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Abstract  
 
People balance the benefits of cognitive work against the costs of cognitive effort. Models that 

incorporate prospective estimates of the costs of cognitive effort into decision making require a 

mechanism by which these costs are learned. However, it remains open what brain systems are 

important for this learning, particularly when learning is not tied explicitly to a decision about 

what task to perform. In this fMRI experiment, we parametrically manipulated the level of effort 

a task requires by increasing task switching frequency across six task contexts. In a scanned 

learning phase, participants implicitly learned about the task switching frequency in each context. 

In a subsequent test phase outside the scanner, participants made selections between pairs of these 

task contexts. Notably, during learning, participants were not aware of this later choice phase. 

Nonetheless, participants avoided task contexts requiring more task switching. We modeled 

learning within a reinforcement learning framework, and found that effort expectations that 

derived from task-switching probability and response time (RT) during learning were the best 

predictors of later choice behavior. Interestingly, prediction errors (PE) from these two models 

were differentially associated with separate brain networks during distinct learning epochs. 

Specifically, PE derived from expected RT was most correlated with the cingulo-opercular 

network early in learning, whereas PE derived from expected task switching frequency was 

correlated with the fronto-parietal network late in learning. These observations are discussed in 

relation to the contribution of cognitive control systems to new task learning and how this may 

bear on effort-based decisions. 

 

Keywords: Cognitive effort, effort avoidance, cognitive control, effort cost, reward 
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Significance Statement  

On a daily basis, we make decisions about cognitive effort expenditure. It has been argued that we 

avoid cognitively effortful tasks to the degree subjective costs outweigh the benefits of the task. 

Here, we investigate the brain systems that learn about task demands for use in later effort-based 

decisions. Using reinforcement learning models, we find that learning about both expected 

response time and task switching frequency affect later effort-based decisions and these are 

differentially tracked by distinct brain networks during different epochs of learning. The results 

indicate that more than one signal is used by the brain to associate effort costs with a given task. 
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Introduction  

People avoid cognitively effortful tasks when given the option (Kool et al., 2010; 

Westbrook et al., 2013). Based on this observation, it has been proposed that effortful tasks incur 

a subjective cost that acts as a disutility to drive demand avoidance. Further, in order to balance 

the expected effort cost of a task against its expected rewards, people must learn to predict the 

level of cognitive effort required to successfully perform a task (Shenhav et al., 2013; Botvinick, 

2007).  

In the laboratory, demand avoidance has been tested using effort discounting paradigms. 

In these tasks, participants learn the association between a unique task identifier and a level of 

subjective task difficulty during a learning phase. In the following decision phase, participants 

engage in repeated decision-making between an easy task paired with smaller reward or a difficult 

task paired with higher reward. Several fMRI studies showed that people discount the value of an 

offer as a function of their subjective cost during the decision phase (Massar et al., 2015; Chong 

et al., 2017; Westbrook et al., 2019; Westbrook et al., 2020). In this context, a recent fMRI study 

found that a network of brain regions that have been shown to track subjective value (SV) in other 

decision making contexts, also tracked costs and benefits during effort-based decision-making 

(Westbrook et al., 2019). This study concluded that effort is indeed encoded as a SV and tracked 

by general purpose reward-related brain regions during effort-based decision-making. This SV 

network included core nodes in the ventromedial prefrontal cortex (vmPFC) and ventral striatum, 

as well as mid-dorsal Anterior Cingulate Cortex (dACC). In contrast to this value network, control-

related brain regions of the fronto-parietal network (FPN) tracked the decision difficulty between 

offer options, but not the SV of the task.  
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These observations were partially consistent with those from a previous fMRI study of 

effort based decision making (Sayali & Badre, 2019). In that study, we separated learning and 

decision making phases of an effort selection task. In this task, participants implicitly learned about 

the cost associated with each of six parametrically increasing effort levels, without being informed 

about the subsequent decision phase. During the decision phase, they selected which task to 

perform based on this prior experience. As with Westbrook et al. (2019), we found that during the 

decision phase, though FPN activity tracked task difficulty, it was not related to effort based 

predictions. In our study, the only predictor of effort avoidance during task performance was 

default mode network activity (DMN). Notably, this network includes the vmPFC which overlaps 

the SV network highlighted by Westbrook et al. (2019). Though, we did not find evidence of a 

relationship between other nodes of the SV network and effort avoidance, including the ventral 

striatum and dACC. Overall, however, studies of effort-based decisions appear to agree that SV-

related regions, like vmPFC, encode effort costs, while other networks involved in cognitive 

control, like the FPN, track difficulty but not the subjective cost driving avoidance decisions. 

