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Abstract  
Depressed individuals show an attentional bias toward negatively valenced stimuli and thoughts. 

Here we present a novel closed-loop neurofeedback procedure that seeks to remediate this bias. 

Internal attentional states were detected by applying machine learning techniques to fMRI data in 

real-time, and externalized using a visually presented stimulus that the participant could learn to 

control. We trained 15 depressed and 12 healthy control participants over three fMRI sessions, 

preceded and followed by behavioral and clinical assessments. Initially, depressed participants 

were more likely than non-depressed participants to get “stuck” in negative attentional states, but 

this diminished with neurofeedback training relative to controls. Depression severity also 

decreased from pre- to post-training. These results demonstrate that our method is sensitive to the 

negative attentional bias in depressed individuals, and its reduction after training showcases the 

potential of this method as a treatment in the future. 
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MAIN ARTICLE TEXT  
INTRODUCTION 

Depressed individuals process negative stimuli differently from healthy participants, leading to 

differences in attention, memory, and cognitive control (1-5). Depressed participants also tend to 

show larger and more prolonged neural responses to negative stimuli (6). This may manifest 

clinically as rumination, or the automatic replay of negative thoughts (1, 7). Given that depressed 

participants attend more to negative information, researchers have designed paradigms to train 

participants to reduce this negative bias, and ultimately, depression severity (1, 4). 

 One common approach is Attention Bias Modification (ABM) training, which involves 

learning to shift overt spatial attention away from negative stimuli and/or towards positive stimuli 

(8-12). Another training approach, Cognitive Bias Modification for Interpretation (CBM-I; 13), 

involves learning to adopt the positive interpretation of an ambiguous situation (e.g., 14). 

 Following these forms of training, participants typically display the reinforced behavior, 

for example, attending less to negative stimuli (12, 15). However, transfer to clinical measures 

(e.g., reduced depression severity or self-reported rumination) has been inconsistent (2, 16-18). A 

potential limitation of the aforementioned studies is their use of pre-programmed training 

schedules; recent approaches to attention training have taken a more adaptive approach, providing 

behavior-based real-time feedback based on mouse position (19) or eye fixation (20-21). Although 

such approaches have yet to be tested in clinical populations, healthy participants showed 

promising improvements in reappraisal (21) and rumination (19-20).  

 While behavioral training has been the main approach to reduce attentional biases in 

depression, behavioral measures such as button presses and eye movements are downstream 

effects of underlying neural differences. Neural feedback, such as feedback from functional 

magnetic resonance imaging (fMRI), allows for measures that are “closer to the source” of the 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.07.137943doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.07.137943


 4 

biases, and thus have the potential to be more sensitive and informative. Indeed, depressed 

participants show neural – but not behavioral – evidence of increased processing of negative 

stimuli that are presented quickly (see 22). In our work, we therefore sought to combine the 

advantages of adaptive feedback with the potentially enhanced sensitivity of neural measurements 

of attention. 

 A previous study (23) demonstrated the potential of real-time fMRI (rt-fMRI) 

neurofeedback to improve sustained attention in healthy participants. Participants received visual 

feedback based on their brain activity during an attention task. Overlaid face and scene images 

with variable opacity values were shown as participants responded to a cued go category and 

ignored the other, un-cued no-go category. Neurofeedback was embedded in a closed-loop circuit: 

If the neural data indicated that participants were attending more to the incorrect category (e.g., 

faces), then stimuli in that category were made more opaque (e.g., faces would become more 

prominent and scenes would become more transparent). This served to “externalize” the 

participant’s bad attentional state, making the task more difficult during attentional lapses, and thus 

alerting them to try harder to push themselves into a better state. This procedure yielded significant 

improvements in attention after a single neurofeedback session. Additionally, participants 

receiving feedback that was veridical (based on their own brain activity) as compared to a control 

(someone else’s brain activity) exhibited an increased benefit, indicating that individualized 

feedback was advantageous. 

In the current study, we adapted this closed-loop procedure, with the goal of reducing 

negative attentional bias in depressed participants, rather than improving sustained attention in 

general. To accomplish this goal, we modified the neurofeedback task so participants always had 

to ignore negative faces; when participants’ attention drifted to the negative faces, the faces were 
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made more visible and the scenes were made less visible. In this situation, participants need to 

learn to “unstick” themselves from the negative attentional state in order to make the scenes more 

visible, so they can continue with the instructed task of responding to the scenes. 

Our approach was motivated by a pilot experiment that tested the feasibility of this 

neurofeedback task in seven depressed participants (24). Based on that work, we refined and 

expanded the current study to compare two groups (depressed and healthy); we also collected a 

wider range of behavioral and neural measures to quantify and understand changes over time. 

Given the technical bottlenecks of real-time fMRI, we implemented the study in open-source 

Python software for real-time fMRI in the cloud, which we release with this paper to allow other 

facilities to deploy our method regardless of local computing resources. 

We designed our study to (1) establish that our neurofeedback task properly captured 

negative attentional bias in depression, (2) decrease this bias with training, and (3) show potential 

transfer to clinical measures. First, we hypothesized that, at the start of training, depressed 

participants would have difficulty disengaging attention from negative faces. We operationalized 

this difficulty with a neural measure that tracked the probability of remaining stuck in the most 

negative attentional state. Second, we hypothesized that neurofeedback training would make it 

easier for depressed participants to disengage from such negative states. Thus, we expected group 

differences in sustained negative attention to decrease over time. Third, we hypothesized that this 

reduction of sustained negative attention would be associated with an improvement in depression 

symptoms. 
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METHODS AND MATERIALS 

Participants 

A total of 27 adults participated in the study, including 15 with major depressive disorder (MDD; 

n female = 8, mean age = 27.3 years) and 12 who served as healthy controls (HC; n female = 6, 

mean age = 25.4 years). Twenty-three participants completed all 7 visits as planned; two 

participants could not complete the in-person portions of Visit 6 because data collection was 

suspended during the COVID pandemic; one participant was lost to follow-up after Visit 5, and 

one participant was lost to follow-up after Visit 6. For all analyses, we included all data collected, 

regardless of the availability of follow-up data. Both groups underwent the exact same 

experimental procedure, differing only in initial diagnosis requirements. Participants were 

recruited from the University of Pennsylvania Center for Neuromodulation in Depression and 

Stress (CNDS) laboratory. All participants received monetary compensation for participation. The 

study was approved by the University of Pennsylvania Institutional Review Board, as well as the 

Princeton University Institutional Review Board through an IRB Authorization Agreement. 

