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Abstract 
Modeling complex biological systems is necessary to understand biochemical interactions behind 
pharmacological effects of drugs. Successful in silico drug repurposing requires a thorough 
exploration of diverse biochemical concepts and their relationships, including drug’s adverse 
reactions, drug targets, disease symptoms, as well as disease associated genes and their 
pathways, to name a few. We present a computational method for inferring drug-disease 
associations from complex but incomplete and biased biological networks. Our method employs 
the compressed sensing technique to overcome the sparseness of biomedical data and, in turn, 
to enrich the set of verified relationships between different biomedical entities. We present a 
strategy for identifying network paths supportive of drug efficacy as well as a computational 
procedure capable of combining different network patterns to better distinguish treatments from 
non-treatments. The data and programs are freely available at 
http://bioinfo.cs.uni.edu/AEONET.html. 
 
1 Introduction 
Recent decades have seen a sharp increase in spending on drug development in US and the rest 
of the world. The number of drugs approved per 1 billion dollars invested in R&D has steadily 
declined since 19501, with the estimates of the average cost to bring a new drug to the market 
approaching 1.7 billion 2. Reversing the trend of the stagnant and diminishing drug approval rates 
requires adoption of new approaches to drug discovery. To address the toxicity and lack of efficacy 
of candidate drugs, researchers are increasingly looking for therapeutics that act on multiple 
targets pertaining to single or multiple disease pathways. Such a broader approach to the 
development of pharmaceutical agents, coined as polypharmacology3,4, often necessitates the 
use of multiple chemicals acting on different targets for the treatment of complex diseases. 
Polypharmacology is the main principle behind drug repurposing, which aims to identify new uses 
for the existing drugs. Drug repurposing accelerates the discovery process by bypassing most of 
the pre-clinical work and trials required for drug approval. 

Computational methods provide crucial support for drug repurposing. Modern algorithms 
increasingly rely on the network representation of a biological system to discover drug-disease, 
drug-gene, disease-gene, and other relationships between biomedical concepts. A simple 
biological system can be viewed as a homogenous network in which the nodes represent 
biological entities and edges represent the relationships (associations or interactions) between 
those entities. An example is the protein interaction network, in which the nodes represent 
proteins and edges signify PPIs.  

While homogenous network can be used to model relationships between entities from any 
pair of domains, the accumulating scientific evidence suggests that better understanding of a 
biological system as a whole is necessary to overcome the limited performance of methods that 
only take account of one or two types of biological data. Complex biological systems can be 
viewed as heterogeneous networks in which the nodes are grouped into different layers 
(domains), such as the compound layer, protein layer, disease layer, etc. The nodes within each 
layer are interconnected and connected to the nodes from other layers5.  

Heterogeneous networks provide new avenues for research into in silico drug 
repurposing6,7,8,9. Zeng et al. used a multi-modal autoencoder on a heterogeneous network to 
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learn drug features and, in turn, prioritize drug repurposing candidates10. Chen et al. developed 
an efficient algorithm for detecting missing cross-layer links in a heterogeneous network by 
leveraging the observed cross-layer dependency with the within-layer topology11. Guney et al. 
developed a drug-disease proximity measure to quantify the network-based associations between 
drugs and disease proteins12. Cheng et al. proposed a systems pharmacology-based procedure 
that integrates molecular pharmacoepidemiologic and network-based approaches to quantify 
interplay between drug targets and disease proteins13.   

Perhaps the most comprehensive biological network to date is HetioNet14. This 
heterogeneous network, compiled from public resources15-54, consists of 47,031 nodes grouped 
into 11 domains and 2,250,197 relationships (edges) classified into 24 categories (Fig. 1).  

