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Fluorescence lifetime imaging microscopy (FLIM) is a key technology that provides direct insight
into cell metabolism, cell dynamics and protein activity. However, determining the lifetimes of
different fluorescent proteins requires the detection of a relatively large number of photons, hence
slowing down total acquisition times. Moreover, there are many cases, for example in studies of
cell collectives, where wide-field imaging is desired. We report scan-less wide-field FLIM based
on a 0.5 Megapixel resolution, time-gated Single Photon Avalanche Diode (SPAD) camera, with
acquisition rates up to 1 Hz. Fluorescence lifetime estimation is performed via a pre-trained artificial
neural network with 1000-fold improvement in processing times compared to standard least squares
fitting techniques. We utilised our system to image HT1080 - human fibrosarcoma cell line as
well as Convallaria. The results show promise for real-time FLIM and a viable route towards
multi-megapixel fluorescence lifetime images, with a proof-of-principle mosaic image shown with 3.6
megapixels.

Introduction. Fluorescence lifetime imaging, unlike
conventional fluorescence imaging techniques, measures
the temporal properties of a fluorophore - its fluorescence
lifetime [1–3]. Fluorescence decay can be affected by the
environment of the fluorophore such as concentration of
oxygen, pH, or protein-protein interactions, among many
others [3–5]. Hence, extracted lifetimes can reveal con-
trast across the sample, which would be otherwise un-
seen from fluorescence intensity measurements only. Flu-
orescence lifetime imaging microscopy (FLIM) is widely
utilised in biological sciences [6, 7]. For instance, in can-
cer research FLIM has been used for cancer cell detec-
tion [8–11], anti-cancer or chemotherapy drug delivery
[12, 13], and anti-cancer drug efficacy studies [14, 15]. In
addition to this, in recent years FLIM has started to play
a role in clinical diagnostics [16–18]. However, wide adop-
tion of FLIM in clinical settings is still lacking, partially
due to limited imaging speed and/or field of view (FOV)
of available FLIM systems [18]. The challenges arise
from the fact that nominal lifetimes of endogenous fluo-
rophores and fluorescent proteins lie in the range of 0.1-
7 ns (see Table 1 in [6]). Since there are a number of pos-
sible quenching interactions [3, 19, 20] that decrease life-
times even further, detectors with sub-nanosecond tem-
poral resolution are required for FLIM. Typical commer-
cial systems make use of confocal microscopes with detec-
tors suitable for point-scanning (such as photomultiplier
tubes) and time-correlated single-photon counting (TC-
SPC) electronics that can satisfy the temporal resolution
requirements [21]). However, point-scanning systems can
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suffer from photo-bleaching due to the high optical en-
ergy in the light pulses used in the system, and cannot
provide instantaneous full FOV information, which be-
comes important when imaging dynamic scenes or in vivo
applications. Moreover, an analytical comparison of
raster scanning and wide-field data acquisition for FLIM
experiments shows that for the case of very dim/sparse
samples, wide-field acquisition can be N2 times faster
compared to raster scanning, where N is the number of
pixels in the detector [22]. Therefore, large detectors,
such as the SPAD array used in this work, can be impor-
tant for imaging dim samples which are often encoun-
tered in biologically relevant experiments.
Wide-field FLIM is typically realised using TCSPC in
a system with microchannel plate-based gated opti-
cal intensifiers combined with a sensor capable of re-
solving signal position, such as a Charge-Coupled De-
vice (CCD) camera [23, 24]. An emerging alterna-
tive to aforementioned intensifier based systems are Sin-
gle Photon Avalanche Diode (SPAD) arrays manufac-
tured with complementary-metal-oxide semiconductor
(CMOS) technology [25], which can operate with TCSPC
or time-gated acquisition mode. The main advantages
of SPAD arrays over conventional CCD/CMOS cam-
eras are the picosecond temporal resolution, and single-
photon sensitivity [26], which make them ideal for a
broad range of applications in the area of ultrafast time-
resolved imaging [27]. Until recently, SPAD arrays had
a relatively limited number of ‘active areas’ (or ‘pixels’)
due to the physical constraints imposed by the need to
fit complex timing electronics for each individual pixel
on the same chip. Nonetheless, recent technological ad-
vances have led to SPAD sensors with formats compara-
ble to intensified CCDs. Prior to the development of the

