faces (Irina Higgins,
personal communication). In particular, the single-neuron alignment between AM and
β-VAE was better than that for any other model including the 2D morphable model.
Thus we wanted to address in detail how β-VAE compares to the 2D morphable
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model by the metric of neural population encoding. Due to variations in training
parameters, 400 different β-VAE models were trained, each with 50 latent units. For
the comparison in Figure 2A, we chose the β-VAE with the least encoding error. We
further compared encoding performance of all 400 β-VAE models to that of the 2D
morphable model. Close inspection revealed that some of the latent units have much
smaller variance than other units in response to 2100 faces, thus we removed those
units with variance <0.01. We found for both β-VAE and 2D Morphable model
encoding errors decreased when the dimensionality increased, as one might expect,
since more dimensions are available for capturing the information present in the
neural responses, and the 2D Morphable model performed better than β-VAE models
at matched feature dimensions (Figure 2E, p<0.05 in all cases, p<0.01 for
dimension=10 or ≥18). However, among the 400 β-VAEs reported in Figure 2E,
many models did not learn a well disentangled representation, hence failing at one of
the optimisation objectives. Therefore, we also compared the 2D Morphable model to
a subset of β-VAEs where the units were well disentangled (based on the
unsupervised disentangled ranking (UDR) score for each β-VAE, see Methods), and
found that the encoding performance difference was not significant at low dimensions,
but the 2D Morphable model performed better for feature dimensions=6, 10 and 12
(Figure 2E, inset). Thus we conclude that by the metric of neural encoding
performance, the 2D morphable model outperforms other generative models,
including both β-VAE and Eigenface models, and performs similarly to disentangled
β-VAEs at lower dimensions.

Next, we asked the complementary question: how well could we predict the model
features by linear combinations of neural responses of face cells? The same
procedure as the encoding analysis was followed, except that the respective roles
played by model features and neural responses were reversed. The results for this
decoding analysis were largely consistent with encoding analysis (Figure 3, Figure
S1A). For the original images and images without the background, the 2D Morphable
model performed better than all other models except CORnet-Z (p=0.06 for original
images, p=0.07 after background removal). For images generated by the 3D
Morphable model, the 2D Morphable model outperformed all other models except the
3D Morphable model (p=0.68 for 50-d model, p<0.001 for 110-d model). Comparing
the 2D Morphable model with β-VAEs at matched dimensions, we found that the two
models were comparable at dimensions≤18 (Figure 3E), but the 2D Morphable model
performed better at higher dimensions. The fact that the performance of the two
models were more comparable in both decoding and encoding at low dimensions
(Figures 2E, 3E) suggests that with certain training parameters, β-VAE was efficient
at extracting a small number of meaningful features, but the number of disentangled
features discovered in this way may not be sufficient to achieve a good performance
in decoding/encoding. To better illustrate the relationship between feature
dimensionality, encoding/decoding errors and disentanglement, we quantified the
quality of disentanglement achieved by β-VAE models by the UDR score as before.
We found positive correlations between the encoding/decoding errors and UDR
(Figure 2F and 3F), and a negative correlation between the number of informative
features and UDR (Figure S1B). These results support the idea that the objective of
disentanglement encourages the model to converge to a small number of informative
features, at the expense of the overall explanatory power of the face code in the
brain.

Overall, our results suggest that linear combinations of features of the 2D Morphable
Model were closely related to the responses of face cells, achieving encoding and
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decoding performance comparable to even the best neural network models
developed recently (Figure 2 and 3), while at the same time using a simple and
transparent representation that does not involve hundreds of thousands of “black
box“ parameters. This result also extends our previous finding from synthetic faces to
real faces (Chang and Tsao, 2017). The similar performance of several of the models
to the 2D Morphable Model (e.g., AlexNet and CORnet-Z in Figure 2A and 3A) raises
the question whether these other models are simply linear transformations of the 2D
Morphable Model, or whether they provide “additional” features that could help
explain neural responses.

To address this question, we plotted both neural responses and model features in the
space of the 2100 face stimuli, with each neuron represented by a 2100-d vector
corresponding to the response of the neuron to the 2100 faces, and each feature
represented by a 2100-d vector corresponding to the value of that feature across the
2100 faces. If the response of a neuron can be expressed as a linear combination of
the top 50 features of a specific model, then the 2100-d response vector of the
neuron should lie in a 50-d linear subspace spanned by the feature vectors for that
model (since ��� � ������ �� ��t����t, where ��� is the response vector of the neuron, and
���� is the ith feature vector). To test whether this is the case, we projected the
response of each neuron onto the subspace spanned by each model (Figure 4A).
The vector length of the projection quantifies how well linear combination of model
features explains the responses. We performed PCA on the set of projection vectors
to quantify how well model features explain neuronal responses at the population
level. The top PCs identify directions in the 50-d subspace explaining the largest
variance of neural data. Cumulative explained variance was then computed (Figure
4B-E). This analysis was performed using either facial images without background or
hair-free reconstructions by the 3D Morphable Model as model inputs. For facial
images without background, the 2D Morphable Model and CORnet-Z accounted for
the most variance across all models, followed by AlexNet, CORnet-R, CORnet-S,
Eigenface, 3D Morphable Model, VGG-19 and VGG-face (Figure 4B, solid lines). For
hair-free reconstructions, the 2D Morphable Model accounted for the most variance,
followed by CORnetZ, the 3D Morphable Model, AlexNet, CORnet-S, VGG-19,
CORnet-R, Eigenface and VGG-face (Figure 4D, solid lines). The ordering was quite
consistent with the previous quantification using encoding errors (cf. Figure 2).