 All participants were: 18-60 years old; willing to not take psychotropic medications for the 

duration of the study; fluent in English; able and willing to provide written consent; and right-

handed. Participants in the MDD group scored at least a 16 on the Montgomery-Åsberg Depression 

Rating Scale (MADRS) clinical interview during Visit 1. Participants in HC group had no history 

of MDD in their lifetime and no indication of current, significant depressive symptoms (i.e., their 

MADRS scores were below 8 during Visit 1). 

 After meeting these eligibility requirements, participants were excluded from both groups 

if they: had a medical disorder that may cause depression or require medication that could cause 

depression symptoms, were diagnosed with concurrent DSM-5 psychiatric disorders (e.g., bipolar 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.07.137943doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.07.137943


 7 

disorder), had not completed the tenth grade in school, showed active suicide risk, or had MRI 

contraindications. 

Stimuli 

Grayscale face and scene images were adapted from (23). The neutral faces in that study were 

supplemented with emotional faces from the Chicago Face Database (25), the Karolinska directed 

emotional faces (26), and NimStim (27); see Supplemental Figure S1 for examples. All faces were 

cropped to between eyebrows and chin to ensure participants saw emotion and did not rely only 

on hair while making male/female judgments. Images were then resized to 10° visual angle square 

and normalized for luminance and contrast. Composite face-scene images with different morphing 

proportions were generated as in the previous study (23). 

Procedure 

The study consisted of seven visits total per participant, as illustrated in Supplemental Table S1. 

The first five visits were the main study (pre-scanning, 3 neurofeedback sessions, post-scanning). 

Visit 6 was a behavior-only one-month follow-up. Visit 7 was a three-month follow-up phone call. 

For all participants, we tried to schedule the first 5 visits as closely as possible within 2 weeks. 

Upon providing consent on Visit 1, participants completed the Structured Clinical 

Interview for DSM-5 Disorders (SCID-5; 28) to assess lifelong symptoms, current depression 

symptoms, and the presence of additional exclusionary conditions. Participants completed the 

SCID-5 on Visit 1 only. Upon completion, the MADRS structured clinical interview (29-30) was 

administered to assess depression symptoms specifically over the week preceding Visit 1. The 

MADRS was also administered on Visits 5, 6, and 7 to assess how depression severity changed 
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over time. Participants completed additional behavioral and neural tasks before and after 

neurofeedback (Supplemental Table S1). 

Participants completed 7–9 neurofeedback runs per visit on Visits 2-4 (we fit in as many 

runs as we could within each 2-hour scanning session). Each neurofeedback run contained 8 

blocks: the first 4 blocks (“stable blocks”) showed only neutral stimuli with constant opacity and 

served as training data for the face versus scene classifier; in the last 4 blocks (except run 1), the 

attended category was neutral scenes and the distractor category was negative faces (Supplemental 

Figure S1). These blocks served as neurofeedback blocks, in which the opacity changed depending 

on the relative degree of neural representation of scenes versus faces indicated by a pattern 

classifier applied to fMRI. Participants were told that the change in opacity was determined by 

their brain activity rather than their button-pressing accuracy.  

At the start of each block, participants were given a cue that indicated the block type (face 

or scene) and go category. For instance, the cue “indoor scenes” indicated that participants should 

press for indoor scenes (90% go trials), and refrain from pressing when seeing outdoor scenes 

(10% no-go trials). Additionally, while making go/no-go judgments, participants had to 

continuously ignore the overlaid irrelevant stimuli (e.g., faces). For each participant, the go scene 

category (indoor or outdoor) and go face category (male or female) were the same across all visits. 

Assignment of categories was counterbalanced across participants within each group. See 

Supplemental Figure S1 and (23) for additional task details. 

Data Acquisition 

All scanning was acquired with a 3T MRI scanner (Siemens Prisma), using a 64-channel head coil. 

Sequences were matched to (23) as much as possible. During the first scanning session, we 

collected a high-resolution magnetization-prepared rapid acquisition gradient-echo (MPRAGE) 
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anatomical scan to construct the whole-brain mask used in real-time and for offline registration. 

FSL (http://fsl.fmrib.ox.ac.uk/) was used to register the MNI152 standard-space T1-weighted 

average structure template (31) to each participant's brain in functional space. We used this 

registered whole-brain ROI as the mask for each participant. The functional scans consisted of a 

gradient-echo, echo-planar imaging sequence covering the whole brain (2 s repetition time, 28 ms 

echo time, 3 mm isotropic voxel size, 64 x 64 matrix, 192 mm field of view, 36 slices). At the end 

of each scanning session, a fieldmap scan was acquired for offline processing. 

Real-time Processing 

Figure 1 provides an overview of our real-time processing system, from the initial stimulus 

display, to subsequent cloud analysis, and finally, stimulus update. During neurofeedback runs, 

each new DICOM image was motion corrected to the previous time point following Siemens' 

custom motion correction. After that, the DICOM file was saved onto a local Linux machine in 

the scanning room. Then, the data were masked and flattened into a 1D-vector, and sent to the 

cloud server for further preprocessing (see Supplement) and classification. 

