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 19 

Abstract 20 

Predation risk exerts a strong selective pressure on anti-predator behavior, resulting in 21 

behaviors to achieve defense of offspring and the individual. In shorebirds, some 22 

species perform distraction behavior that is attracting the attention of a predator. This 23 

behavior evolved, and were lost multiple times, independently and the behavioral 24 

repertoire varies among species. Although defense of offspring is critical for parents, the 25 

determinants of inter-specific variation in the distraction behavior remain unstudied. We 26 

surveyed the literature and conducted phylogenetic comparative analyses (n = 169 27 

species) to test predictions regarding nest site, body mass, and coloniality. We found 28 

that small species were more likely to perform distraction behavior than large species. 29 

Solitary species were more likely to perform distraction behavior than colonial nesting 30 

species. Previous studies suggested that colonial nesting and large species commonly 31 

perform aggressive anti-predator behavior, implying that distraction behavior is an 32 

alternative anti-predator strategy to aggressive ones. 33 

Keywords: offspring defense, predation, phylogeny, alternative strategy, ground-nesting 34 

birds, body mass 35 
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Introduction 41 

Predation risk exerts a strong selection pressure on animal behaviors, producing 42 

anti-predator behavior among others (Lack 1954; Caro 2005). Offspring predation is the 43 

most important reason for nest failure in birds (Clark & Wilson, 1981). Therefore, 44 

parents have evolved various anti-predator behaviors to counter offspring predation, 45 

thus increasing their fitness (Royle et al. 2012). 46 

Shorebirds (Charadriiformes) are an ideal taxon for assessing the determinants 47 

of the anti-predator behavioral repertoire. Most shorebird species nest on open ground, 48 

exposing the chicks and eggs to strong predation pressure (Gochfeld, 1984; Kubelka et 49 

al., 2018). Shorebirds engage in two broad types of anti-predator behavior: attack and 50 

distraction (Gochfeld, 1984). Attack behavior includes any type of attack on predators, 51 

such as mobbing and scolding. Distraction behavior aims to attract the attention of a 52 

predator via injury-feigning, false breeding, and “rodent run” behaviors, for example 53 

(Caro, 2005; Gochfeld, 1984). When a predator was deceived by the display and 54 

chasing a parental bird, the bird moves away from their offspring (Ristau, 1991). As a 55 

result, predators lost sight of the nest or chick. When the predator was lured and far 56 

away from the nest by the display, the parental bird ends its display and runs away 57 

(Gómez-Serrano, 2018). This behavior seems to have evolved multiple times 58 

independently under similar ecological and social conditions (Humphreys & Ruxton, 59 

2020). However, only a few studies have examined the determinants of inter-species 60 

differences in the anti-predator behavioral repertoire (Larsen et al. 1996; da Cunha et al. 61 

2017). Larsen et al. (1996) tested factors of aggressive nest protection behavior in 62 

waders. This paper revealed that body mass and number of parents present on the nest 63 

territory explain the variation of aggressive anti-predator behavior. But they did not use 64 
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phylogenetic comparative analysis. da Cunha et al. (2017) showed that small species 65 

were more likely to perform aggressive mobbing than large species. They included anti-66 

predator behavior during both the breeding and non-breeding seasons.  67 

In contrast to those studies analyzing aggressive anti-predator behavior, the 68 

determinants of distraction behavior remained unstudied. Armstrong (1954) listed six 69 

factors that could explain the performance of distraction behavior, which could be 70 

summarized that distraction display is likely to evolve in species that may be preyed 71 

upon by terrestrial predators during the daytime (Humphreys & Ruxton, 2020). 72 

However, a formal test of those ideas using a modern phylogenetic comparative analysis 73 

has not been done. We assessed three possible determinants of distraction behavior: 74 

nesting site, body mass, and coloniality. First, we predicted that species that nest in trees 75 

and on cliffs are less likely to perform anti-predator behavior, because their nests are 76 

less likely to be predated due to the difficulty of access compared with ground-nesting 77 

species (Coulson & Thomas, 1985). Differences in other traits according to nesting site 78 

were suggested in a detailed comparative study of two closely related sympatric species 79 

(Cullen, 1957). Cliff-nesting kittiwakes have weak anti-predator traits, such as rare 80 

production of alarm calls, unconcealed body color of chicks, and low response to an 81 

attack by a predator. By contrast, the parents of the ground-nesting black-headed gull 82 

(Larus ridibundus) attack predators, and their chicks escaped when attacked by a 83 

predator. We predicted that this behavioral difference between the two species is 84 

commonly seen in other taxa. Second, we predicted that body size would affect 85 

distraction behavior. Because of the physical advantages of large species, it has been 86 

supported such species are more likely to perform attack behavior than smaller species 87 