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.07.138685doi: bioRxiv preprint 

mailto:edoardo.charbon@epfl.ch; daniele.faccio@glasgow.ac.uk; $\dagger $ These authors contributed equally
mailto:edoardo.charbon@epfl.ch; daniele.faccio@glasgow.ac.uk; $\dagger $ These authors contributed equally
https://doi.org/10.1101/2020.06.07.138685
http://creativecommons.org/licenses/by/4.0/


2

n

time

t 
(n

s)

Normalised 
counts (a.u.)

a

b

FIG. 1. Principle of time-gated acquisition and the ma-
chine learning model. a Fluorescence decay is sampled with
a number of gates, each shifted by a minimum of 36 ps. Each
exposure corresponds to a ‘time bin’, which samples a differ-
ent part of the fluorescence decay signal. b The ANN archi-
tecture (see Methods) consists of one input layer (IL), one
output layer (OL), and a series of hidden layers (HLi, with
i = 1, 2, 3). Each of these layers consists of a fully-connected
dense layer (dark blue) followed by with rectified linear unit
(ReLU) activation function (light blue). The input layer is
fed with the fluorescence decay signal recorded by a single
pixel of the SPAD array.

SPAD array used in this work[28], a 512×512 SPAD array
(SwissSPAD2 [29]) was the largest SPAD array available
(recent developments in SPAD detectors are reviewed in
[30]).
In this work, we demonstrate 0.5 megapixel (500×1024
pixels) wide-field FLIM microscopy with a SPAD ar-
ray, while protein fluorescent lifetimes are extracted di-
rectly from the data via a bespoke artificial neural net-
work (ANN). We illustrate the applicability of the 0.5
megapixel SPAD array for FLIM imaging of Convallaria
samples at 1 Hz acquisition rate, and also in experiments
with samples relevant in cancer research, such as the hu-
man fibrosarcoma (HT1080) cell line. Finally, we show
the potential to extend this approach to ultra-wide fields-
of-view by acquiring 8 tiles with the SPAD array, thus
providing a 3.6 megapixel lifetime image of Convallaria.
0.5 megapixel wide-field SPAD array. The SPAD
array is described in detail in Ref. [28] and in the Meth-
ods. The camera operates in gated mode, i.e. the sensor
is sensitive to incoming photons for a fixed duration gate
of ∼ 3.8 ns that has, to good approximation, a super-
Gaussian profile (see Methods). Figure 1 a schemati-
cally explains how the 3.8 ns gate is scanned in steps
that can be as small as 36 ps. At each step, a binary

image (frame) of the spatially resolved photon counts is
recorded. Stacking together all of these frames therefore
provides a temporally-resolved spatial image of the sam-
ple where the data along the temporal axis is the convo-
lution of the lifetime response with the camera temporal
gate. The samples are imaged on to the camera with
0.33 µm/pixel spatial sampling for our all data, with the
exception of Fig. 2 d-f that has 0.47 µm/pixel spatial
sampling with (see Methods).
Lifetime retrieval. Irrespective of the imaging modal-

ity used for FLIM measurements, extracting lifetime in-
formation is not a trivial matter [32]. The measured sig-
nal, f(t), is the convolution of the impulse response func-
tion (IRF) and the fluorescence decay of the fluorophore,
g(t), can be expressed as:

f(ti) =

t=ti∑
t=0

g(ti)IRF(t− ti)∆t, (1)