Importantly, however, these prior studies have focused on the decision stage, when people 

are familiar with the tasks involved and are weighing costs and benefits of cognitive effort. Few 

experiments have tested how the effort costs associated with tasks themselves are acquired. The 

one fMRI experiment to date to focus on effort learning observed that performance-based 

prediction errors drove the acquisition of effort costs (Nagase et al., 2018). Further, expected costs 

positively activated dACC, as well as vmPFC, a region in the SV network. However, in this task, 

effort decisions were made while effort costs were also being learned. This still leaves open the 

possibility that these regions might be tracking the effort costs because an explicit decision about 
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task value is due. As such, it is not presently known if the SV network is involved when learning 

effort costs or tracking task value in the absence of a decision about what task to perform. 
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2. Methods 
 
Overview of the Current Study 
 

The current study asks what neural mechanisms underlie the implicit learning of effort 

costs from task experience, while in the absence of effort-based decisions. We hypothesize that 1) 

effort costs are learned on a trial-by-trial basis and predict later effort selections, 2) performance-

based prediction errors drive the learning of effort costs, 3) SV brain regions will track expected 

effort costs. In order to test these hypotheses, we estimated expected costs and prediction errors 

during an implicit learning phase based on the cost prediction error model of effort. We then tested 

correlates of these parameters using model-based fMRI analysis of the brain during learning.  

 
 
2.1. Participants 

Three-hundred and seventeen adults were pre-screened in the lab using the Need for 

Cognition (NfC) Inventory. All participants were compensated for their time either monetarily or 

with course credit. We only included participants scoring 16/72 or lower on the NfC inventory. 

Based on our prior work (Sayali and Badre, 2019), this screening procedure increases the 

probability of including demand avoiding participants. We screened the remaining 119 participants 

based on neurological or psychiatric diagnosis, drug use, or contraindication for MRI. 78 

participants met the fMRI eligibility criteria, agreed to be re-contacted, and had not participated in 

a previous study that tested effort-based decision-making. From these, 29 agreed to participate in 

our fMRI study. However, 7 of these cancelled their appointment on the day of their scan or 

withdrew. Given that our participants were prescreened as highly demand avoiding, this rate of 

withdrawal was not unexpected. However, we consider the implications of this sampling procedure 

for generalizability of this study in the discussion. Therefore, a total of 22 right-handed adults 
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(aged 18-35; 12 female) who scored lower than 16/72 on NfC, with normal or corrected to-normal 

vision were scanned in the fMRI experiment. 3 additional participants were excluded prior to 

analysis because they either failed to follow instructions (2 participants) or moved more than a 

voxel in all sessions (1 participant). Thus, a total of 19 participants were included in the behavioral 

and fMRI analyses. Participants provided informed consent in accordance with the Research 

Protections Office at Brown University.  

 

Figure 1. Illustration of the task design. (a) In the Learning Phase, participants learned the association between difficulty levels 
and corresponding unique task identifiers (top) while being scanned. Anticipation and Execution epochs (bottom) were separately 
optimized in a hybrid fMRI design. During the Anticipation epoch, participants viewed a symbol icon (a virtual card deck) for 3 
seconds. Then, they performed the difficulty level associated with that symbol, while the symbol was tiled on the background. (b) 
Following the Learning Phase, participants completed the Selection Phase outside the scanner. During a Selection epoch, 
participants chose between two of the symbols they learned in the Learning Phase. During the Execution epoch, they performed 
the difficulty level that was associated with their choice.  

2.2. Overview of the Behavioral Task 

Participants performed a parametric variant of the DST, closely following the procedures 

from Sayali and Badre (2019; Fig 1). As an overview, the task was performed in two phases. In an 

initial, scanned Learning phase, the participants performed six tasks and associated each with a 

virtual “card deck”, denoted by a particular symbol that tiled the screen when that task was 

performed. The six tasks differed from each other in the proportion of task switching required. 
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More frequent task switching requires greater cognitive control. In a second Test phase, 

participants chose which deck they wished to perform (Selection epoch) and then performed a 

series of trials drawn from that deck (Execution epoch). We now provide detail on each of these 

phases of the behavioral task. 