 During neurofeedback, a multi-voxel pattern classifier (32) was used to decode the extent 

to which attention was directed at the task-relevant scene or the task-irrelevant face for every time 

point of image acquisition (TR). The classifier model was re-trained for each neurofeedback run 

based on the most recent eight stable blocks from before the current run. For example, 

neurofeedback run 4 used a model trained on the 4 stable blocks from runs 2 and 3 (run 2 used 

training data from all 8 stable blocks of run 1). Scikit-learn's logistic regression function (33) was 

used for model training (with the parameters selected to best match Matlab processing: 

solver='saga', penalty='l2', max_iter=300). During neurofeedback, the difference between the 

amount of classifier evidence for scenes (ranging from 0 to 1) and faces (ranging from 0 to 1) was 
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used as the output neurofeedback score. This score was saved as a text file and sent back to the 

local computer to influence the display during the following time point.  

Neurofeedback Display 

The Matlab script controlling the display loaded each new text file as it was detected. The 

neurofeedback score was converted to an opacity value for the neutral scene using a sigmoidal 

transfer function (Figure 1). Then, opacity was smoothed using a moving window over the values 

from the previous 2 time points to ensure that changes in opacity were not abrupt (23). This 

smoothed value was set as the opacity for the following 3 trials (1.5 TRs) while the next time point 

was collected and preprocessed. 
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Figure 1: Closed-loop rt-fMRI attention training design. (A) Participants perform a go/no-go task 

on overlaid face/scene stimuli, where they respond based on whether the scene image is indoor or 

outdoor, and thus have to constantly ignore negative faces. (B) As each new time point is acquired, 

the data are masked and flattened to a 1D-vector. (C) The data are sent to a cloud server for 

preprocessing and classification. (D) The result is sent as a text file to the local machine 

controlling the display. A sigmoidal transfer function converts the relative scene minus face 

classification evidence difference into opacity proportions, so that the attended category (as 

measured by the classifier) will become more visually prominent. (E) The opacity value is 
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smoothed and updated for the next time point. As shown, when participants are in a maximally 

negative state, the negative faces dominate the composite image. 

 

Neurofeedback Performance 

To estimate each participant’s attentional state at a given time, we discretized the 

continuous distribution of scene minus face classifier evidence [ranging from −1 to +1]. Because 

we used a logistic regression classifier, classification values were distributed toward the extremes 

(±1). We adjusted the scene minus face classification bins to roughly equate the number of 

classification samples in each (Figure 2A). 

We quantified the extent to which attentional states persisted over time. We operationalized 

this measure as the conditional probability that the scene minus face difference remained in the 

same bin across time points. Because we were interested in how feedback delivered at time t 

affected attention, we compared the attentional state at time t to the attentional state at time t plus 

5 seconds (where we would expect feedback effects on brain activity to be maximal, accounting 

for the hemodynamic lag). As each TR was 2 s, we separately calculated results using 2- and 3-

TR shifts, and averaged the results to estimate a 5-s shift. Specifically, for each time delay, d (2 or 

3 TRs), for a given attentional state bin, A, we calculated the persistence of that state by counting 

the number of times that the scene minus face classification value fell within A at time t + d, given 

it was in A at time t. We then divided this number by the total number of occurrences of state A, 

shown in the equation below:  

 

𝑝(𝐴𝑡+𝑑|𝐴𝑡) =  
∑ 𝑠𝑡𝑎𝑡𝑒(𝑡 + 𝑑) = 𝐴

∑ 𝑠𝑡𝑎𝑡𝑒(𝑡) = 𝐴
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We then averaged all conditional probabilities from the 2 and 3 TR shifts over all runs 

considered. To understand how attention changed from early to late in training, we isolated the 

initial three neurofeedback runs of the first session (Visit 2; Early NF) and the final three 

neurofeedback runs of the last session (Visit 4; Late NF).  

RESULTS 

Depression severity 

As hypothesized, depression severity decreased over time for MDD participants (Figure 2D). 

Depression scores decreased significantly from pre-training in Visit 1 to post-training in Visit 5 

(one-tailed t(14) = 3.61, p = 0.0014), to the one-month follow-up in Visit 6 (one-tailed t(13) = 

2.85, p = 0.0069), and to the three-month follow-up in Visit 7 (one-tailed t(12) = 3.43, p = 0.0025). 
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Figure 2: Neurofeedback analysis and results. (A) Each block of continuous scene minus face 

classification evidence was converted into discrete attentional states (dashed lines). This resulted 

in a roughly equal number of observations in each state across participants. (B) Probability of 

staying in a particular attentional state over time, for Early and Late NF runs. During Early NF, 

the two groups differed in their probability of staying in the most negative attentional state, 

plotted separately in (C). This group difference was eliminated by the Late NF runs. (D) 

Depression severity scores significantly decreased for MDD participants over time. (E) Within 

the MDD group, this reduction in getting stuck in the most negative attentional state showed a 
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trending positive correlation with the reduction in depression severity. Circles represent 

individual participants; bars represent group averages. Error bars represent ±1 s.e.m. ** = p < 

0.01; * = p < 0.05; + = p < 0.1 

 

At the start of neurofeedback training, the largest difference between groups in the probability of 

remaining in the same attentional state over time occurred for the most negative state, with MDD 

participants showing a greater tendency to get stuck in this state (one-tailed t(24) = 2.80, p = 

0.0049)1 (Figure 2B). 

 At the end of neurofeedback training, MDD participants were marginally less likely to get 

stuck in the most negative state, compared to the start of neurofeedback training (paired one-tailed 

t(13) = 1.67, p = 0.059). Additionally, there was a significant interaction between group and visit, 

such that the MDD group decreased in their probability of getting stuck in the most negative state 

from early to late in training relative to the HC group (unpaired one-tailed t-test comparing change 

in MDD group to change in HC group, t(24) = 2.04, p = 0.026; Figure 2C). 

 Additionally, the reduction in the MDD group was associated (across participants) with a 

marginally significant reduction in depression severity (Pearson r = 0.48, p = 0.083) (Figure 2E). 

There was also a trending correlation in the same direction in the HC group (Pearson r = 0.51; p = 

0.090). 