where ti is the time of the i-th sampling of the sig-
nal. A plethora of algorithms have been developed in
order to tackle the problem of retrieving fluorescence de-
cay (reviewed in [32]), with perhaps the most common
being least-squares (LSQ) deconvolution (sometimes re-
ferred to as ‘reconvolution’). In this approach a model
of the fluorescence decay is convolved with the IRF and
compared to the measured data using LSQ minimisa-
tion. The ‘best fit’ yields a set of parameters, including
the lifetime (described in detail in Methods). However,
LSQ minimisation-based lifetime estimation is typically
very demanding computationally, even with the reduc-
tion of computational times provided by Graphical Pro-
cessing Units (GPUs) [33]. Alternatively, fast visuali-
sation methods such as phasor analysis have been pro-
posed [34], and have been successfully used for time-gated
SPAD array FLIM data analysis [35]. In addition to the
above-mentioned numerical approaches, advances in ma-
chine learning (ML) methods [36] has enabled researchers
to utilise deep learning (DL) frameworks to extract the
exponential decay time and component fraction informa-
tion from FLIM data rapidly and without fitting [37, 38].
Here we employ an ANN to retrieve the lifetime at each
pixel of the SPAD array. The ANN layout is shown
in Fig. 1 b: the input layer (IL) is a one-dimensional
array corresponding to the time-resolved photon-count
signal for a given pixel. This is connected to the out-
put layer (OL), which provides a single value for the
fluorescence lifetime decay constant τ , through 3 fully-
connected dense layers of decreasing size. The ANN is
trained on computer generated data that is created by
taking a range of (mono) exponential lifetime decays (see
Fig. 1 a) that are chosen in the range τ = 0.5− 5 ns and
convolved with a super-Gaussian of width that varies in
the range 3.6-6 ns. The ANN was then tested on both
simulated data not used in the training and also on ac-
tual experimental data. In the latter case, the retrieval
was compared to the results from the LSQ deconvolu-
tion. We found that in order to retrieve precise values of
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FIG. 2. Wide-field fluorescence lifetime measurements of Convallaria and HT1080 cells. First column: least-squares (LSQ)
deconvolution; second column: ANN deconvolution; third column: temporal sum of pile-up and background corrected intensity
data clipped to selected intensity values to reveal dimmer structures. a-c: high photon count measurements of Convallaria
(100 s acquisition). Mean lifetime measurements for LSQ (processing time, 72.3 minutes) and ANN deconvolution (processing
time, 4 s) yield similar values. Spatial sampling is 0.33 µm/pixel with a 7% active area fill-factor. d-f Low photon counts
measurements of Convallaria at a total acquisition time of 1 second. LSQ (processing time, 58 minutes) and ANN (processing
time 2.7 s) deconvolution results are similar. Spatial sampling is 0.47 µm/pixel. g-i measurements of HT1080 (fibrosarcoma)
cells expressing Clover [31]. As with previous data-sets with LSQ (processing time, 23.2 minutes) and ANN (processing time,
3.6 s) retrievals. Spatial sampling is 0.33 µm/pixel. Unclipped maximum intensity is above 14,000 for c, under 1,200 for f, and
above 32,000 for i. Scale bars 50 µm.

τ from test data provided by the camera it was necessary
to also include noise in the training data. The best results
were obtained assuming two sources of noise: a Poisson-
distributed component that is proportional to the actual
signal, as expected for a photon detection process and
also used in Ref. [38] and a Gaussian component whose
mean (zero) and standard deviation (5 counts) were es-
timated from the actual data by analysing the first 10
time bins (over tens of acquisitions) in which no fluores-
cence signal is present. As shown in what follows, the
ANN is applied to each individual pixel and can provide
very similar results to a standard LSQ deconvolution al-
beit with a retrieval time of ∼ 8 s for a megapixel im-
age, corresponding to 1000× gain in speed, if compared
to our LSQ approach (the mean absolute difference be-
tween the two methods for the results shown in Fig. 2
was 0.14 ± 0.12 ns) and is thus a key component in ren-
dering megapixel FLIM a real-time technique.
Results: 0.5 megapixel wide-field FLIM. To illus-

trate the applicability of our SPAD array for FLIM data
acquisition, we imaged a Convallaria sample with ‘high
photon counts’ (HPC) at a 100 second acquisition rate
(Fig. 2 a-c) and with ‘low photon counts’ (LPC) at a 1
second acquisition rate (Fig. 2 d-f). The HPC data-set
was obtained by using a 108 ps gate shift, and 200 time
bins. In order to achieve 1 Hz acquisition, we reduced
the exposure to ≈ 33 ms per frame and we increased the