Next, we wanted to know how different models deviate from the 2D Morphable Model
and how much variance could be accounted by such deviations; in other words, to
what extent do the different face space models encode distinct face subspaces?
Towards this aim, we first orthogonalized each feature of one model to 50 features of
the 2D Morphable Model, with the linear combinations of the orthogonalized features
forming the orthogonalized subspace. Then we quantified variances of neural
responses accounted by each orthogonal model, as we did previously for the full
model (dashed lines in Figure 4B and D). Overall, we found variances explained by
orthogonal models to be much smaller than that by full models (the gray trace
indicates chance level computed by randomly shuffling neural responses to different
faces), suggesting other models provide limited “additional” features to explain neural
responses. For facial images without background, orthogonalized CORnet-Z
accounted for the most variance across all models, followed by AlexNet, CORnet-R,
CORnet-S, VGG-19, VGG-face, 3D Morphable Model and Eigenface (Figure 4B,
dashed lines). For hair-free reconstructions, orthogonalized CORnet-Z accounted for
the most variance across all models, followed by CORnet-S, AlexNet, CORnet-R,
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VGG-19, 3D Morphable Model, VGG-face and Eigenface (Figure 4D, dashed lines).
Furthermore, we asked the opposite question: what happens when the 2D Morphable
Model is orthogonalized to other models? Again, we found variances explained by
the orthogonalized 2D Morphable Model to be much smaller than the full 2D
Morphable Model, indicating that the 2D Morphable Model features significantly
overlap those of other models. However, a significant extent of non-overlap was also
found (dashed lines in Figure 4C, E). For facial images without background, the most
explained variance was achieved by the 2D Morphable Model orthogonalized to
VGG-face, followed by VGG-19, 3D Morphable Model, Eigenface, CORnet-S,
CORnet-R, AlexNet and CORnet-Z (Figure 4C, dashed lines). For hair-free
reconstructions, the most explained variance was achieved by the 2D Morphable
Model orthogonalized to VGG-face, followed by Eigenface, CORnet-R, VGG-19,
CORnet-S, AlexNet, CORnet-Z and 3D Morphable Model (Figure 4E, dashed lines).

In the above analysis, models were compared with respect to the amount of variance
they could explain in the neural responses. We also asked how well each model
could explain features of other models through linear regression, independent of
neural responses. To address this, we repeated the analysis of Figure 4, but instead
of using real neurons, we constructed 159 simulated neurons by linear combinations
of features of a particular model. These simulated responses were then projected
into the subspace spanned by features of the same model (e.g., simulated neurons
of AlexNet were projected into the subspace of AlexNet features) (Figure S2A, solid
lines), as well as the subspace spanned by the same model features orthogonalized
to the 2D Morphable Model (Figure S2A, dashed lines). As expected, the solid lines
all approach 1, since the same models were used to both simulate and predict
responses. Substantial variance was explained by features orthogonal to the 2D
Morphable Model (Figure S2A, dashed lines), suggesting the models do provide
additional features beyond those of the 2D Morphable Model. However, not all of
these features help to explain neural responses. For example, the Eigenface model
contains a sizable component orthogonal to the 2D Morphable Model (Figure S2A),
but the amount of variance explained by the component of the Eigenface model
orthogonal to the 2D Morphable Model was only slightly higher than chance level
(Figure 4B). We also used the 2D Morphable Model to simulate neuronal responses,
and asked how well 2D Morphable features orthogonal to each of the other models
explain 2D Morphable features (dotted traces in Figure S2B, analogous to Figure 4C).
The most variance was explained by the component of the 2D Morphable Model
orthogonal to Vgg-face, while the least variance was explained by the component
orthogonal to Eigenface. Finally, to compare all model pairs on equal footing, Figure
S2C plots the amount of variance in each 50-feature face model explained by each of
the other models. Interestingly, the 2D Morphable Model explained as much variance
in CORnet-Z features as AlexNet. This shows that for the subspace of faces, an
explicit generative model of face representation, the 2D Morphable Model, can do as
good a job at explaining CORnet-Z features as a deep network explicitly built with
similar architectural principles and training procedure (AlexNet).