 

In the project Rephetio, Himmelstein et al. demonstrated the advantage of utilizing HetioNet 
patterns to reconstruct known and predict new drug-disease associations14. Rephetio is capable 
of identifying multiple network paths that explain therapeutic efficacy of different drugs on different 
diseases. The method uses logistic regression to fine-tune the weights of different network paths 
that connect compounds to diseases, including transitive paths that traverse multiple relations, 
such as, for example, Compound-binds–Gene–participates–Pathway–participates–Gene–
associates–Disease. (The meta-path in this example represents any path from a compound node 
c to a disease node d with the property that c binds a gene g1 which participates in the same 
pathway as gene g2, which is associated to the disease d.) The aggregate probability over 
selected paths is used to measure the strength of each drug-disease association.  

While the novel network-based approach used by Himmelstein et al. is useful in gaining 
insight into the drug mechanism of action, the accuracy of Rephetio is highly dependent on the 
available network data. Here we present a computational method AeoNet, which is capable of 
identifying network patterns that explain drug efficacy in context of sparse, biased and incomplete 
networks. Our algorithm can be viewed as a two-step process.  

 First, we use the compressed sensing technique55,56,57 to enrich the set of network edges 
by inferring all missing inter-domain and cross-domain relationships. In the second step, we 
integrate the likelihoods of all possible paths connecting each drug with each disease. We use 
three external benchmarks to demonstrate that our approach consistently increases the accuracy 
of drug-disease association prediction. 

 

Relationships (meta-edges) 

Anatomy-downregulates-Gene AdG 

Anatomy-expresses-Gene AeG 

Anatomy-upregulates-Gene AuG 

Compound-resembles-Compound CrC 

Compound-causes-Side Effect CcSE 

Pharmacologic Class-includes-Compound PCiC 

Compound-treats-Disease CtD 

Compound-palliates-Disease CpD 

Compound-binds-Gene CbG 

Compound-downregulates-Gene CdG 

Compound-upregulates-Gene CuG 

Disease-resembles-Disease DrD 

Disease-localizes-Anatomy DlA 

Disease-presents-Symptom DpS 

Disease-associates-Gene DaG 

Disease-downregulates-Gene DdG 

Disease-upregulates-Gene DuG 

Gene-covariates-Gene GcG 

Gene-interacts-Gene GiG 

Gene-regulates-Gene GrG 

Gene-participates-Pathway GpPW 

Gene-participates-Biological Process GpBP 

Gene-participates-Molecular Function GpMF 

Gene-participates-Cellular Component GpCC 

 

Fig 1. HetioNet  
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The rest of this paper is organized as follows. In section 2.1 we provide a brief overview 
of compressed sensing. Section 2.2 describes a simple procedure for constructing different 
network paths that connect drugs to diseases. Section 2.3 presents a strategy for selecting a set 
of the most informative paths, while section 2.4 presents a simple method for aggregating drug-
disease association probabilities along those paths. The Results section summarizes the 
performance of our method on the external validation sets. 

 
2 Methods 
2.1. Inferring missing HetioNet relationships 
We use a variant of the matrix completion technique, referred to as “compressed sensing”, to 

enrich the set of edges between any two HetioNet domains connected by a meta-edge. 

Compressed sensing is similar in spirit to dual regularized one-class collaborative filtering 

(OCCF) algorithm58. However, in contrast to OCCF, our method is based on logistic matrix 

factorization59 and thus has a more explicit statistical foundation.  
 

The compressed sensing algorithm  

In what follows, we illustrate how this procedure 

works in an example setting of drug-target 

interaction prediction. The same algorithm is 

applied to predict relationships between entities 

that belong to other directly connected biological 

domains. 

There are two scientific premises behind 

our method. First, we assume that the matrix of 

drug-target association (that we wish to recover) is 

of small rank 𝑘 ≪ min⁡{𝑛,𝑚}, where 𝑛 and 𝑚 

denote the total number of drugs and genes, 

respectively. Our algorithm (Fig. 2) can be viewed 

as the low-rank completion of the input (noisy and 

incomplete) drug-target association matrix 𝑅 =

(𝑟𝑖,𝑗), defined as  

𝑟𝑖,𝑗 = {
1 if⁡drug⁡𝑖⁡interacts⁡with⁡target⁡𝑗
0 otherwise

 

Our second assumption is that similar drugs 

interact with similar targets. Given the relationship 

matrix 𝑅, the pairwise drug similarity matrix 𝑀, and the pairwise target similarity matrix 𝑁, the 

algorithm computes the matrices 𝐹 and 𝐺 of drugs’ and targets’ “latent” preferences (Fig. 2). 