Data LSQ (ns) ANN (ns)
HPC, Fig. 2 a-c 0.90 ± 0.18 1.08 ± 0.18
LPC, Fig. 2 d-f 1.33 ± 0.58 1.30 ± 0.29
HT1080, Fig. 2 g-i 2.53 ± 0.28 2.31 ± 0.34

TABLE I. Mean and standard deviation of extracted lifetime
values of data shown in Fig. 2. The LSQ and ANN lifetime
retrieval methods provide similar, compatible results.

gate shift to 504 ps, thus reducing the time bins from
200 to 30. Figure 2 shows that lifetime data can be re-
trieved for both the HPC and LPC data. However, LPC
data analysis is more challenging due to the lower signal-
to-noise ratio (SNR) and coarser sampling (fewer time
bins) of the decay curve. In the examples shown here,
the total photon count in the LPC data falls below 1,200
photons per pixel, whereas the HPC data exceeds 14,000.
Nonetheless, both the LSQ and ANN methods recovered
similar mean lifetime values for both HPC and LPC data.
The mean lifetime and standard deviation values for the
lifetime images in Figure 2 are shown in Table I.

One of the main benefits of the ANN is that it has
the potential for being significantly faster than LSQ. Us-
ing a pre-trained model (training time ≈ 38 minutes on
a training set of ≈ 2 million simulated decay curves),
the ANN retrieval requires 2.7-4 s to process the full im-
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FIG. 3. Mosaic image of 8 tiles of Convallaria sample stitched together, yielding 3.64 megapixel data (1875×1942 pixels)
corresponding to a field of view ≈ 618× 650 µm (or, equivalently, a sampling of 0.33 µm/pixel). The total acquisition time was
approximately 16 minutes in HPC mode (that can be reduced 10-20 seconds by operating in low photon count mode) with a
processing time of ≈36 seconds using ANN deconvolution. Image stitched using BigStitcher [39].

age. This is 500-1084 times faster than the LSQ method,
which took 23.3-72.3 minutes in our tests (detailed times
for each data-set are described in Fig. 2). We emphasise
that we fit each pixel independently, and do not rely on
‘global fitting’ schemes, where data is averaged spatially
and/or temporally [40].
While Convallaria is a popular sample for testing FLIM
systems [41], the strong signal it yields is not necessar-
ily representative, for example, of the signal level from
transfected mamallian cells. To show a more practical ex-
ample, we provide FLIM data of cancer research relevant
samples: fixed HT1080 (fibrosarcoma) cells, transfected
with pcDNA3-Clover [42] and expressing a protein with
a single fluorescence lifetime (Fig. 2 g-h). The HT1080
cell data was acquired in HPC mode with a total 220 s
acquisition time. Similarly to the Convallaria results, the
ANN and LSQ results match well quantitatively (abso-
lute difference between LSQ and ANN: 0.22 ± 0.06 ns).
The large size of the sensor allows imaging multiple cells,
at high detail, across a large field of view simultaneously.
We note that the acquisition time could be decreased by
increasing the gate shift and acquiring fewer time bins at
the cost of reduced sampling of the fluorescence decay,
and potentially less accurate lifetime recovery.