Finally, we wanted to gain some insight into why AlexNet outperforms VGG-face in
explaining neural responses, demonstrated by both the encoding/decoding analysis
(Figure 2A-D, Figure 3A-D) and the explained variance analysis (Figure 4B, D, solid
traces). This is surprising since AlexNet is not trained to classify any face images
(albeit some images within the different training classes do contain faces), while Vgg-
face is trained exclusively to identify face images. We started by computing similarity
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matrices (Kriegeskorte et al., 2008) for neural population responses from face patch
AM (Figure 5A1). Here each entry of the matrix represents the similarity between a
pair of faces, quantified as correlation between population responses to the face pair.
The same analysis was repeated with the top 50 PCs of deep features from AlexNet
or VGG-face (Figure 5A2, A3). There is a clear difference between the similarity
matrix for VGG face compared to those for AM and Alexnet features. Similarity
matrices for both AM and AlexNet features show a dark cross with a bright center,
but this is not the case for VGG face. We computed the difference between the Vgg-
face and AlexNet matrices (Figure 5A4), and then shuffled the rows and columns
according to the first principle component of the difference matrix (Figure 5A5). After
sorting, positive entries tended to be located at the bottom-left and the upper-right
corner (square outlines in Figure 5A5): here a positive difference indicates the two
faces are more similar under features of VGG-face than AlexNet; therefore the faces
at the opposite ends of PC1 are more likely to be confused by VGG-face. What do
the faces at the two extremities look like? To examine the difference, we picked the
first 100 faces and last 100 faces along the direction of PC1, and divided them into
20 groups of 10 faces. An average face after shape normalization was generated for
each group (Figure 5B). We see an interesting difference: The first 10 groups of
faces show inhomogeneous illumination--some parts of faces, such as cheeks and
hair, are brighter than other parts of the face, such as the mouth, while the last 10
groups of faces appear more homogeneously illuminated.

In the analyses of Figure 5, we used a database, CAS-PEAL, which contains only
Chinese faces. Is this observation unique to Chinese faces? We repeated the same
analysis for 748 Caucasian faces. Similar to CAS-PEAL faces, we found that the face
groups eliciting a much more similar representation by Vgg-face compared to
AlexNet consisted of faces with unbalanced versus homogeneous illumination
(Figure S3). In sum, we found that VGG-face is much less sensitive to illumination
differences than both AM cells as well as AlexNet, and this likely contributes to the
inferior ability of Vgg-face to predict AM responses compared to AlexNet.

Discussion

Face processing has been a subject of intense research effort in both visual
neuroscience and computer vision, naturally raising the question, what, if any,
computer vision model of face representation best matches that used by the primate
brain. A recent paper found the 2D Morphable Model, a classic model of face
representation from computer vision, could explain neural activity in face patches
remarkably well (Chang and Tsao, 2017). At the same time, a number of groups
have found that activity in deep layers of convolutional neural networks can explain
significant variance of neural responses in ventral temporal cortex (Yamins et al.,
2014; Kalfas et al., 2017; Yildirim et al., 2020; Schrimpf et al., 2018). Here, we extend
those results by comparing the efficacy of a large number of different computational
models of face representation to account for neural activity in face patch AM. We
were especially interested in how the 2D morphable model, a simple and explicit
graphical model, would compare to Vgg-face, a black box deep neural network
dedicated to face recognition containing hundreds of thousands of parameters and
trained on nearly a million (982,803) facial images. Our findings suggest that the 2D
Morphable Model is better than most other models in explaining the neuronal
representation of real faces including Vgg-face. For faces without background, the
2D Morphable Model allowed better linear coding of neural responses by model
features than every model except CORnet-Z, whose performance it matched;
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specifically, the 2D Morphable Model performed worse than CORnet-Z for faces with
both hair and backgrounds, comparably to CORnet-Z for faces with no backgrounds,
and better than CORnet-Z for faces without hair reconstructed by 3D Morphable
Model. This is surprising, since the 2D Morphable Model is one of the oldest models
(next to the Eigenface model). Comparison of the subspaces spanned by the
different models revealed that of the different neural network models, CORnet-Z
spanned the largest feature space in common with the 2D Morphable Model, both in
absolute terms (Figure S2C, row 1) as well as for the purpose of explaining neural
responses (Figure 4C, E). Furthermore, the 2D Morphable Model could explain
CORnet-Z features as well as AlexNet, a deep network whose architectural principles
and training procedure CORnet-Z explicitly emulates (Figure S2C, row 7). These
results suggest that the face subspace portion of the representation learned by
CORnet-Z may be interpreted in much simpler terms, as a shape appearance model.
The results provide an important counter-example to the increasingly popular view
that only distributed representations learned by multi-layer networks can well explain
IT activity (Kietzmann et al., 2018; Lillicrap et al., 2020). Why a network trained on
object classification should learn an approximation to a generative model of faces is
an interesting question for future research.

Overall, the 2D Morphable Model is composed of two components: a shape
component defined by positions of facial landmarks, and a shape-free appearance
(or texture) component defined by the intensity distribution of the facial image after
shape normalization. Neither component is exclusively bound to facial identity: a
slight rotation or change in facial expression will alter the shape coordinates, while
changes in lighting conditions will alter the appearance coordinates. Previously, we
found that AM cells deal with the former source of variation by largely ignoring
changes in shape dimensions (Chang and Tsao, 2017). Here, we find that for the
latter source of variation, AM cells do represent lighting in population responses,
consistent with the observation that our recognition of unfamiliar faces is susceptible
to changes in lighting conditions (Young and Burton, 2018). We believe this finding
partially explains the deviation of neural representation from models trained to largely
ignore lighting, e.g., Vgg-face (Figure 5).