 

DISCUSSION 

Our closed-loop neurofeedback method successfully detected the difficulty that depressed 

participants have in disengaging attention from negative stimuli – this was evident in our finding 

that, at the outset of training, MDD (vs. HC) participants were more likely to get “stuck” in the 

 
1 One of the MDD participants was never in the most negative attentional state during the Early NF period, so the 
P(stay in most-negative state) measure was undefined for this participant during Early NF; consequently, this 
participant was omitted from analyses involving the Early NF period. 
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most negative attentional state (Figures 2B, 2C). Of note, there were no significant initial 

differences in the average level of scene minus face classifier evidence for MDD vs. HC 

participants (Supplemental Figure S2) – that is, it was not the case that MDD participants simply 

had more brain activity related to negative faces. To expose the initial difference between groups, 

we had to rely on a measure that specifically tracked participants’ tendency to persist in a negative 

state.  

It is also noteworthy that there were no initial differences in behavioral performance on 

the go/no-go task between MDD and HC participants (Supplemental Figure S3). The detection of 

group differences for the go/no-go task in neural – but not behavioral – data implies that neural 

measures may be more sensitive for capturing attentional differences. This underscores the value 

of using rt-fMRI neurofeedback training to reduce negative attentional bias. 

 Compared to most depression studies in the rt-fMRI literature, this study is unique in its 

design and analysis methods. First, we trained participants to disengage attention from negative 

stimuli; by contrast, most of the previous rt-fMRI studies trained depressed participants to increase 

neural responses to happy stimuli, such as images (34-35) or autobiographical memories (36-39). 

Regulating positive emotions has yielded robust benefits. For example, (35) even found 

unintentional clinical benefits for the control group, who imagined relaxing scenes while 

regulating scene-specific ROIs. Our study explored a less-common approach of training away from 

negative stimuli, instead of toward positive stimuli. This was based on our belief that learning to 

regulate negative attention may strike at the underlying dysfunction more directly. The relative 

efficacy of training negative vs. positive attention can be tested in future studies, e.g., by using a 

variant of our paradigm where participants are instructed to attend to positively valenced faces or 

scenes, while ignoring neutral distractors from the other category. 
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 Our study differs from the small number of other rt-fMRI studies using negative stimuli in 

that we regulated a decoded cognitive state, as opposed to mean ROI activity (40-41). For instance, 

(40) trained 10 depressed participants to reduce neural responses to negative images within an 

individualized ROI (defined based on the single voxel most sensitive to negative images within 

the “salience network”). In another study, (41) had participants recall negative memories while 

using a strategy from cognitive behavioral therapy (CBT). During CBT application, a 

neurofeedback signal was used to train participants to decrease anterior cingulate cortex activity. 

Both studies yielded promising clinical benefits specific to real-time training, in the form of 

decreased negative self-descriptions (40) and increased use of the trained CBT strategy after 

neurofeedback (41). More work is needed to assess the relative efficacy of our closed-loop 

attention-training procedure compared to ROI-based approaches. 

Another avenue for future work is to verify that the positive clinical effects we observed 

were specific to the individualized nature of the neurofeedback. To demonstrate this, one could 

recruit a follow-up control group of MDD participants. These participants would receive feedback 

scores that are either yoked to a previous depressed participant's brain (23) or determined by an 

irrelevant ROI (36-37). If this group does not show the same improvements, we can be more certain 

that the improvements shown by our MDD participants relate to receiving individualized 

neurofeedback (vs. a more general effect of the procedure).  

An important feature of the method reported here is that the real-time analysis of the 

imaging data performed on the cloud. Although the sophistication and practical utility of real-time 

fMRI has increased over the past 10 years (42), the prevalence of its use has been hampered by 

hardware requirements and by the technical complexity of setting up and running an experiment. 

Offloading computation to the cloud should help to make this approach accessible to researchers 
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regardless of local computing resources and local computational expertise. In future work, we plan 

to extend our framework to control both the real-time processing and neurofeedback display via a 

cloud-based web server, to further minimize local dependency.  

In summary, this study highlights the potential clinical benefits of real-time fMRI 

neurofeedback procedures that target specific cognitive states. By tracking sustained attention over 

time, our procedure provides a face-valid way of detecting the difficulties that MDD patients 

experience in getting “stuck” in negative states. This was borne out in the observed sensitivity of 

our measure to initial differences between MDD and HC participants. By “externalizing” these 

internal attentional lapses (i.e., making task-irrelevant negative faces more visible as they were 

attended more), our procedure provides rich feedback that patients can leverage to learn to control 

these states. This training potential is supported by our findings showing reduced sustained 

negative attention in MDD patients and reduced depressive symptoms. By making this technique 

openly accessible on the cloud, we hope to make it easier for other researchers to explore the 

benefits of this approach in diagnosing and treating MDD and other clinical syndromes.2  

  

 
2 Links to software and documentation: (1) display code (link), (2) rt-cloud processing code (link), (3) 
documentation for running an experiment (link), and (4) example DICOM data (link) 
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Closed-loop fMRI neurofeedback to reduce negative attentional bias in 

depression 

Supplemental Information 

INTRODUCTION 
 

As mentioned in the main text, our study included additional neural and behavioral tasks to assess 

the ability of each task to capture initial group differences and changes in performance over time. 

Here, we present details regarding our full study design, cloud processing, and results. 
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STUDY DESIGN 

 
 

Visit 1 

Pre NF 

2 

NF 1 

3 

Mid NF 

4 

NF 3 

5 

Post NF 

6 

1M FU 

7 

1M FU 

Task 

1 

SCID-5 Resting- 

state 

Gaze Go/no-go 

(8 runs) 

MADRS MADRS MADRS 

Task 

2 

MADRS Face- 

matching 

Go/no-go 

behavior 

Face- 

matching 

Gaze Gaze 
 

Task 

3 

Gaze Go/no-go 

(7 runs) 

Go/no-go 

(9 runs) 

Resting- 

state 

Go/no-go 

behavior 

Go/no-go 

behavior 

 

Task 

4 

Go/no-go 

behavior 

      

Table S1: Full study design for all 7 visits: pre-neurofeedback, three neurofeedback sessions, 

post-neurofeedback, a one-month follow-up, and a three-month follow-up visit. Columns 

separate the different visits, while rows indicate the order of tasks performed at each visit. Cell 

color specifies the type of task: pink = clinical assessments; beige = behavioral tasks completed 

outside of the scanner; yellow = scanner tasks. NF = neurofeedback; FU = follow-up. Go/no-go 

in bold is added to emphasize the rt-fMRI neurofeedback runs. 