Results: 3.6 megapixel wide-field FLIM. Finally,
we present a 3.6 megapixel image of our Convallaria
sample to showcase that very large field-of-views can be
achieved almost trivially using the 0.5 megapixel SPAD
array (Fig. 3). The field of view in Fig. 3 is 618×650 µm
with the same spatial sampling of 0.33 µm/pixel as in
previous figures. We acquired the data using a mosaic
acquisition by moving the sample with ≈ 10% overlap
between mosaic tiles. Crucially, our ANN method re-
quired only 36 s to recover lifetime information from this
data-set. This retrieval time could be shortened by pro-
cessing each pixel (or batches of pixels) in parallel.
Conclusions. We have demonstrated the application
of the largest-to-date time-gated SPAD array for fluores-
cence lifetime imaging of biologically relevant samples.
By exploiting the ability to vary the gate-shift size be-
tween different exposures of the camera, we showed that
wide-field FLIM at 0.5 megapixel resolution is possible at
1 Hz acquisition speed. By performing a spatial mosaic
acquisition, 3.6 megapixel fluorescent lifetime images are
readily available. These could be scaled to even larger
fields of view and shorter acquisition times by using be-
spoke and rapid translation stages. In this work we re-
trieve mono-exponential lifetimes as this has less strin-
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gent SNR requirements compared to multi-exponential
fitting [32, 43]. However, future work could of course ex-
tend this multi-exponential decays.
While fast analysis methods such as the phasor approach
[34], or methods utilising advances in machine learning
[37, 38], including our own ANN, are important parts of
a high-speed FLIM systems, the biggest impact on imag-
ing low-signal biologically relevant structures at sub-µm
resolution at large FOV is delivered by the continuous
improvement of SPAD array technology with e.g. in-
creases also in fill factor and quantum efficiency [44]. Ac-
knowledgements. The authors acknowledge financial
support from EPSRC (UK, grant nos. EP/T00097X/1
and EP/T002123/1), The Swiss National Science Foun-
dation (CRSII5 177165), and Canon.

METHODS

Time-gated imaging. The imaging is based on a
1 megapixel SPAD image sensor[28]. The acquisition is
performed by using half of the camera with 7% fill fac-
tor and 10% photon detection probability at 510 nm. To
acquire the fluorescence lifetime of a sample, the camera
is operated in the time-gated mode. Laser pulses are re-
peatedly exciting the sample; the photons emitted due to
fluorescence will be detected by the camera in multiple
frames with shifting gate window, resulting in an image
sequence per acquisition. For each frame with a fixed
gate position, 255 binary frames are summed to create
an 8-bit image (9-bit images are obtained by summing
two 8-bit registers). To obtain the full characteristic of
a single-exponential fluorescence decay, the starting gate
position is tuned to be prior to the laser excitation. The
gate with average width of 3.8 ns over all pixels is then
shifted finely between each frame by a fixed time. Illus-
tration of gate-shifting is shown in Fig. 1 a. We note
that we pre-process the data by performing background
subtraction and pile-up correction, where the latter is ac-
counted for, following equation 1 in Ref. [35] and adopt-
ing the same nomenclature:

Icorr = −Imax ln

(
1 − Irec

Imax

)
, (2)

where Icorr is the pile-up corrected counts, Imax is the
maximum possible photon count (depending on the bit
depth e.g. 255 for 8-bit data), and Irec is the actual
recorded value at a particular pixel. The background is
removed by taking the average of first few frames, before
the decay signal is observed, and subtracting it from all
the frames. We threshold out any pixels that have fewer
than Ntot photon counts in total (i.e. integrated over
all time gates) in order to eliminate pixels that have no
significant signal. Photon counts drop towards the left
hand side of the sensors due to a decay in the strength
of the electronic drivers that distribute the signal con-
trolling the time gates. We account for this non-uniform

μ

μ

μ

FIG. 4. Calculated modulation transfer function (MTF)
accounting for the pixel footprint, and sampling for different
pixel size and pitch at an effective magnification of 27.77×,
as used in our experiments. The MTF of the sensor used in
this work is shown in magenta (pixel pitch 9.4 µm, fill factor
7%). Recent advances show promise for higher fill factors
(42.4%) and smaller pixel pitch (4 µm) [44] thus leading to a
significantly improved MTF (green curve).