(Larsen et al. 1996), whereas smaller species are more likely to perform distraction 88 
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behavior. Third, we predicted that solitary nesting species are more likely to perform 89 

distraction behavior because they cannot attack predators effectively compared with 90 

colonial species. Previous studies showed that colonial species are likely to perform 91 

attack behavior because they can attack a predator effectively as a group (Hoogland & 92 

Sherman, 1976; Robinson, 1985) and because they can minimize the per capita risk of 93 

predation via the dilution effect (Hamilton, 1971; Hogan, Hildenbrandt, Scott-Samuel, 94 

Cuthill, & Hemelrijk, 2017).  95 

 96 

Methods 97 

Data collection 98 

We searched the literature for studies on anti-predator behavior during the breeding 99 

season using Google Scholar, with the key words of ‘shorebirds’, ‘plover’, ‘sandpiper’, 100 

‘wader’, ‘gull’, ‘anti-predator’, ‘behavior’, and ‘nesting’, and the scientific or species 101 

names of Charadriiformes. We also added the key words ‘distraction’, ‘injury-feigning’, 102 

‘false-brooding’, and ‘rodent run’ for distraction behaviors (Gochfeld, 1984). We 103 

classified a given species in terms of performance of distraction behavior (0 = does not 104 

perform; 1 = performs) if the paper described those behaviors as anti-predator behaviors 105 

performed during the breeding season. We obtained data for 169 species from 87 papers 106 

(Appendix). We also added data for three species (Kentish plover, Charadrius 107 

alexandrinus, 6 nests; little ringed plover, C. dubius, 9 nests; and little tern, Sternula 108 

albifrons, up to 892 nests) based on direct behavioral observations undertaken at the 109 

Morigasaki Water Recycling Center in Japan (35°57.1'S 139°75.3'W) between May and 110 

July 2017. In order to control the sampling bias by the number of papers and 111 

observations, we used the number of papers retrieved by Google Scalar as an 112 
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explanatory variable. The searched word was "anti-predator", "behavior", and scientific 113 

name. 114 

Data on nesting sites and colonies were obtained from del Hoyo et al. (1998). 115 

Data on body mass were obtained from Dunning (2007). We calculated the body mass 116 

of sexual dimorphic species by sex, and used the body mass data of individuals that 117 

incubate eggs (del Hoyo et al. 1998; Paton et al. 1994; Székely and Reynolds 1997; 118 

Székely et al. 2000). In cases where both sexes defend eggs, we used the average of the 119 

male and female weights. We also used the average of the male and female weights if 120 

there were no data on the sexes that defend eggs,. We obtained 100 phylogenetic trees 121 

of the study species from http://birdtree.org/ (Jetz, Thomas, Joy, Hartmann, & Mooers, 122 

2012).  123 

 124 

Comparative analysis 125 

We performed all analysis in R software (ver. 3.5.3; R Development Core Team 2019). 126 

We estimated D, a phylogenetic signal for discrete traits (Fritz & Purvis, 2010), for the 127 

presence of distraction behaviors using the “caper” package (Orme, 2013). We used 100 128 

phylogenetic trees and estimated 100 D values for each. For all trees, we found that the 129 

phylogenetic signals of this behavior differed significantly from random (p < 0.001). 130 

We used phylogenetic generalized linear mixed models with the MCMCglmm 131 

(Hadfield, 2010) and mulTree packages (Guillerme & Healy, 2014). We included the 132 

100 phylogenetic trees as a random effect to control for the effect of phylogeny. Markov 133 

chain Monte Carlo (MCMC) simulations were run for 240,000 iterations with a 40,000 134 

iteration burn-in period. Prior was uniform default distribution. The posterior 135 

distribution was estimated based on samples drawn after every 100 iterations. 136 
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We included three species-specific explanatory variables in the model: body 137 

mass (log-transformed; in grams), coloniality (colonial vs. solitary; categorical variable 138 

with two levels), nesting site (in trees or on cliffs vs. ground; categorical variable with 139 

two levels) and sampling bias (number of publications). We ran models in which 140 

whether a given species performed distraction was set as an independent variable. 141 

 142 

Results 143 

Distraction behavior were noted in 55.62% (94/169) of the species, respectively, and 144 

evolved, and were lost multiple times, independently (Fig. 1). 145 

Species with a smaller body mass were more likely to perform distraction 146 

behavior than larger species (Table 2, Fig. 2b). In addition, solitary-nesting species 147 

commonly performed distraction behavior (78/111 species), while species that colonial-148 

nesting did not so (18/58 species; Table 2) Although distraction behavior was observed 149 

only in one species nesting on cliffs or in trees (1/17 species), the nesting site was not 150 

statistically associated with the occurrence of distraction behavior (93/152 ground-151 

nesting species).  152 

 153 

Discussion 154 

Our analyses suggested that distraction behavior evolved, and were lost, multiple times 155 

independently, although the phylogenetic signal was significant. This suggests that 156 

species-specific patterns of anti-predator behavior are evolutionarily flexible. 157 