Specifically, the 𝑖𝑡ℎ row of 𝐹 represents the latent vector representation of the drug 𝑖 while the 

𝑖𝑡ℎ row of 𝐺 represents the latent vector representation of target 𝑖. The matrices 𝐹 and 𝐺 are 

found by minimizing the loss function 

 

 ∑ 𝑤𝑖,𝑗 {𝑙𝑛 (1 + 𝑒𝑓𝑖𝑔𝑗
′⁡) − (𝑟𝑖,𝑗 + 𝑞𝑖,𝑗)𝑓𝑖𝑔𝑗

′}𝑖,𝑗 + 𝜆𝑟(‖𝐹‖2
2 + ‖𝐺‖2

2) + 

+ ⁡𝜆𝑀𝑡𝑟(𝐹
′(𝐷𝑀 −𝑀)𝐹) + 𝜆𝑁𝑡𝑟(𝐺

′(𝐷𝑁 −𝑁)𝐺)             (1) 

 

In (1) above, the prime symbol denotes matrix transpose, ‖ ‖2 stands for the Frobenius norm, 

and 𝑡𝑟 denotes the matrix trace. We use 𝑓𝑖 and 𝑔𝑗 to denote the 𝑖𝑡ℎ row of 𝐹 and 𝑗𝑡ℎ row of 𝐺, 

 
Fig. 2. Compressed sensing algorithm. R: input 

matrix of drug-target associations; Q: impute 
matrix; W: weight matrix; M: drug similarity matrix; 
N: target similarity matrix; F: latent drug 
preferences; G: latent target preferences; P: 
output matrix of drug-target interaction 
probabilities. 
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respectively. The matrix 𝐷𝑀 is the diagonal “degree matrix” of 𝑀 in which the element 𝑑𝑖,𝑖 

represents the sum of the elements in the 𝑖𝑡ℎ row of 𝑀.  The (optional) impute values 𝑞𝑖,𝑗 can be 

specified by expert users who wish to supplement the set of relationships 𝑅, while the entries 

𝑤𝑖,𝑗 of the weight matrix 𝑊 reflect the user’s confidence in the elements of the interaction matrix 

𝑅 + 𝑄. The lambdas (𝜆𝑟, 𝜆𝑀, and 𝜆𝑁) are optimizable parameters. The matrix of probabilities of 

drug-target interactions is computed as 𝑃 = exp(𝐹𝐺′) /(1 + exp(𝐹𝐺′)). The latent preferences of 

drugs with no known interacting targets and targets with no known interacting drugs are derived 

with a variant of the weighted profile method. For technical details, we refer the reader to our 

published work55,56,57. 

2.2 Exploring different paths connecting drugs to diseases 
We compute drug-disease association probabilities separately along each path between the 
drug layer and the disease layer.  

The variety of paths between two layers gives rise to a set of 
diverse similarity matrices M and N that can be specified as input to 
our compressed sensing algorithm. To derive side information 
specific to a particular network path p, we split p into three sub-
paths, p1, p2, and p3. The sub-path p1 is a cycle that starts and ends 
at the first layer and uniquely defines a similarity matrix M. The sub-
path p2 consists of a single edge that connects the first layer to the 
second layer and corresponds to the relationship itself (matrix R). 
Finally, the sub-path p3, determining the side information N, is a 
cycle that starts and ends at the second layer.  