response of the SPAD array (see Fig. 5 in [28] for de-
tails) with a ‘sliding thresholding’ of the data, going from
Ntot = 1300 (right hand edge of the image) to Ntot = 50
(left hand edge).
We note that despite the 7% fill factor, the small pixel
pitch of 9.4 µm (corresponding to a pixel active circu-
lar area of 6.18 µm2) of the sensor provides sufficient
sampling for microscopy at common magnification range.
Figure 4 shows the Modulation Transfer Function (MTF)
of our SPAD (magenta curve), indicating a 0.58 µm res-
olution (evaluated from the spatial frequency and half-
maximum of the MTF). We also show for comparison
(green curve) the MTF of a next-generation SPAD array
with a higher fill factor of 42.4% and similar pixel active
circular area (6.8 µm2) [44] and that would have more
than double the resolution because of the improved pixel
pitch from 9.4 µm to 4 µm.

Data Analysis - LSQ deconvolution. As briefly
explained in the introduction in the main text, the mea-
sured data is a convolution of the impulse response func-
tion (IRF) and the underlying fluorescence decay (see
Eq. 1). Technically, the IRF of a FLIM system depends
on the excitation source and the detector (in our case, the
gate length of each SPAD in the array). However, since
the nominal pulse width of our laser pulse (< 47 ps) is
significantly smaller than the gate length of our SPADs
(average 3.8 ± 0.2 ns), the contribution to the IRF from
our laser source is negligible.
We modelled the IRF as a generalised Gaussian function
(or super-Gaussian) at each pixel b as

gN (t) = exp

[
−2

(
t− t′

wN

)2N
]
, (3)

where t is time, t′ is the position of the gate, N the
Gaussian order, and wN is given by the full width at half
maximum (FWHM) of the gate through the following
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FIG. 5. Lifetime retrieval performance of the LSQ (red
squares) and ANN (blue squares) compared to the ground
truth (black dots).

relation:

wN =
FWHM

2 (0.5 ln 2)
1/2N

. (4)

We measured that the average 10% to 90% intensity
rise time for the gate (evaluated over all the pixels) is
(0.55 ± 0.08) ns [28]. The order N of the super-Gaussian
is chosen such that it matches the actual measured pro-
files [28]. Namely, N = 6 in Eq. (3) yields a rise time of
approximately equal to 0.61 ns.
The fluorescence decay model used obeys the following
equation: {

d(t) = A0 exp
(
− t−t0

τ

)
+ b t ≥ t0

d(t) = b t < t0,
(5)

where τ is the decay constant (i.e. lifetime), t0 is a
temporal offset, b is a constant that accounts for a sig-
nal offset induced by a non-zero background and A0 is
an amplitude parameter corresponding to the number of
photon counts. Following Eqs. (3) and (5), we model
the temporal response of our detection system through
the function f(t) = gk(t) ~ d(t), where ~ stands for
mathematical convolution. We then apply a LSQ opti-
misation to the measured data that provides an estimate
of [w, t0, τ, b, A0, t

′].
Data Analysis - artificial neural network. We use a

custom ANN consisting of an input layer (IL), an output
layer (OL), and three hidden layers (HLi, with i = 1, 2, 3)
connecting IL with OL, as depicted in Fig. 1b. Each of
these layers is formed by a fully-connected dense layer
followed by with rectified linear unit (ReLU) activation
function. The IL (with n0 = 200 nodes) is fed with a
fluorescence decay signal (normalised to the range [0,1]),
i.e. with a 1D vector with as many elements as the num-
ber of gate shifts (200 in our work). Then, the output
of the IL is fed in cascade through the ANN, while the
number of nodes of each subsequent HLi is decreased to:
n1 = 100, n2 = 50, and n3 = 25. Finally, the OL pro-
vides an estimation of the lifetime τ of the fluorescence