 
As shown in Table S1, participants completed 7 visits to assess clinical, behavioral, and 

neural changes over time. For all behavior-only tasks, stimuli were presented on a 60 x 34 cm 

monitor (1280 x 1024 resolution) with the Psychophysics Toolbox for Matlab 

(http://psychtoolbox.org/). For all scanning tasks, stimuli were presented on a projector with 1280 

x 720 resolution. Of note, we collected resting state scans for a portion of the participants. The 

first 2 healthy control (HC) participants and the first 5 depressed (MDD) participants did not 

receive resting state scans. Because we were missing resting state scans for a substantial number 

of participants, we do not analyze those scans here. 

Go/no-go task design 

We used an adapted version of the go/no-go task as described in (1) for behavioral and 

neural assessments of sustained attention. 
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Figure S1: Go/no-go task design and differences in the neurofeedback and behavior-only 

version. (A) In all conditions, participants saw an overlaid face/scene image, while having to 

attend to one category and ignore the other category. The columns specify which category was 

attended (face or scene), and the rows specify if the faces were neutral or emotional. Altogether, 

the 4 conditions were: (1) attend neutral faces; ignore neutral scenes, (2) attend neutral scenes; 

ignore neutral faces, (3) attend happy faces, ignore neutral scenes, (4) attend neutral scenes; 

ignore negative faces. (B) Participants completed 8 blocks of the task during each run. In the 

behavior-only version, all conditions were presented in a randomized order. In the 

neurofeedback version, participants first saw neutral faces and scenes. During neurofeedback, 

they only saw negative faces and neutral scenes. The version with happy faces and neutral 

scenes could be used in the future to assess the relative benefit of training attention toward 

positive stimuli versus away from negative stimuli. (C) Example trial structure during the go/no-

go task. 

 

CLOUD PROCESSING 
Cloud processing was developed and implemented so that the analysis of DICOM images 

was no longer reliant upon local resources or proprietary software. We executed the Python-based 

code on a Microsoft Azure virtual environment that was part of Penn Medicine's secure network.  

Cloud processing involved sending the masked 1D-vector of each volume of DICOM data 

to a virtual machine. Once the data arrived, images were spatially smoothed with a Gaussian kernel 

FWHM of 5 mm. During the last 4 blocks of each run (the neurofeedback blocks), each incoming 
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1D-vector was high-pass filtered in real-time (using all time points in the current run up to that 

point; cutoff = 200 s), and z-scored using the mean and standard deviation from the previous 4 

stable blocks of the current run, as in (1).  

NOTE: Before cloud processing was completed, all real-time preprocessing and 

classification were performed identically to (2). This was the case for HC participants 1-2 and 

MDD participants 1-6, who received Matlab-based neurofeedback. All other participants received 

feedback from Python-based cloud processing, unless a specific technological issue (e.g., the 

internet being down) obstructed us from using the cloud. In that case, Matlab was used. To ensure 

that the processing method did not bias results, for all neurofeedback analyses, we went back and 

processed all data with the same real-time cloud pipeline. The mean Pearson correlation between 

the results obtained with this uniform pipeline and the results that were actually used for 

neurofeedback was 0.996, 95% CI [0.995, 0.997]. 

ADDITIONAL NEUROFEEDBACK RESULTS 

Average classification 

In addition to computing attentional states, we also looked for differences in average scene 

minus face classifier evidence (Figure S2). We did not observe classification differences between 

MDD and HC participants, either at the beginning of neurofeedback (t(25) = 0.32, p = 0.76) or at 

the end of neurofeedback (t(25) = 0.34, p = 0.74). On average, both groups showed a decrease in 

average scene minus face classification from early to late neurofeedback (combined paired t(26) 

= 2.61, p = 0.015).  
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Figure S2: Average scene - face classifier evidence during early and late neurofeedback runs. 

No group differences were found. Circles represent individual participants; bars represent group 

averages. Error bars represent ±1 s.e.m. 

GO/NO-GO BEHAVIOR TASK 

Background 

The go/no-go behavior task was used to measure attentional biases through behavioral key 

presses. Again, the task consisted of overlaid face and scene images, though this time with 

constant, equal opacity. As with the neurofeedback task, participants always were instructed to 

attend one category (e.g., neutral faces) and ignore the opposite category (e.g., neutral scenes). For 

this behavioral version, we also included a condition where participants attended to happy faces 

and ignored neutral scenes (Figure S1). 

To quantify sustained attention through behavior, we used the same measure of sensitivity 

(A'; 3) that we used in (1). In our study, we calculated A' differences between different emotional 

conditions (e.g., ignoring neutral faces versus ignoring negative faces). Before neurofeedback, we 

expected that MDD participants would have a more difficult time, and thus worse A' performance, 

when ignoring negative faces compared to neutral faces.  
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We also hypothesized that MDD participants might show more difficulty (i.e., lower A' 

scores) when attending to happy faces compared to attending to neutral faces. While there is some 

evidence to suggest that depressed participants show deficits attending to positive stimuli, attention 

to positive versus negative stimuli is usually compared directly (4-6). For this reason, it is unclear 

if the difference in attention is due to a lack of attention to positive stimuli or a bias to attend to 

negative stimuli. 

Methods 

Participants completed 4 runs of this version of the go/no-go task during Visits 1, 3, 5, and 6. Each 

run contained 8 50-s blocks. As shown in Figure S1A, there were 4 stimulus conditions in total. 

Thus, each of the 4 conditions was shown twice during each 8-block run. The condition order was 

randomized for each participant within each run (Figure S1B). 