For instance, the path p = CrCtDrD 
(Compound-resembles-Compound-treats-
Disease-resembles-Disease) can be 
represented as p = p1p2p3, where p1 = CrC, 
p2 = CtD, and p3 = DrD. The drug-disease 
association probabilities along this path are 
derived by running the compressed 
sensing algorithm on the input drug 
similarity matrix M = CrC (Compound-
resembles-Compound), the association 
matrix R = CtD (Compound-treats-
Disease), and the disease similarity matrix 
N = DrD (Disease-resembles-Disease). 
The same idea is extended to derive M, R, 
and N along longer paths. For instance, as 
illustrated in Fig. 3, the drug-disease 
probabilities along the path 
CcSEcCtDpSpD (Compound-causes-Side 
Effect-causes-Compound-treats-Disease-
causes-Symptom-causes-Disease) are 
computed by running the compressed 
sensing algorithm on the input matrices M 
= CcSEcC, R = CtD, and N = DpSpD, where CcSEcC (abbreviated as CseC) represents the 
matrix of pairwise similarities of drugs’ side-effect profiles and DpSpD (or short DpsD) 
represents the matrix of pairwise similarities of disease’ symptom profiles (Table 1, Fig. 3). More 
specifically, given compounds 𝑖 and 𝑗, we set the element of the matrix CseC at the position 
(𝑖, 𝑗) to the Jaccard similarity of the rows 𝑖 and 𝑗 of the CcSE matrix (Compound-causes-Side 

 

 
Fig. 3. Assigning path-
dependent matrices R, M 
and N. 

 
Table 1. Different drug, gene, and disease similarity 

matrices. 
 

Compound 
Similarity Matrix 

Derived from HetioNet Relationship 

CrC Compound-resembles-Compound 

CseC Compound-causes-Side Effect (CcSE) 

CpcC 
Pharmacologic Class-includes-

Compound (PCiC) 

CsC Average of CseC and CpcC 

Disease 
Similarity Matrix 

Derived from HetioNet Relationship 

DrD Disease-resembles-Disease 

DpsD Disease-presents-Symptom (DpS) 

DlaD Anatomy (DlA) 

DsD Average of DpsD and DlaD 

Gene Similarity 
Matrix 

Derived from HetioNet Relationship 

GbpG Biological Process (GpBP) 

GmfG Molecular Function (GpMF) 

GccG Cellular Component (GpCC) 

GpwG Pathway (GpPW) 

GsG 
Average of GbpG, GmfG, GccG, 

GpwG, GiG, GrG, GcG 
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Effect). The disease similarity matrix N = DpsD is specified in a similar manner, by computing 
Jaccard similarities of diseases’ symptom profiles stored in the relationship matrix DpS 
(Disease-presents-Symptom).  

In theory, p1 or p3 (or both) can be of length zero, indicating the lack of side information. 
In those cases, the input similarity matrices are simply set to the identity matrices. For instance, 
if p = CrCtD, then M = CrC, R = CtD, and N = I (no drug side information). 

 Finally, we define the probabilities of drug 
efficacies along transitive paths as the normalized 
products of the probability matrices for individual 
path segments. For instance, the matrix of drug-
disease associations along the path 
CseCbGiGaDpsD (Compound-causes-Side Effect-
causes-Compound-binds-Gene-interacts-Gene-
associates-Disease-presents-Symptom-presents-
Disease) represents the normalized product of the 
probability matrices computed along the paths 
CseCbGiG and GiGaDpsD.  

While multiple network patterns provide 

different clues into therapeutic effects of different 

drugs on different diseases, accounting for all 

possible paths is computationally expensive (see 

section 2.4).  One way to lower the cost of our 

algorithm is to merge selected paths into paths 

that traverse new edges, those corresponding to 

the overall drug, disease and gene similarity 

relationships (denoted by CsC, DsD, and GsG, 

respectively). We define the mean drug similarity 

score as the average of the similarity scores 

based on side-effect and pharmacological profiles, 

or, at the matrix level, CsC = (CseC + CpcC) / 2. 