Contrary to our prediction, our analysis did not show a significant effect of nest 158 

site on distraction behavior. We do not know why we failed to detect an effect of nest 159 

site, but it might be that an evolutionary transition of nest site (i.e., ground-nesting vs. 160 
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others) was not associated with an evolutionary change in distraction; in other words, 161 

distraction may have evolved within a clade in which all species nest on the ground. 162 

As predicted, body mass explained the inter-specific variation in distraction 163 

behavior. First, We found that small species performed distraction behavior more 164 

frequently than large species. Distraction behavior may have evolved as a substitute for 165 

attack behavior. In line with this idea, it is believed that aggressive nest defense carries 166 

a higher risk of predation for parents than distractive nest defense (D. H. Brunton, 1986; 167 

Gochfeld, 1984; Gómez-Serrano & López-López, 2017; Humphreys & Ruxton, 2020; 168 

Sordahl, 1990b). 169 

As predicted, we found that coloniality explained the inter-specific variation in 170 

distraction behavior, with colonial species are rare to perform distraction behavior. 171 

Previously, Larsen et al. (1996) analyzed factors affecting the performance of 172 

aggressive nest defense across species, and found a relationship between aggressive 173 

defense and coloniality. Colonial species can attack a predator effectively as a group 174 

(Hoogland & Sherman, 1976; Robinson, 1985). By contrast, we found that distraction 175 

behavior was common in solitary-nesting species. Distraction behavior is as an 176 

alternative strategy because solitary species cannot do effective attacks.  177 

In summary, this is the first study to analyze inter-specific variation in the 178 

repertoire of anti-predator behavior during the breeding season using phylogenetic 179 

comparative analyses. Although we succeeded in showing some determinants of anti-180 

predator behavior, our analyses had several limitations. First, it is true that birds change 181 

anti-predator behavior type according to the type of predator, nesting season, nesting 182 

stage, parental sex, and condition of the parents (Andersson, Wiklund, & Rundgren, 183 

1980; D. Brunton, 1990; Burger et al., 1989; Byrkjedal, 1987, 1989; Caro, 2005; 184 
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Courchamp, Clutton-Brock, & Grenfell, 1999; Ghalambor & Martin, 2001; Gochfeld, 185 

1984; Humphreys & Ruxton, 2020; Redondo, 1989; Sordahl, 1990a; Vincze et al., 186 

2017). We could not control for these factors, as we focused on species-specific 187 

characteristics of the anti-predator behavior. Second, predation pressure on shorebirds 188 

varies with latitude. It is known that species nesting in high latitude area suffer lower 189 

predation risk than low latitude one (Kubelka et al., 2018; McKinnon et al., 2010). 190 

Therefore, the latitude of the nesting site may affect anti-predator behavior. This study, 191 

however, did not examined the effect of latitude because of multi-collinearity to body 192 

weight. That is, it is known that species breeding in higher latitudes have larger bodies 193 

(Olson et al., 2009).  Third, our database could have underestimated the occurrence of 194 

distraction behavior, as we treated papers that did not describe anti-predator behavior as 195 

showing an absence of anti-predator behavior. The accumulation of detailed behavioral 196 

data for individual species, and comparative analyses based on an updated database, will 197 

be necessary to elucidate the details of interspecific variation in anti-predator behavior 198 

in shorebirds. Similar studies should also examine the determinants of anti-predator 199 

behavior in taxa in which multiple types of anti-predator behavior have evolved. 200 

 201 
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Table 1. Phylogenetically controlled MCMC generalized linear mixed models 344 

examining the effect of body mass (log-transformed; in grams), nesting site (0 = trees or 345 

cliffs, 1 = ground) and coloniality (0 = solitary, 1 = colonial) of distraction behavior. 346 

Means and 95% credible intervals (CIs; in parentheses) of the posterior distribution are 347 

shown. Results in bold are statistically significant. 348 

 Posterior mean Z 95% CI 

Intercept 1.158 0.512 to 1.805 

Body mass -0.120 -0.217 to -0.021 

Nesting site 0.192 -0.051 to 0.438 

Coloniality -0.218 -0.412 to -0.024 

Sampling bias 0.000 -0.001 to 0.001 

Random effect: Phylogeny 0.133 0.032 to 0.299 
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 351 

Figure legends 352 

Fig. 1  353 

Presence of distraction behavior layered on a phylogenetic tree. Solid, performs; white, 354 

does not perform. 355 
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Fig. 2  363 

Effect of body mass (log-transformed; in grams) on distraction behavior. The number of 364 

species is indicated by the thickness of the violin plot.  365 
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