To measure sustained attention with behavior, we estimated performance according to the 

nonparametric measure A' (1). This measure tracks sensitivity to the go versus no-go categories, 

factoring in both hit and false alarm rates. To estimate differences in performance when 

participants have to ignore negative faces compared to neutral faces, we calculated the negative 

bias as 

𝑏𝑖𝑎𝑠𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 =  𝐴′𝑛𝑒𝑢𝑡𝑟𝑎𝑙 − 𝐴′𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  

 
Thus, negative biases greater than 0 indicate worse performance when ignoring negative faces, 

compared to neutral faces. This would suggest problems with disengaging attention away from 

negative stimuli. 

Likewise, we estimated differences in performance when participants have to attend to 

positive faces compared to neutral faces as  
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𝑏𝑖𝑎𝑠𝑎𝑛𝑡𝑖−𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =  𝐴′𝑛𝑒𝑢𝑡𝑟𝑎𝑙 − 𝐴′ℎ𝑎𝑝𝑝𝑦  

 

Thus, anti-positive biases greater than 0 indicate worse performance when attending to happy 

faces, compared to neutral faces, which would suggest difficulty in focusing attention on happy 

stimuli. 

Results 

 
Figure S3: Results for the go/no-go behavior task for (A) negative and (B) anti-positive images. 

No significant group differences were evident for either attentional bias metric at any visit. 

Circles represent individual participants; bars represent group averages. Error bars represent 

±1 s.e.m. 

 
As shown in Figure S3A, we found no group differences during Visit 1 (t(25) = 0.78, p = 0.44), 

nor at any point during the course of training for the A' negative bias. We did not find any group 

differences in A' anti-positive bias during Visit 1 (t(25) = -0.94, p = 0.36), nor at any stage 

during training (Figure S3B). 

GAZE TASK 
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Background 

This task was designed to measure sustained attention with eye-tracking data, which allows for a 

continuous estimate of attention. Based on (6), each trial displayed 4 images representing different 

emotions (dysphoric, threatening, happy, and neutral) on the screen at once for 30 s. Recording 

eye movements throughout these long trials allowed us to assess which stages of attention (e.g., 

orientation, maintenance) differed the most between groups before training, and if those group 

differences changed over time. 

 Before neurofeedback, we expected MDD participants to show difficulty disengaging 

attention away from the dysphoric images (7-8). This would manifest as prolonged attention to the 

dysphoric images, as was the case in (6) and (4). Given initial group differences, we expected the 

negative bias to decrease over time, demonstrating that the benefits of rt-fMRI neurofeedback 

transferred to this task. 

 

Methods 

First, we adapted (6) for a multi-session design by creating 4 different versions of the task to be 

completed on Visits 1, 3, 5, and 6 (Table S1). We supplemented images from the original study 

with stimuli from the International Affective Picture System (IAPS; 9) and the Nencki Affective 

Picture System (10). We included all IAPS images used in the original version (6). 

 To normalize images across databases, the images were cropped to be square. Next, images 

were sorted into four different versions while balancing for image entropy. We then made sure that 

all versions of the task did not differ significantly in entropy, contrast, or luminance. All 

participants completed each version, but the version order was randomized for each participant. 
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A Tobii X120 eye-tracker (Tobii Technology, Stockholm, Sweden) was used to record eye 

movements (sampling rate = 120 Hz). Participants' chins were fixed to a free-standing chin rest 

during the task to ensure that they had limited head motion and maintained a constant distance 

from the monitor. After eye-tracking calibration, participants were instructed to freely view the 

different images presented on the screen as if they were watching television or looking at pictures 

in a photo album (as in 6). We told participants that we were tracking their eyes to make sure they 

were attending to the images on the screen. 

 As in (6), the task consisted of 20 trials, with each trial lasting 30 s. Each trial was either a 

neutral filler or a valence trial. During neutral filler trials, the 4 images were all neutral. During 

valence trials, there was a neutral, dysphoric, threatening, and happy image shown on the screen. 

The full task consisted of 8 neutral filler trials and 12 valence trials that were presented in a random 

order for each participant. As mentioned above, participants completed 4 different versions of this 

task. See Figure S4 for trial structure and example stimuli. 

Note: Various obstacles (eye makeup, pupil size, glasses, etc.) impeded continuous eye 

position estimates for some participants. We adapted to the difference in measurements by 

normalizing our estimates by the number of gaze fixations that were recorded, as described next. 

 
Figure S4: Trial structure for the gaze task. Participants were instructed to freely view the 

images as if they were watching television. During each trial, 4 images were shown on the 

screen at once. Eye movements during the full 30-s trial were recorded to estimate sustained 

attention over time. Note: both of the example trials shown are valence trials, as there is a 

dysphoric, threatening, happy, and neutral image on the screen. Neutral filler trials were the 

same, except that all 4 images were neutral. The task consisted of 20 trials total: 12 valence 

trials and 8 neutral filler trials. 
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We recorded the (X,Y) positions from each eye during the 30-s trials. Following (6), we 

preprocessed the eye-tracking data by defining eye positions in terms of fixations. Specifically, we 

filtered the data such that fixations had to (1) be maintained for at least 100 ms and (2) remain 

within 1° of visual angle for this duration. After filtering all samples into a time series of fixations 

that met this criteria, each fixation was classified according to the attended emotional 

image.  Because there were unequal numbers of fixations for a given participant across trials, we 

normalized each of the metrics described next by the number of data points collected.  

INITIAL ORIENTATION 

To assess initial orientation differences by image category and group, for each trial, we recorded 

the image category upon which the participant first fixated. We calculated the probability of initial 

fixation for each day by taking the total number of times that the participant first fixated on that 

image category, divided by the total number of times that the participant fixated on any of the 

images. This way, we did not count the trials in which no viable data were collected.  

TOTAL VIEWING RATIO 

To calculate the total viewing ratio of dysphoric images, for each trial, we totaled the number of 

fixations on dysphoric images divided by the total number of fixations recorded for that trial. We 

then averaged across all trials for each day.  