2.2.1. The Task “Decks” and Basic Task Run Structure 

Throughout all phases of the experiment, participants performed blocks consisting of 13 

trials “drawn” from a virtual deck (Fig 1a). On each trial, the participant categorized a centrally 

presented digit as either odd/even (parity judgment) or greater/less than 5 (magnitude judgment). 

The color of a circle (green or blue) surrounding the digit cued whether to perform the parity or 

magnitude judgment on each trial. The participant indicated their categorization by pressing the 

left or the right arrow key on the keyboard. The response deadline was 1.5 sec. Trials were 

separated by .2 sec. The mappings of color to task and from each categorization to a left or right 

arrow press were provided in an instruction before the experiment and were consistent throughout 

both phases of the experiment. Response mappings and color-to-task mappings were 

counterbalanced across participants. Digits 1-4 and 6-9 were used with equal frequency across 

both tasks and were randomized for order of presentation.  

In order to manipulate cognitive effort between the decks, we varied the frequency of task 

switching required by a particular deck (Fig 1a), as in how often a trial-to-trial transition required 

going from a parity to magnitude judgment or vice versa. We assumed that more task switches in 

a deck would also require more cognitive control for that deck and so more cognitive effort. As a 

short hand for this logic, we will refer to the proportion of task switching in a deck as its effort 

level.  
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The probability of switching tasks increased across decks over six effort levels: 8%, 23%, 

38%, 54%, 69%, 85% (Fig 1a, top). Importantly, all effort levels included the same number of 

parity and magnitude trials. Thus, any differences in effort preference among the tasks could not 

be attributed to differences in the difficulty or effort of the categorizations themselves, but rather 

were attributable to the task switching manipulation. Further, the lowest effort level still included 

one switch. We did not include “pure blocks” of only parity judgments or only magnitude 

judgments with zero switches, as doing so would have made these decks qualitatively different 

from all other decks, in terms of the amount of each task being performed.  

At the beginning of each run, a shape was presented for 3 sec to indicate which deck was 

about to be performed, and this shape was also tiled in the background throughout the performance 

of the run. Participants were told that this shape represented the symbol on the back of the virtual 

card deck from which trials for that sequence were drawn. Thus, each effort level could be 

associated with a particular deck symbol. Participants could learn this relationship through 

experience with the tasks. The mappings between deck symbols and effort levels were randomized 

across participants. 

2.2.2. Practice Phase 

 During an initial “Practice Phase” participants gained familiarity with the trial structure, 

the categorization decisions, and the color and response mappings. After being given instructions 

regarding the categorization and response rules, they practiced two 13-trial blocks. During the 

presentation of these blocks, the researcher closely monitored the performance of the participant 

and assisted the participant if needed. This phase was repeated if the participant asked for a repeat 

of the task rules, and thus the data from this phase was not recorded.  
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Each task sequence included the presentation of a deck symbol (3 s), and the subsequent 

performance of the categorization trials. In the first run of the Practice Phase, feedback was 

presented after the button press as either 'Correct' in pink, 'Incorrect' in yellow, or 'Please respond 

faster' if the participant failed to answer before the deadline (1.5s). In the second run of the Practice 

phase, feedback was omitted as would be the case in the actual experiment. The deck symbols that 

participants encountered in the Practice Phase were for practice only and were not presented during 

the Learning or Test phases to avoid any association of difficulty or error feedback with a particular 

deck symbol during this phase. 

2.2.3. Learning Phase 

In the Learning Phase (Fig. 1a), participants learned the association between the six deck 

symbols and each effort level. Each deck was performed 15 times in random order with the other 

decks. This phase was performed during fMRI scanning, and participants used an MRI-compatible 

button box to indicate their decisions. The Execution trials were optimized as blocks. The 

Anticipation and Execution events were separated in time by a jittered time interval (mean 4 secs) 

so that signal related to each could be analyzed independently. The Learning phase was separated 

into two, approximately 20 minute-long scanning runs.  