decay.
Standard machine learning techniques require training
with data-sets of sufficient size and quality. To this aim,
we train our ANN only with synthetic data, i.e. with
fluorescence decay curves-lifetime pairs that are gener-
ated numerically. The training set comprised ≈ 2 million
curves that are obtained by convolving fluorescence de-
cay signals with a range of gate functions, all modelled
according to Eqs. (3) and (5)). As described in the main
text, we also included a noise model in the data, as this
proved to be essential in retrieving precise lifetime values
on test data. Including variability on gate width, cen-
tre position, lifetime, and lifetime curve height, allows
us to account for the fact that the various SPAD pix-
els have slightly different underlying electronic properties
[28]. After the ANN is trained and tested on unseen syn-
thetic data (see below), it is fed with fluorescence decay
curves experimentally recorded by individual pixels from
the SPAD array in order to estimate the lifetime, τ .
Both LSQ and ANN deconvolution approaches retrieve
fluorescence lifetimes one pixel at a time, and can there-
fore be used on data of any dimension. For the ANN ap-
proach we obtained a root mean squared error of 0.0725
on a test set of ≈ 1 million synthetic data. The ANN al-
gorithm then takes (≈ 8.5±0.5) s to predict the lifetimes
of a 1024×1024 synthetic data set with 200 time bins on
a Intel Core i7 10510U CPU.
Fig. 5 shows the lifetime retrieval performance of both
the LSQ and the ANN methods. For this benchmark,
we generated 9 sets of synthetic curves following the con-
volution model described above. Each set of curves had
constant lifetime decay τ within the range [0.75−4.75] ns
(black dots in Fig. 5) and randomly varying noise from
curve to curve within the set. Red and blue squares rep-
resent the mean of the lifetime values retrieved with the
LSQ and the ANN, respectively, while error bars corre-
spond to their standard deviation. Both methods provide
lifetime estimates in excellent agreement with the ground
truth data.
Imaging set-up We acquired the data on a custom-
built epi-fluorescence microscope, with an Olympus 20×
0.4NA objective with an f = 250 mm tube lens (or
Nikon 40× 0.75NA objective, and f = 100 mm tube
lens for 1 Hz acquisition) air objective, and a FITC
emission/excitation filter and dichroic mirror set. For
the illumination source, we used HORIBA DeltaDiode
laser diode model DD-470L, nominal peak wavelength
470 nm spectral Full Width at Half Maximum (FWHM)
< 10 nm, nominal pulse width of < 47 ps, and a nominal
pulse energy of 15 pJ. The repetition rate of the diode
was set to 25 MHz.
Mammalian cells, culturing conditions and trans-
fections. HT1080 cells were maintained in Dulbecco’s
modified eagle’s medium (DMEM), supplemented with
10 % foetal bovine serum (FBS), 2 mM L-glutamine
and 1X PenStrep. Cells were maintained in 10 or 15
cm TC-treated plastic dishes at 37◦C and 5 % CO2.
HT1080 cells were transfected using Amaxa nucleofector
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Kit T, program L-005. Cells were transfected with 5 µg
DNA (pcDNA3-Clover) following manufacturers guide-
lines and replated on 6 cm TC-treated plastic dishes
overnight at 37◦C, 5 % CO2. 35 mm glass bottom Mat-
Tek dishes that were coated with laminin 10 µg ml−1

diluted in PBS and left overnight at 4◦C. Cells were
then collected and replated onto the dishes and incu-

bated for 24 hours at 37◦C, 5 % CO2. After, the
dishes were washed twice with PBS before fixing with
4 % Paraformaldehyde for 10 minutes. These were then
washed three times with PBS before slight drying. 10 µl
Fluromount-G (without DAPI) was added on top of the
cells and a 19 mm glass coverslip was added on top to
seal the cells in the dish. Dishes were kept in the dark
until imaging.
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