MAINTENANCE VIEWING RATIO 

To understand if participants had difficulty disengaging attention away from dysphoric stimuli, 

for each trial, we counted the number of fixations on the dysphoric image, given that the participant 

was already fixated on the image. If the participant fixated on the dysphoric image, viewed other 
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images, and then returned to the dysphoric image, we only considered the first continuous fixation 

in our analysis. We then divided this number of samples by the number of fixations recorded for 

that trial. Again, this normalization step corrected for the lack of data in some trials for some 

participants. Finally, we averaged the maintenance ratios across all trials to get one ratio per day 

per participant.  

Results 

 
Figure S5: Initial orientation to (A) dysphoric and (B) positive images. No significant 

differences were found between groups at the onset of training, or on subsequent visits. Circles 

represent individual participants; bars represent group averages. Error bars represent ±1 s.e.m. 

 

INITIAL ORIENTATION 

 We did not find group differences in the initial orientation measure. On Visit 1 (Pre NF), 

MDD participants did not orient to dysphoric images significantly more often (one-tailed t(25) = 

0.26, p = 0.40; Figure S5A), nor did MDD participants orient to positive images significantly less 

often (one-tailed t(25) = -0.37, p = 0.36; Figure S5B). There were no significant differences 

between groups on subsequent visits either. 
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Figure S6: (A) Total viewing ratio for dysphoric images (B) Maintenance ratio on dysphoric 

images. MDD participants reduced both metrics on average from pre- to post-neurofeedback, 

but initial group differences and MDD improvements were larger for maintenance on dysphoric 

images. Note: One outlier in the HC group only fixated once during V5 and thus that data point 

is not shown within the axis limits in (B). Circles represent individual participants; bars 

represent group averages. Error bars represent ±1 s.e.m. * = p < 0.05; + = p < 0.1  

 

TOTAL VIEWING RATIO 

On Visit 1, MDD participants spent more total time viewing dysphoric images compared to HC 

participants on average, though this was not significant (one-tailed t(25) = 1.28, p = 0.11). 

Additionally, MDD participants showed a trending decrease in the total amount of time they spent 

viewing dysphoric images from pre- to post-neurofeedback (paired one-tailed t(14) = 1.44, p = 

0.086).  Considering changes between Visits 1 and 5, we found a trending but not significant 

interaction between group and visit (unpaired one-tailed t-test comparing change in MDD group 

to change in HC group, t(25) = 1.33, p = 0.098). Figure S6A plots group performance for all visits. 

Because MDD participants decreased in the amount of the time spent viewing dysphoric 

images, we examined the relationship between the decrease in total time spent viewing dysphoric 
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images and the decrease in MADRS scores. There was a slight positive relationship in the MDD 

participants but it was far from significant (Pearson r = 0.30, p = 0.28). 

MAINTENANCE VIEWING RATIO 

On Visit 1, there was a marginally significant effect where MDD participants maintained fixation 

for a longer amount of time compared to HC participants (one-tailed t(25) = 1.69, p = 0.051). From 

pre- to post-neurofeedback, MDD participants significantly decreased their maintenance time on 

dysphoric images (paired one-tailed t(14) = 1.85, p = 0.043). Considering changes between Visits 

1 and 5 only, we found a trending but not significant interaction between group and visit (unpaired 

one-tailed t-test comparing change in MDD group to change in HC group, t(25) = 1.44, p = 0.082). 

Figure S6B shows group performance over all visits. 

As the MDD participants decreased their maintenance time on dysphoric images and also 

showed decreased depression severity after neurofeedback, we examined the relationship between 

these improvements in the MDD participants. There was no significant relationship between these 

measures (Pearson r = -0.033, p = 0.91). 

FACE-MATCHING TASK 

Background 

We included the face-matching task to assess group differences in neural responses to 

emotional faces. This task was adapted from (11) to measure neural responses to negative, neutral, 

and happy faces in a block design. Originally, (11) analyzed group differences in average 

amygdala responses to negative relative to neutral blocks. Before neurofeedback, we expected 

MDD participants to show higher limbic system reactivity during negative face blocks (11-13). 
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However, because we were interested in sustained attention, we were unsure if averaged 

block activity would capture negative biases related to disengagement. We referred to (14) for an 

additional analysis approach, which found that depressed participants showed increased amygdala 

responses to negative images only towards the end of the trial. This motivated us to consider the 

time course of amygdala activity, as an increased response towards the end of the block may 

indicate a failure to inhibit processing of negative stimuli. Given initial group differences in the 

amygdala response either over the whole block or at the end of block only, we expected the group 

differences to decrease after neurofeedback through transfer learning. 

Methods 

 

 
Figure S7: Trial structure for the face-matching task. Participants pressed their index or middle 

fingers to match the top image to the left or right bottom image, respectively. There were 6 3-s 

trials within each block. All block types (happy faces, fearful faces, neutral faces, objects, and 

fixation) repeated 3 times within a run. Shown above is an example of a fearful face block. 

 
We included the same face and object images as in (11) Face stimuli were adapted from the 

Radboud (15) and NimStim (16) stimulus sets. There were 2 versions of this task; one version 

drew images from the Radboud set and the other used images from the NimStim set. As 

participants completed this task twice (Visits 2 and 4; Table S1), the order in which each 

participant completed the tasks was randomized by participant. 

PsychoPy2 (17) was used for this task. Participants completed 2 5-minute runs of this task 

during Visits 2 and 4. The task involved matching images in 18-s blocks. There were 5 block types 
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of different stimulus categories: happy faces, fearful faces, neutral faces, objects, and fixation. 

Each block type repeated 3 times within a run. Participants were instructed to choose the bottom 

image that matched the top image by pressing their index fingers to indicate a left match or their 

middle fingers to indicate a right match (11). Figure S7 shows the trial structure in each block. 

After scanning, data were stored following the Brain Imaging Data Structure (BIDS) 

specification for further processing (18). Then, fMRIPrep (19) was used for subsequent offline 

processing and image registration. 

Results included in this section come from preprocessing performed using fMRIPprep 

1.0.11 (RRID:SCR_016216; 20-21), which is based on Nipype 1.1.6-dev (RRID:SCR_002502, 

22-23). The following description of preprocessing was generated with fMRIPrep. 