In a similar way, we compute the average 

similarity of diseases as DsD = (DpsD + DlaD) / 2 and the average similarity of genes as GsG = 

(GbpG + GpwG + GmfG + GccG + GiG + GcG + GrG) / 7. The notion of average similarity helps 

reduce the total number of paths explored by AeoNet. For instance, using the average 

compound similarity measure, the paths CseCtDlaD and CpcCtDlaD are merged into a single 

path CsCtDlaD. Table 2 shows the collection of all paths through the network explored by 

AeoNet. 

 

2.3 Measuring contribution of paths supporting drug efficacy 

Different network paths have different potentials in distinguishing disease treatments from non-

treatments. In general, we have less confidence in drug-disease association scores computed 

along longer paths or paths that traverse meta-edges derived from sparse databases of cross-

layer relationships. The treatment potential of different network patterns is computed using 

cross validation on the set of HetioNet drug-disease relationships (Compound-treats-Disease). 

Table 2 shows cross-validated AUC, AUPR and PREC@10 scores corresponding to different 

network patterns. 

 

 

 
Table 2. Classification accuracy of different 

network patterns (three rounds of 3-fold CV). The 
paths with highest AUC scores are shown in bold. 
 
 

Path AUPR AUC 

CrCtDsD 0.211(0.021) 0.914(0.009) 

CpcCtDsD 0.255(0.012) 0.920(0.005) 

CseCtDsD 0.350(0.016) 0.942(0.008) 

CsCtDrD 0.302(0.007) 0.938(0.001) 

CsCtDlaD 0.298(0.014) 0.938(0.006) 

CsCtDpsD 0.301(0.011) 0.936(0.002) 

CsCbGsGaDsD 0.029(0.000) 0.824(0.000) 

CsCbGsGdDsD 0.007(0.000) 0.595(0.000) 

CsCbGsGuDsD 0.008(0.000) 0.619(0.000) 

CsCdGsGaDsD 0.027(0.000) 0.779(0.000) 

CsCdGsGdDsD 0.011(0.000) 0.615(0.000) 

CsCdGsGuDsD 0.016(0.000) 0.632(0.000) 

CsCuGsGaDsD 0.028(0.001) 0.780(0.000) 

CsCuGsGdDsD 0.013(0.000) 0.623(0.000) 

CsCuGsGuDsD 0.013(0.000) 0.624(0.000) 

CsCbGsGeAlDsD 0.011(0.000) 0.739(0.001) 

CsCbGsGdAlDsD 0.009(0.000) 0.655(0.001) 

CsCbGsGuAlDsD 0.011(0.000) 0.690(0.001) 

CsCdGsGeAlDsD 0.013(0.000) 0.709(0.000) 

CsCdGsGdAlDsD 0.011(0.000) 0.656(0.001) 

CsCdGsGuAlDsD 0.015(0.000) 0.666(0.000) 

CsCuGsGeAlDsD 0.013(0.000) 0.716(0.000) 

CsCuGsGdAlDsD 0.012(0.000) 0.660(0.000) 

CsCuGsGuAlDsD 0.012(0.000) 0.661(0.000) 
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2.4 Aggregating drug-disease probabilities along the most informative paths 

AeoNet integrates 
probabilities along the 
network paths with 
highest cross-validated 
AUC (Table 2, Fig. 4). 
We note that nine out 
of ten highest scoring 
AUC paths also 
represent the highest 
scoring paths with 
respect to the AUPR 
measure, indicating a 
good agreement 
between the two 
classification metrics 
on the set of 755 
indications 
(Compound-treats-
Disease).  

An optimal 
weighted sum of drug-
disease probabilities 
along ten highest 
scoring paths is found 

by maximizing cross-validated AUC score achieved on the set of Compound-treats-Disease 

associations. The path coefficients are selected from 𝐶 = {30, 31, 32, 33} using grid search. More 

specifically, for each among 410 permutations with repetitions of 10 coefficients selected from 𝐶, 
we compute cross-validated AUC of the weighted sum of path specific probabilities and then 
pick the set of 10 coefficients that yields the highest AUC.  