A recent theoretical study found that a deep neural network, when trained on certain
tasks, gradually abandons information about the input unrelated to the task in its
deep layers (Tishby and Zaslavsky, 2017). Thus artificial neural networks are unlikely
to be fully identical to the brain, since the tasks both systems are trained on are
unlikely to be identical. It makes sense that VGG-face is not able to distinguish
illumination, since the identity of an individual doesn’t depend on illumination. Why
does AlexNet still contain information about illumination? It is possible this occurs
because AlexNet has not been trained specifically on face identification, and
illumination-related features are useful for more general object classification tasks
(e.g., distinguishing a concave hole from a convex bump (Ramachandran, 1988)). In
contrast, it appears that VGG-face is so specialized that any information unrelated to
identity is filtered out in the end.

The fact that AM neurons are more consistent with the 2D morphable model than
with VGG-face suggests macaque face cells are not over-specialized for facial
identification, but rather provide an array of high-level information related to different
aspects of faces in the visual field. Because the 2D Morphable Model retains all
information needed to reconstruct a face, it should be able to perform well on any
face-related task. Of course, preservation of information is not the only goal for visual
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representations in the brain, as the Eigenface model should be the model most
linearly related to the image input, but it does not perform as well as the 2D
Morphable Model or AlexNet. The format of information representation is also
important. Another example is β-VAE, which does not appear to preserve enough
information to perform as well as the 2D Morphable Model for encoding/decoding
neural responses at higher dimensions. At lower dimensions, however, β-VAE
models have similar encoding/decoding performance as the 2D Morphable Model
and furthermore show better single-neuron alignment with AM units (Irina Higgins,
personal communication).

The three CORnet models were recently developed and compared in terms of their
ability to explain general IT responses (not restricted to face patches) in another
study (Kubilius et al., 2018). CORnet-Z is the simplest model, which has a purely
feed-forward structure, while CORnet-R and CORnet-S are recurrent models. When
compared for ability to explain a dataset containing IT responses to a set of general
object stimuli with a large range of variations in orientation, size, and locations, it was
found that CORnet-S performed best and CORnet-Z worst among the three CORnets
(cf. Figure 3 in Kubilius et al., 2018). This is quite different from our results, where
CORnet-Z was the best model for encoding face cell responses. This could be a
result of stimulus selection: the recurrent layers could help establish invariance in
complex/difficult situations, but may not be a big advantage in our case, since our
stimuli are well aligned. This suggests the results of model comparison depend on
the stimuli being used in the study.

Overall, our analyses comparing a large number of models in terms of their ability to
explain responses of cells in face patch AM show that a simple and explicit
generative face model, the 2D Morphable Model, performs surprisingly well—rivaling
or surpassing the deep network classifiers considered. This result supports the
hypothesis that deep networks may be generally understood as inverting generative
models (Lin and Tegmark, 2016; Ho et al., 2018), and raises the possibility that
mechanisms underlying general object recognition may be understood in similar
explicit terms without relying on “black box” neural networks. Furthermore, the
extremely poor performance of a deep network trained for face recognition in
explaining face cell responses may give insight into face patch development, raising
the possibility that it may be optimized not for face recognition per se but instead for
face reconstruction supporting arbitrary face-related behaviors.

STAR Methods

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Experimental Models: Organisms/Strains
Rhesus macaques (Macaca mulatta) UC Davis primate

research center
N/A

Software and Algorithms
MATLAB MathWorks http://mathworks.c

om/
MatConvNet VLFeat http://www.vlfeat.o

rg/matconvnet
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Basel face model Gravis Research Group,
University of Basel

https://github.com/
unibas-
gravis/basel-face-
pipeline

Menpo Intelligent Behaviour
Understanding Group,
Imperial College London

http://www.menpo
.org

Other
Tungsten Microelectrode FHC Lot #:221355

Experimental Model Details

Two male rhesus macaques (Macaca mulatta) of 7-10 years old were used in this
study. Both animals were pair-housed and kept on a 14 hr/10hr light/dark cycle. All
procedures conformed to local and US National Institutes of Health guidelines,
including the US National Institutes of Health Guide for Care and Use of Laboratory
Animals. All experiments were performed with the approval of the Caltech
Institutional Animal Care and Use Committee (IACUC).

Face Patch Localization

Two male rhesus macaques were trained to maintain fixation on a small spot for juice
reward. Monkeys were scanned in a 3T TIM (Siemens, Munich, Germany) magnet
while passively viewing images on a screen. Feraheme contrast agent was injected
to improve signal/noise ratio. Face patches were determined by identifying regions
responding significantly more to faces than to bodies, fruits, gadgets, hands, and
scrambled patterns, and were confirmed across multiple independent scan sessions.
Additional details are available in previous publications (Freiwald and Tsao, 2010;
Ohayon et al., 2012; Tsao et al., 2006).

Single-unit Recording

Tungsten electrodes (18–20 Mohm at 1 kHz, FHC) were back loaded into plastic
guide tubes. Guide tubes length was set to reach approximately 3–5 mm below the
dura surface. The electrode was advanced slowly with a manual advancer (Narishige
Scientific Instrument, Tokyo, Japan). Neural signals were amplified and extracellular
action potentials were isolated using the box method in an on-line spike sorting
system (Plexon, Dallas, TX, USA). Spikes were sampled at 40 kHz. All spike data
were re-sorted with offline spike sorting clustering algorithms (Plexon). Only well-
isolated units were considered for further analysis.