2.2.4. Test Phase 

In the Test Phase (Fig 1b), two decks were presented and the participant chose which to 

perform (Selection epoch). The Test Phase took place outside the magnet, in a behavioral testing 

room immediately following the MRI session. The participants were told to freely choose between 

decks prior to a 3 sec deadline. We note that in contrast to other DST variants (Gold et al., 2014), 

participants in this task were not told about the difficulty manipulation to avoid biasing choices 

based on participants’ explicit beliefs about effort. Once the participant made their selection, the 
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selected deck turned blue and both options remained on the screen until the end of the 3 sec 

deadline. If the participant missed the deadline, the same choice pair was repeated at the end of 

the experiment until all selections had been made and executed.  

Each choice pair was selected from the set of fifteen unique (un-ordered) pair combinations 

of all six decks, excluding self-pairing (e.g., deck #1 paired with deck #1). Each deck was 

presented either on the left or the right side of the screen, counterbalanced for location across trials. 

The Selection epoch was followed by performance of the selected effort level task deck (Execution 

epoch). The sequence of events, timing, and response mappings during Execution were the same 

as during the Learning phase. The Test phase was separated into four, approximately 15 minute-

long blocks. In each run, each pair was presented 3 times in a pseudo-randomly intermixed order, 

making a total of 180 decision trials across 4 blocks. 

2.3. Behavioral Data Analysis 

Trials with response times (RT) below 200 ms were excluded from further analysis. 

Execution trials on which participants missed the response deadline were also excluded 

(approximately %1 of trials in both phases). Task performance was analyzed with effort level and 

experimental phases (Learning or Test phase) as within-subject variables. One participant never 

chose the 5th effort level during the Test Phase, and thus was necessarily excluded from the 

effort*phase performance analysis (see below).  

Choice behavior was assessed by calculating the probability of selecting each effort level 

across all selection trials on which that effort level was presented as an option. The decision 

difference analyses calculated the choice probability and the decision time to select the easier task 

across all decisions with the same difference in difficulty levels between effort options. For 

example, choice probability associated with a difficulty difference of 1 would be computed by 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.08.139618doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.139618
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
Neural Systems of Effort Learning  

13 
 

averaging the probability of choosing the easier task across all choice pairs that differed by 1 effort 

level (i.e., 1 vs 2, 2 vs 3, 3 vs 4, 4 vs 5 and 5 vs 6). 

Data were analyzed using a mixed-design analysis of variance (ANOVA) (within subject 

factor: Effort). If the sphericity assumption was violated, Greenhouse-Geisser correction was used. 

Significant interactions were followed by simple effects analysis, the results of which are presented 

with False Detection Rate (FDR) correction. Alpha level of .05 was used for all analyses. Error 

bars in all figs stand for within-subject error.  

2.3.1. Computational model fitting  

To test our hypothesis regarding effort cost learning, we modeled the acquisition of effort 

associations within a reinforcement learning framework (Sutton and Barto, 2018; Daw, 2011). We 

specifically used a prediction error (PE)-based model that has been applied during an effort 

selection task (Nagase et al., 2018). Following this prior work, we tested separate models that 

learned effort costs from prediction errors in 1) task-switching probability, 2) response time during 

effort execution, 3) error rates during effort execution. We tested two models that relied on 

prediction error in response time, as described below. Thus, overall, we tested four models of effort 

cost learning. 

2.3.1.1. Task Switch Cost Model 

The Task Switch Cost Model attempts to learn the likelihood of a switch based on the 

context.  

To begin, the model assumes an even likelihood of a switch or repeat and so the expected 

cost on the first trial was initialized to 0.5. Then, on each effort run of the Learning Phase, expected 

cost of the effort task is updated by a PE of that effort level: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑠𝑡 𝑡 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑠𝑡 𝑡 − 1 + 𝛼 ∗ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟 𝑡 ,		
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PE on each effort run was computed as the difference between the expected cost (i.e., the 

likelihood of a task switch) and the experienced cost on trial, t (i.e., the actual task-switching 

likelihood of the effort level): 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟 𝑡 = 𝐴𝑐𝑡𝑢𝑎𝑙𝐶𝑜𝑠𝑡 𝑡 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑠𝑡 𝑡 − 1 ,	
 

The rate at which the Expected cost is updated as a function of PE is controlled by a free 

parameter, 𝛼, which represents the learning rate of the participant. Given that our design did not 

include effort selections during the time of effort learning, we did not estimate learning rates based 

on a fit of effort selections. Previous simulation studies (Wilson & Niv, 2015) showed that model-

based fMRI is insensitive to the change of learning rate parameters, as most experimental designs 

do not have the statistical power to detect differences in model parameters, specifically when the 

contrast-to-noise ratio and the number of trials is relatively low.  