While a larger selection of network paths combined with a finer grid search has potential 
to improve the method’s accuracy further, we had to scale both numbers down in order to 
balance the computational cost with the available computing resources. For predicting palliative 
(as opposed to disease-modifying) potentials of drugs, we exclude paths that traverse 
Compound-treats-Disease edges. 

 
3 Results 

We assess the potential of different network paths to distinguish treatments from non-treatments 

and the overall accuracy of AeoNe using three external validation sets compiled by Himmelstein 

et al., namely DrugCentral, Clinical Trials and Symptomatic. The DrugCentral test set consists 

of 208 novel treatments and 207,572 non-treatments extracted from the DrugCentral 

repository40. The Clinical Trial set consists of 5,594 novel indications compiled from 

ClinicalTrials.gov and 202,186 non-treatments. We note that, while much larger, the Clinical 

Trial benchmark is less reliable than DrugCentral, due to the low approval rates of drugs in 

clinical trials. The Symptomatic set contains 390 HetioNet relationships (positive associations) 

of the type Compound-palliates-Disease14 and 208,023 negative associations. We emphasize 

that no positive drug-disease association from any test sets appears in our training set of 755 

HetioNet disease-modifying indications (Compound-treats-Disease relationships).  

 

 
Fig. 4. Most supportive network paths (in no particular order) as measured by 

cross-validated AUC score. 
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Table 3 list the classification scores along the individual network paths and the scores 
obtained using the integrative AeoNet approach. As seen in this table, the value added by 
different network paths varies across the three test sets. For instance, the path with the highest 
AUPR score in the DrugCentral benchmark is CpcCtDsD  (AUPR = 0.095) but this path does 
not perform nearly as well in other benchmarks (it ranks #6 in DrugCentral AUC benchmark and 
#6 and #8 in Clinical Trial AUPR and AUC benchmarks, respectively). On the other hand, the 
path CsCbGsGaDsD has the highest AUC score (AUC = 0.747) and the second highest AUPR 
score (AUPR = 0.097) in Clinical Trial benchmark but it ranks in the bottom half of all paths in 
the DrugCentral benchmarks with respect to both AUC and AUPR. By finding and exploiting 
synergies between different network paths, AeoNet consistently improves classification scores 
of individual network paths (Table 3). 
 

We also present a side-by-side comparison 
of AeoNet with Rephetio and two other 
recently published methods for predicting 
drug-associated indications, BNNR60 and 
OMC61. The last two algorithms have been 
shown to yield higher accuracy when 
compared to other state-of-the-art 
approaches. These methods require drug 
similarity information in terms of Tanimoto 
coefficients as well as the disease 
similarity information. We computed 
Tanimoto coefficients by calculating 
Jaccard similarity between the drug 
fingerprints derived from the Chemistry 
Development Kit, using PaDEL-Descriptor 

software62. For disease side information, both BNNR and OMC were given Disease-resembles-
Disease scores. In addition, the OMC method tested here is based on tri-layer network (OMC3), 
and it requires drug-gene and disease-gene association matrices as input. We derived this data 
from HetioNet’s Drug-binds-Gene and Disease-associates-Gene relationships, respectively. All 
three external methods were ran using the default parameters supplied by their authors. 

With the exception of Clinical Trial PREC@10 test (OMC 40%, AeoNet 40%), the 
classification scores achieved by AeoNet exceed the scores achieved by the other methods in 
every benchmark and according to each classification measure (Table 3, Fig. 5). The 
performance of the remaining three methods fluctuate across the test sets and across different 
benchmarking measures used. For instance, Rephetio has the second highest AUC scores in 
every benchmark but all other methods compare favorably to Rephetio in PREC@10 tests. The 
AUC scores achieved by OMC trail those achieved by AeoNet and Rephetio but this method 
shows a consistently good performance in AUPR and PREC@10 tests. 