Behavioral Task and Visual Stimuli

Monkeys were head fixed and passively viewed the screen in a dark room. Stimuli
were presented on a CRT monitor (DELL P1130). The intensity of the screen was
measured using a colorimeter (PR650, Photo Research) and linearized for visual
stimulation. Screen size covered 27.7*36.9 visual degrees and stimulus size spanned
5.7 degrees. The fixation spot size was 0.2 degrees in diameter and the fixation
window was a square with the diameter of 2.5 degrees. Images were presented in
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random order using custom software. Eye position was monitored using an infrared
eye tracking system (ISCAN). Juice reward was delivered every 2–4 s if fixation was
properly maintained. For visual stimulation, all images were presented for 150 ms
interleaved by 180 ms of a gray screen. Each image was presented 3–5 times to
obtain reliable firing rate statistics. In this study, two different stimulus sets were used:

a) A set of 16 real face images, and 80 images of objects from nonface categories
(fruits, bodies, gadgets, hands, and scrambled images) (Freiwald and Tsao, 2010;
Ohayon et al., 2012; Tsao et al., 2006).

b) A set of 2100 images of real faces from multiple face databases, FERET face
database(Phillips et al., 2000; Phillips et al., 1998b), CVL face database(Solina et al.,
2003), MR2 face database(Strohminger et al., 2016), PEAL face database(Gao et al.,
2008), AR face database(Martinez and Benavente, 1998), Chicago face
database(Ma et al., 2015) and CelebA database(Yang et al., 2015). 17 online photos
of celebrities were also included.

Quantification and Statistical Analysis

Selection of face selective cells

To quantify the face selectivity of individual cells, we defined a face-selectivity index
as:

�რഺ � �t�� �tݏ����t���t��t�� �tݏ����t������t �ܾ�t�݁�
�t�� �tݏ����t���t ��t�� �tݏ����t������t �ܾ�t�݁�

(1)

The number of spikes in a time window of 50-350 ms after stimulus onset was
counted for each stimulus. Units with high face selectivity (FSI > 0.33) were selected
for further recordings.

Extraction of facial feature from images

Each facial image was fed into the following models to extract corresponding features:

1) 2D Morphable Model

This is the same model as used in our previous paper (Chang and Tsao, 2017) and
feature extraction followed the procedure of previous papers on active appearance
modeling (Cootes et al., 2001; Edwards et al., 1998). First, a set of 80 landmarks
were labeled on each of the 2100 facial images. Out of the 80 landmarks, 68 were
automatically labeled using an online package (“menpo”, http://www.menpo.org) and
the remaining 12 were manually labeled. The positions of landmarks were
normalized for mean and variance for each of the 2100 faces, and an average shape
template was calculated. Then each face was smoothly warped so that the
landmarks matched this shape template, using a technique based on spline
interpolation (Bookstein, 1989). This warped image was then normalized for mean
and variance and reshaped to a 1-d vector. Principal component analysis was carried
out on positions of landmarks and vectors of shape-free intensity independently.
Equal numbers of shape PCs and shape-free appearance PCs were extracted to
compare with other models (25 shape/25 appearance PCs vs. 50 features of other
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models; 55 shape/55 appearance PCs vs. 110 features of other models). This model
was also used to generate images without background used in Figure 2B. In this
case, we first morphed all 2100 faces to the shape template, defined a mask for the
standard shape to remove the background, and then morphed the masked facial
image back to the original shape.

2) 3D Morphable Model

We built a grayscale variant of the Basel Face Model (Paysan et al., 2009) from the
original 200 face scans. The ill-posed 3D reconstruction from a 2D image was solved
using (Schonborn et al., 2017) and the publicly available code from (Gerig et al.,
2018). The first 50 principal components for the shape and color model respectively
were adapted during the model adaptation process. The sampling-based method
was initialized with the same landmarks as provided to the 2D Morphable Model. The
pose was fixed to a frontal pose and the spherical harmonics illumination parameters
were estimated robustly using (Egger et al., 2018) and the average illumination
condition was fixed for the whole dataset. Note that the full complexity and flexibility
of the 3DMM is not explored when analyzing frontal images only. Besides the model
adaptation novel views where generated using the standard 3DMM pipeline by
changing the head orientation and camera parameters. The images with varying
head orientations were used to construct the Hebbian learning model (see below).

3) Eigenface model

PCA was performed on the original image intensities of 2100 faces and top
50/110PCs were extracted to compare with other models.