Anatomical data preprocessing 

Each T1w (T1-weighted) volume was corrected for INU (intensity non-uniformity) using 

N4BiasFieldCorrection (ANTs 2.1.0; 24) and skull-stripped using antsBrainExtraction.sh (ANTs 

2.1.0), using the OASIS template. Brain surfaces were reconstructed using recon-all from 

FreeSurfer 6.0.0 ( RRID:SCR_001847; 25), and the brain mask estimated previously was refined 

with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived 

segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438; 26). Spatial 

normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c 

(RRID:SCR_008796; 27) was performed through nonlinear registration with the antsRegistration 

tool of ANTs 2.1.0 (RRID:SCR_004757; 28), using brain-extracted versions of both T1w volume 

and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and 

gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9, 

RRID:SCR_002823; 29). 
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Functional data processing 

Functional data were slice time corrected using 3dTshift from AFNI (AFNI 16.2.07; 30) and 

motion corrected using mcflirt (FSL 5.0.9; 31). Distortion correction was performed using 

fieldmaps processed with fugue (FSL 5.0.9; 32). When there was no fieldmap scan due to ending 

a scan short (for one participant on one session), we used  ``fieldmap-less" distortion correction. 

This was performed by co-registering the functional image to the same-participant T1w image 

with intensity inverted (33-34) constrained with an average fieldmap template (35), implemented 

with antsRegistration (ANTs).  

After distortion correction, this was followed by co-registration to the corresponding T1w 

using boundary-based registration with 9 degrees of freedom, using bbregister (Freesurfer 6.0.0; 

36). Motion correcting transformations, field distortion correcting warp, BOLD-to-T1w 

transformation and T1w-to-template MNI warp were concatenated and applied in a single step 

using antsApplyTransforms (ANTs 2.1.0) using Lanczos interpolation (37). Framewise 

displacement (38) was calculated for each functional run using the implementation of Nipype. 

Many internal operations of fMRIPrep use Nilearn 0.4.2 (RRID:SCR_001362; 39), 

principally within the BOLD-processing workflow. For more details of the pipeline, see the section 

corresponding to workflows in fMRIPrep's documentation. 

After data were preprocessed and transformed into MNI space with fMRIprep, we 

extracted confounds for removal. For each run of the task, we extracted the 6 motion parameters 

along with framewise displacement. Processing included (1) removing the first 5 TRs of each run, 

(2) spatially smoothing with (FWHM = 6mm) using nilearn (39), and (3) z-scoring each voxel 

over time. The two runs completed on each day were combined for further processing with 

3dTproject in AFNI (40) which involved: high-pass filtering (cutoff = 100 s) and regressing out 
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motion confounds. Although calculating beta coefficients for block types as in (11) would be an 

appropriate way to analyze the data, we did not calculate beta coefficients so that we could extract 

responses over time. We sought to replicate the findings in (14) specifically that amygdala activity 

continued to rise for MDD participants towards the end of viewing sad faces.  

 Because we were interested in limbic response to negative faces, we focused on the left 

amygdala (LA). To derive the LA ROI we repeated the following steps for each participant: (1) 

we registered all aparc+aseg labels to functional T1w space using Freesurfer's mri_convert and 

mri_label2vol functions (25), (2) we extracted the LA from the individual Freesurfer labels in 

native space, (3) as a final step, we converted the amygdala mask to MNI space using the ANTs-

derived registration matrix from fMRIPrep (28). Finally, we created an aggregate LA mask by 

intersecting all of the amygdala masks from each participant.  

 To compare amygdala activity across groups, we averaged the time series from each block 

within the LA ROI. We then subtracted the resulting time series between the negative and neutral 

blocks. To consider the entire hemodynamic response, we included 5 TRs before the block start 

and 5 TRs after the block start. 

Results 

As described above, we expected MDD participants to show increased attention to negative 

faces, resulting in larger and more prolonged responses in the LA ROI (14). If we found this initial 

difference in processing negative images, and our neurofeedback manipulation successfully 

reduced negative attentional bias, we would expect the difference between groups to decrease after 

neurofeedback. 

 First, we looked to see if average activity over the entire block differed by group before 

neurofeedback. We shifted the average amygdala signal by 2 TRs (4 seconds) to account for the 
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HRF delay. Then, we averaged activity over the entire block (18 s, or 9 TRs). On average, MDD 

participants did not show larger activity to negative versus neutral faces before neurofeedback 

(one-tailed t(25) = 0.96, p = 0.17). 

 Next, instead of considering the average activity over an entire block, we evaluated if the 

time series showed group differences. Figure S8A plots the average time series for each group for 

negative – neutral blocks before neurofeedback. As shown, the response to negative faces in the 

MDD group increases over time. Eventually, the group difference grows to a significant level one 

TR (unshifted) into the next block (one-tailed t(25) = 1.95, p = 0.032). 

 As shown in Figure S8B, after neurofeedback, MDD participants did not show an increased 

LA response for negative faces one TR into the next block (one-tailed t(25) = 0.35, p = 0.36). From 

pre- to post-neurofeedback, MDD participants showed a trending decrease in their response at this 

TR (paired one-tailed t(14) = 1.57, p = 0.069), but HC participants did not (paired one-tailed t(11) 

= -0.034, p = 0.49). We did not find a significant interaction between group and visit for this 

specific TR response (unpaired one-tailed t-test comparing change in MDD group to change in HC 

group, t(25) = 1.074, p = 0.15).  

 Even though MDD participants decreased their LA response to negative faces from before 

to after neurofeedback, we did not find a significant relationship between decreases in LA activity 

and reduction in MADRS scores (Pearson r = -0.047, p = 0.87). 

 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.07.137943doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.07.137943


 44 

 
Figure S8: Left amygdala response to negative - neutral face blocks. (A) Pre NF responses (B) 

Post NF responses. MDD participants showed increased LA signal during negative face blocks 

before neurofeedback, but not after. Lines represent group averages. Error bars represent ±1 

s.e.m. * = p < 0.05 
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