The superior performance of our method in recovering Symptomatic relationships is 
suggestive of different action mechanisms of disease-modifying therapies compared to palliative 
ones. We re-emphasize that AeoNet computes probabilities of palliative therapies along the 
transitive paths from drugs to diseases (those that pass through the gene nodes) ignoring all 
paths that include Compound-treats-Disease edge. 

The seemingly low AUPR scores of the four methods in the three benchmark need 

proper interpretation. To place the AUPR scores in context, we compare them to the scores 

obtained by a purely random classifier. The AUPR score achieved by a random classifier is 

equal to the fraction of condition positives in the test set (∑𝑐𝑜𝑛𝑑. 𝑝𝑜𝑠 /⁡(∑ 𝑐𝑜𝑛𝑑. 𝑝𝑜𝑠 +

⁡∑ 𝑐𝑜𝑛𝑑. 𝑛𝑒𝑔)). For instance, the AUPR score achieved by a random classifier on DrugCentral 

Table 3. Classification accuracy along individual network 

paths and the accuracy of the integrative approach. 
Highest scoring individual paths are denoted by *. Best 
method overall is shown in bold. 
 

 DrugCentral Clinical Trial 
Method AUPR AUC AUPR AUC 

CrCtDsD 0.058 0.857 0.075 0.698 

CpcCtDsD 0.095* 0.817 0.080 0.677 

CseCtDsD 0.048 0.842 0.110* 0.720 

CsCtDrD 0.083 0.858 0.090 0.693 

CsCtDlaD 0.083 0.862 0.089 0.698 

CsCtDpsD 0.083 0.863* 0.088 0.696 

CsCbGsGaDsD 0.006 0.748 0.097 0.747* 

CsCdGsGuDsD 0.002 0.657 0.072 0.669 

CsCuGsGdDsD 0.003 0.664 0.067 0.670 

CsCbGsGeAaDsD 0.001 0.584 0.074 0.721 

AeoNet 0.103 0.892 0.122 0.795 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.07.138966doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.07.138966
http://creativecommons.org/licenses/by-nc/4.0/


data set is ~0.001 (208 condition positives and 207,572 condition negatives). For comparison, 

on the same data set the AeoNet method achieves the AUPR score of 0.103, which represents 

two orders of magnitude (100 fold) enrichment over the random classifier.  

 
 

 
Fig. 5.  Comparing AeoNet with state-of-art using different classification metrics: AUPR, AUC, PREC@10, and 

Prediction Percentile Rank. 

 

We observe that, at any p-value cutoff, the fraction of DrugCentral indications recovered 

by AeoNet is much larger compared to the percentage of recovered Clinical Trial indications 
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(Fig 6). This is expected and desirable, as a majority of Clinical Trial drugs fail to get FDA 

approval. In fact, the recovery rate of Clinical Trial indications exceeding the FDA drug approval 

rate (currently around 9.6%63) should be indicative of poor method’s specificity. 

Illustrative example – Bone Cancer 

Dactinomycin is an intravenous therapy 
indicated for Ewing's sarcoma, a type of 
cancer that grows in bone or surrounding 
tissues, mostly in children and young 
adults. Dactinomycin represents a good 
repurposing test for AeoNet, as its 
association with bone-cancer is listed in 
DrugCentral but not in HetioNet.  

The top six AeoNet predictions for 
the treatment of bone cancer are 
Epirubicin, Cisplatin, Methotrexate, 
Carboplatin, Doxorubicin, and 
Dactinomycin (in ranked order). We note 
that the first five hits are relatively easy 
cases for AeoNet, because the 

associations of those drugs with bone-cancer are already recorded in HetioNet. AeoNet places 
Dactinomycin (p-value=2.2E-8) on top of all drugs that are not listed as one of 755 HetioNet disease-
modifying therapies for bone-cancer, despite the fact that the drug lacks structural analogs among 
drugs with similar indications in HetioNet. In fact, the closest structural neighbor of Dactinomycin in 
HetioNet, as measured by Tanimoto coefficient, is Moxifloxacin, an antibiotic used to treat bacterial 
infections. Moreover, a closer inspection of Compound-resembles-Compound relationships reveals 
that no drug “resembles” Dactinomycin in HetioNet, further illustrating AeoNet’s ability to make 
accurate inferences based on aggregate probabilities of different transitive network paths.  