4) Pre-trained neural network models

We loaded 2100 facial images into the following pre-trained neural networks: (1) a
MATLAB implementation of AlexNet: This network contains 8 layers: 5 convolutional
layers and 3 fully connected layers, and has been pre-trained to identify a thousand
classes of non-face objects. (2) a MATLAB implementation of Vgg-face neural
network (Parkhi et al., 2015). This network contains 16 layers: 13 convolutional
layers+3 fully connected layers, and has been pre-trained to recognize faces of 2622
identities. (3) a MATLAB implementation of Vgg-19 neural network (Simonyan and
Zisserman, 2015). This network contains 19 layers: 16 convolutional layers and 3
fully connected layers, and has been pre-trained to identify a thousand objects. (4) a
PyTorch implementation of CORnet (Kubilius et al., 2018). The CORnet family
includes three networks: CORnet-Z, CORnet-R, and CORnet-S. All three models
have four areas that are identified with cortical areas V1, V2, V4, and IT. CORnet-Z is
the simplest model of the three, involving only feedforward connections, CORnet-R
introduces recurrent dynamics within each area into the otherwise purely feed-
forward network, and CORnet-S is the most complicated (containing the most
convolutional layers and including skip connections), aiming to match neural and
behavioral data. The three CORnet models have been pre-trained to identify a
thousand classes of objects. Parameters of the first three pretrained networks were
downloaded from: http://www.vlfeat.org/matconvnet/pretrained/. CORnets were
downloaded from https://github.com/dicarlolab/CORnet. PCA was performed on
activation of units in the penultimate layers (IT area in the case of CORnet), and top
50/110PCs were extracted to compare with other models.

5) β-VAE model
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We used the standard architecture and optimisation parameters introduced in
(Higgins et al., 2017) for training the β-VAE. The encoder consisted of four
convolutional layers (32x4x4 stride 2, 32x4x4 stride 2, 64x4x4 stride 2), followed by a
256-d fully connected layer and a 50-d latent representation. The decoder
architecture was the reverse of the encoder. We used ReLU activations throughout.
The decoder parametrised a Bernoulli distribution. We used Adam optimiser with 1e-
4 learning rate and trained the models for 1 mln iterations using batch size of 16,
which was enough to achieve convergence. The models were trained to optimise the
following disentangling objective:
Lβ−V AE = Ep(x)[ Eqφ(z|x)[log pθ (x|z)]− βK L(qφ(z|x) || p(z)) ] (2)

where p(x) is the probability of the image data, q(z|x) is the learnt posterior over the
latent units given the data, and p(z) is the unit Gaussian prior with a diagonal
covariance matrix.

For the β-VAE model the main hyperparameter of interest that affects the quality of
the learnt latent units is the value of β. The β hyperparameter controls the degree of
disentangling achieved during training, as well as the intrinsic dimensionality of the
learnt latent representation (Higgins et al., 2017). Typically a β>1 is necessary to
achieve good disentangling, however the exact value differs for different datasets.
Hence, we trained 400 models with different values of β by uniformly sampling 40
values of β in the [0.5, 20] range. Another factor that affects the quality of
disentangled representation is the random initialisation seed for training the models.
Hence, for each β value, we trained 10 models from different random initialisation
seeds, resulting in the total pool of 400 trained β-VAE.

The recently proposed Unsupervised Disentanglement Ranking (UDR) score (Duan
et al., 2020) was used to select 51 model instances with the most disentangled
representations (within the top 15% of UDR scores). The UDR score measures the
quality of disentanglement achieved by trained β-VAE models by performing pairwise
comparisons between the representations learnt by models trained using the same
hyperparameter setting but with different seeds (Duan et al., 2020).

6) Hebbian learning model

This is a biologically plausible model recently proposed to explain view invariance in
face cells (Leibo et al., 2017). V1-like features (C1-layer of HMAX model) were
extracted from the facial images. PCA was performed on V1-like encodings of a
single identity at different head orientations: the ith PC of the kth identity is denoted as
��
�. The activation of the kth unit to a given face is �� � � ���

�� ��t��
���, where � is

the V1-like encoding of that face, and � is the number of PCs being used. In our
experiment, we used rotated versions of the fitted 3D Morphable Models (from -90ºto
90º in 5ºincrements) as inputs to this model (Figure 2C, 3C), resulting in 2100 such
units. PCA was performed on activation of the 2100 units, and the top 50/110PCs
were extracted. Since the 3D Morphable Model only fits part of the face and may not
provide a satisfactory explanation of neural responses to full faces, we only
implemented the Hebbian model on 3D-fits of the original images and compared it to
other models under the same condition (Figure 2C, 2D, 3C, 3D).

Quantification of encoding and decoding errors

For encoding analysis, responses of each neuron were first normalized to zero mean
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and unit variance. A 50-fold cross-validation paradigm was performed: 2100 faces
were split into 10 groups of 42 faces. Responses of each neuron to 49 groups of
faces were fit by a linear regression model using PCs of a set of features, and the
responses of this neuron to the remaining group of 42 faces were predicted using the
same linear transform. This process was repeated for all ten groups, so every single
face had a predicted response. To quantify prediction accuracy, we examined the
predicted responses to individual faces in the space of population responses, and
compared this to either the actual response to the face (target) or that to a distractor
face. If the angle between the predicted response and distractor response is smaller
than that between the predicted response and target response, this was considered
as a mistake. Encoding error was quantified as the frequency of mistakes across all
pairs of target and distractor faces. Wilcoxon signed rank test was used to determine
statistical significance of difference between two models.

For decoding analysis, features of each model dimension were first normalized to
zero mean and unit variance. The same procedure used in the encoding analysis
was employed, except that the respective roles played by neural responses and
model features were reversed.

Similarity matrix

Based on the normalized population response, a similarity matrix of correlation
coefficients was computed between the population response vectors to each of the n
faces. For neural network models, top 50 PCs of activation of units in the penultimate
layers of the networks were used to represent faces.

Figure Legends:

Figure 1. Stimulus and analysis paradigm.

A, 2100 facial photos from multiple face databases were used in this experiment.
Three examples are shown. [Note that the facial images shown here and in Figures
2-4 are synthetically generated faces that serve as stand-ins for the actual example
faces in order to satisfy bioRxiv’s policy on the use of images of human faces; they
are not from the database and were not shown to the monkeys.] B, Images were
presented to the animal while recording from the most anterior face patch AM
(anterior medial face patch). C, Each facial image was analyzed using 10 different
models. The same number of features were extracted from units of different models
using principal component analysis (PCA) for comparison. D, Different models were
compared with respect to how well they could predict neuronal responses to faces. A
10-fold cross-validation paradigm was employed for quantification: 2100 faces were
evenly distributed into 10 groups. Responses of each neuron to 9 groups were fit by
linear regression using features of a particular face model, and the responses of this
neuron to the remaining 210 faces were predicted using the same linear transform.
To quantify prediction accuracy, we compared predicted responses to individual
faces in the space of population responses to either the actual response to that face
or that to a distractor face. If the angle between predicted response and target
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response is smaller than that between predicted response and distractor response,
the prediction is considered correct. All pairs of faces were used as both target and
distractor and the proportion of correct predictions was computed.

Figure 2. Comparing how well different models of face coding can explain AM
neuronal responses to facial images.

A, For each model, 50 features were extracted using PCA and used to predict
responses of AM neurons. Encoding errors are plotted for each model. Error-bars
represent s.e. for 2100 target faces (i.e., error was computed for each target face
when comparing to 2099 distractors, and s.e. was computed for the 2100 errors).
CORnet-Z performed significantly better than the other models (p<0.001 in all cases
except from the 2D Morphable Model, p<0.01 between CORnet-Z and the 2D
Morphable Model, Wilcoxon signed-rank test), and the 2D Morphable Model
performed significantly better than the remaining models (p<0.001). B, To remove
differences between models arising from differential encoding of image background,
face images with uniform background were presented to different models (see
Methods). CORnet-Z and 2D Morphable Model performed significantly better than
the other models (p<0.001), with no significant difference between the two models
(p=0.76). C, To create facial images without hair, each facial image in the database
was fit using a 3D Morphable Model (left). [Note that the 3D morph fit shown here
and in subsequent figures is a synthetically generated face that serves as a stand-in
for the actual example 3D morph fit in order to satisfy bioRxiv’s policy on the use of
images of human faces.] The fits were used as inputs to each model. For example, a
new 2-D Morphable Model was constructed by morphing the fitted images to an
average shape. 50 features were extracted from each of the models using PCA for
comparison. D, Same as C, but for 110 features. For 50 features, the 2D Morphable
Model performed significantly better than the other models (p<0.001), while there
was no significant difference between 3D Morphable Model and CORnetZ (p=0.13).
For 110 features, the 3D Morphable Model outperformed all other models (p<0.001).
E. Encoding errors for 400 β-VAEs after removing dimensions with variance<0.01
were compared with the 2D Morphable model at equivalent dimensions (equal
number of shape and appearance dimensions were chosen for the 2D Morphable
model). Wilcoxon signed-rank test was employed to compare the two models after
performing 50-fold cross validation (*=p<0.05; **=p<0.01; n.s.=not significant). Inset,
for the 51 most disentangled VAEs, subsets of features explaining the most variance
of each model were compared to the 2D Morphable model at equivalent dimensions
(since equal number of shape and appearance dimensions were selected for the 2D
Morphable model, only even number of total dimensions were shown here). F.
Encoding errors for all 400 β-VAEs were plotted against UDR score (left: full model;
right: partial model after removing dimensions with variance<0.01).

Figure 3. Comparing how well AM neuronal responses to facial images can
explain different models of face coding.

A, For each model, 50 features were extracted using PCA and responses of AM
neurons were used to predict the model features. Decoding errors are plotted for
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each model. Error-bars represent s.e. for 2100 target faces (i.e., error was computed
for each target face when comparing to 2099 distractors, and s.e. was computed for
the 2100 errors). CORnet-Z performed significantly better than the other models
(p<0.001) except from the 2D Morphable Model (p=0.06, Wilcoxon signed-rank test),
and the 2D Morphable Model performed significantly better than the remaining
models (p<0.001). B, To remove differences between models arising from differential
encoding of image background, face images with uniform background were
presented to different models (see Methods). CORnet-Z and 2D Morphable Model
performed significantly better than the other models (p<0.001), with no significant
difference between the two models (p=0.07). C, To create facial images without hair,
each facial image in the database was fit using a 3D Morphable Model (left). The fits
were used as inputs to each model. For example, a new 2-D Morphable Model was
constructed by morphing the fitted images to an average shape. 50 features were
extracted from each of the models using PCA for comparison. D, Same as C, but for
110 features. For 50 features, the 2D Morphable Model and 3D Morphable model
performed significantly better than the other models (p<0.001), with no significant
difference between the two models (p=0.68). For 110 features, the 3D Morphable
Model outperformed all other models (p<0.001). E. Decoding errors for 400 β-VAEs
after removing dimensions with variance<0.01 were compared with the 2D
Morphable model at equivalent dimensions (equal number of shape and appearance
dimensions were chosen for 2D Morphable model). Wilcoxon signed-rank test was
employed to compare the two models after performing 50-fold cross validation
(*=p<0.05; **=p<0.01; n.s.=not significant). Inset, for the 51 most disentangled VAEs,
subsets of features explaining the most variance of each model were compared to
the 2D Morphable model at equivalent dimensions (since equal number of shape and
appearance dimensions were selected for the 2D Morphable model, only even
number of total dimensions were shown here). F. Decoding errors for all 400 β-VAEs
were plotted against UDR score (left: full model; right: partial model after removing
dimensions with variance<0.01).