 

Illustrative example – Gout 
Gout is a general term for different conditions caused by the deposits of monosodium urate 
crystals, typically in the joints of the foot or ankle. There are six treatments of gout in 
DrugCentral that are not present in HetioNet. We wanted to find out whether AeoNet can 
confidently predict any of those six drugs as potential repurposing candidates. 

After excluding gout associations recorded 

in HetioNet (which are consistently found in 

the highest ranks by our method) the top 

eight AeoNet predictions for gout treatments 

include four drugs listed in DrugCentral but 

not HetioNet, namely Triamcinolone, 

Dexamethasone, Betamethasone and 

Azathioprine. While the first three hits have 

p-values below 1.0E-13 and despite these 

drugs not being present in our training set, 

we still consider them relatively easy 

predictions, as each one of those drugs has 

a close chemical analog in HetioNet. 

However, Azathioprine (p-value = 2.0E-4) is 

a difficult prediction case since a closer inspection of Compound-resembles-Compound 

relationships reveals that Azathioprine does not resemble any drug with known HetioNet 

indications. Moreover, Azathioprine is not structurally similar to any other gout treatment in 

  
 
Fig 6. (a) The overlap of 845 AeoNet predictions with p-

values ≤1.0E-3 with those stored in DrugCentral and Clinical 
Trial (training set indications not included) (b) Percentage of 
DrugCentral and Clinical Trial indications found by AeoNet 
using the same p-vaue cutoff. Current FDA drug approval 
rate is shown in orange. 

 
Fig. 7. Most significant paths of length 2 connecting 

Azathioprine and gout. Solid edges represent existing 
HetioNet relationships. Dashed edges (forming a new 
network path) are predicted by compressed sensing. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.07.138966doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.07.138966
http://creativecommons.org/licenses/by-nc/4.0/


HetioNet (Tanimoto coef. < 0.27). Fig. 7 shows three strong Azathioprine-goat supporting paths 

identified by AeoNet, including a path that span two novel edges that do not appear in HetioNet, 

namely Azathioprine upregulates-SPP1 (predicted p-value: 4.3E-12) and gout-associates-SPP1 

(p-value: 8.9E-16)64.  

Discussion and Conclusion 

Heterogeneous networks are emerging as a powerful way to model complex biological systems. 
Network implementations allow the inference of relationships among distantly related biological 
entities and improve the prediction of associations between closely related entities. We present 
a computational technique for finding potential drug repurposing candidates from a 
comprehensive network of interactions between tens of thousands of biomedical entities, 
including drugs, side-effects, diseases, symptoms, and genes. Our methodology for 
distinguishing disease treatments from non-treatments integrates the likelihoods of different 
network patterns supporting drug efficacy. In contrast to previous studies that seek to explore 
only experimentally verified relationships, the method we propose operates on a much larger, 
probabilistic network that consists of tens of millions of predicted relationships between the 
network nodes. With minor modifications, our algorithm can be used in other inference tasks, 
such as drug-target interaction or disease-gene association prediction.  

The results of our study hint at some straightforward network enhancement that can 
further increase the prediction accuracy. For instance, expanding the network to include 
compound structural similarity, gene homology and/or gene-side effect associations65 would 
enrich the set of paths supporting drug efficacy and, in turn, provide further insights into drug 
mechanisms of actions. These modifications, along with the fast growing biomedical databases 
and advances in machine learning algorithms will fuel research into computational drug 
discovery and repurposing in the years to come.  
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