Figure 4. Measuring explanatory subspace overlap between the 2D Morphable
Model and other models

A, Analysis paradigm. Each neuron/model feature is represented by a single 2100-d
vector, with each dimension representing response/feature value for one face. 50-d
features of one model span a subspace of the 2100-d space. If responses are
perfectly predicted by 50-d model features, i.e., ��� � ���� , where ��� is an n-d neural
response vector, M is an n x 50 matrix determined through linear regression, and ��� is
the 50-d feature vector of the face, then neuron responses should span a subspace
within that spanned by model features. Response vectors were projected onto each
model subspace, and PCA was performed on the projected features (left). To
compare two different face spaces, one of the model’s features were first
orthogonalized to the other model, and the orthogonalized features span another
subspace (right). The same analysis as the original model can be performed for the
orthogonalized space. B, Cumulative eigenvalues after PCA are plotted for 9 models
(solid lines). Dashed lines indicate the results after othorgonalization to the 2D
Morphable Model. Gray lines are results after randomly shuffling neuronal responses.
C, The solid lines are the same as B, and dashed lines represent results of
orthogonalizing the 2D Morphable Model to the other models. Image background was
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removed before presenting the image to the network models (cf. Figure 2B). D and E,
Same as B and C, but using reconstructions by the 3D Morphable Model as inputs.

Figure 5. Vgg-face features and AlexNet features show marked difference in
coding illumination levels.

A, Similarity matrices were computed for 913 faces from CAS-PEAL database using
AM population responses (A1) and features of two network models, AlexNet (A2) and
Vgg-face (A3). Each entry indicates the correlation between representations of two
faces. The difference between the two matrices derived from the network models
was computed (A4). Rows and columns of the differential matrix were shuffled
according to the first principal component of the difference matrix (A5). The red
squares outline face pairs taken from the first and last 100 faces: these face pairs
showed a significantly representational similarity by Vgg-face compared to AlexNet.
B, First 100 faces and last 100 faces along the direction of PC1 were divided into 20
groups of 10 faces. An average face after shape normalization was generated for
each group. [Note that images shown here are not actual faces of any individuals, but
the average images of 10 faces after being morphed to the average shape, using the
same algorithm as the 2D Morphable Model.]

Supplementary Information

Figure S1. Further analysis on encoding and decoding. Related to Figures 2
and 3.

A, Comparison between encoding and decoding errors for all models. 50 features
were included in all cases. B, Relationship between the number of informative
features (variance≥0.01) and UDR score for all 400 β-VAEs.

Figure S2. Direct comparison between feature spaces spanned by different
models. Related to Figure 4.

A, Similar to Figure 4B, but instead of using responses of real neurons, 159
simulated neurons were constructed by linear combinations of features of a particular
model, i.e., ��� � ���� , where ��� is a response vector of 159 simulated neurons, M is a
159 x 50 matrix containing independent random variables following normal
distribution N(0,1), and ��� is the 50-d feature vector of the face. These simulated
responses were then projected into the subspace spanned by features of the same
model (solid lines), as well as the subspace spanned by the same model features
orthogonalized to the 2D Morphable Model (dashed lines). B, Simulated responses
using 2D Morphable Model projected into the subspace by features of other models
(solid lines), as well as the subspace spanned by 2D Morphable Model
orthogonalized to those models (dashed lines). C, For each pair of two different
models (X,Y), features of model X were fitted by features of model Y, both using 50
feature dimensions (PCs). Explained variances were then averaged across the 50
PCs of model X, weighted by the variance of the original features explained by each
PC. The averaged explained variances of all model pairs were then color-coded and
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plotted as a matrix, with its rows representing model Xs, and columns representing
model Ys

Figure S3. Comparison between VGG-face and AlexNet for Caucasian faces.
Related to Figure 5.

Same as Figure 5B, but for 748 Caucasian faces we presented. To attenuate the
influence of diverse image backgrounds in multiple databases, we removed the
background before presenting images to the networks (cf. Figure 2B). [Note that
images shown here are not actual faces of any individuals, but the average images of
10 faces after being morphed to the average shape, using the same algorithm as the
2D Morphable Model.]
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Figure 4
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Figure S1
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Figure S2
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