Consistent with this observation, we simulated learning rates between 0.2 and 0.7, in steps 

of 0.1 to test the effect of learning rates on the estimated BOLD responses of the SV Network ROI 

(Westbrook et al., 2019) for the expected cost regressor in Linear-Effort Level GLM model (see 

below for description of these models and ROIs). The results showed that there was no effect of 

learning rate parameters on the estimated BOLD response (Fig 2; F(1.01,18.24)=0.75, = .39, ηp
2 

=.04). Consequently, we adopted a learning rate of 0.2 for the following analysis. 
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Figure 2. Regressor coefficients for expected cost regressor at the end of execution epoch estimated for SV Network ROI (Westbrook 
et al., 2019), as a function of learning rate. Each curve represents a single subject.  

2.3.1.2. Response Time Cost Models 

The Response Time Cost Model learns the average time it takes to perform an effortful 

task based on context. We used two separate RT models that initialized the expected cost parameter 

in different ways.  

First, we tested a model that initialized the expected cost at the average RT during the 

repeat trials of the first effort run in the Learning Phase. Second, we tested a model that initialized 

expected cost as the first RT on the first trial of the first effort run in the Learning Phase. Then, for 

both initializations, average RT across all trials of each effort run is calculated and the expected 

cost of each effort run is updated by a PE of that effort level with a learning rate of 0.2: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑠𝑡 𝑡 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑠𝑡 𝑡 − 1 + 𝛼 ∗ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟 𝑡 ,		
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PE on each trial was computed as the difference between the expected cost (i.e., expected 

RT of that effort level so far) and the experienced cost on trial, t (i.e., the actual average response 

time in that effort run): 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟 𝑡 = 𝐴𝑐𝑡𝑢𝑎𝑙𝐶𝑜𝑠𝑡 𝑡 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑠𝑡 𝑡 − 1 	
 

2.3.1.3. Error Rate Cost Model 

We additionally tested a separate model that assumed effort costs to be average error rates 

during effort execution during the Learning Phase. In this model, expected cost was initialized at 

a 0.05 error rate and was updated based on the average error rate of a given effort run using the 

same Prediction Error algorithm explained above.  

 

2.4. MRI procedure 

Whole-brain imaging was performed with a Siemens 3T Prisma MRI system using a 64-

channel head coil. A high-resolution T1-weighted 3D multi-echo MPRAGE image was collected 

from each participant for anatomical visualization. Each of the two runs of the experimental task 

involved between 450 and 660 functional volumes depending on the participant’s response time, 

with a fat-saturated gradient-echo echo-planar sequence (TR = 2s, TE=28ms, flip angle = 90°, 38 

interleaved axial slices, 192 mm FOV with voxel size of 3x3x3 mm). Head motion was restricted 

with padding, visual stimuli were rear projected and viewed with a mirror attached to the head 

coil.   

2.4.1.  fMRI Analysis 

Functional images were preprocessed in SPM12 (http://www.fil.ion.ucl.ac.uk/spm). 

Before preprocessing, data were inspected for artifacts and variance in global signal (tsdiffana, 

art_global, art_movie). Functional data were corrected for differences in slice acquisition timing 
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by resampling slices to match the first slice. Next, functional data were realigned (corrected for 

motion) using 4th degree B-spline interpolation and referenced to the mean functional image. 

Functional and structural images were normalized to Montreal Neurological Institute (MNI) 

stereotaxic space using affine transformation followed by a nonlinear warping based on a cosine 

basis set along with regularization, and then resampled into 2x2x2 mm voxels using 4th degree B-

spline. Lastly, images were spatially smoothed with an 8 mm full-width at half-maximum isotropic 

Gaussian kernel. 

 A temporal high-pass filter of 128 (.0078 Hz) was applied to our functional data in order 

to remove noise. Changes in MR signal were modeled under assumptions of the general linear 

model (GLM). Two GLMs were devised: a linear effort-level GLM and an independent effort-

level GLM (described below). Both GLMs included nuisance regressors for the six motion 

parameters (x, y, z, pitch, roll, yaw) and four run regressors for the ‘Linear Effort-Level GLM’ 

and one run regressor for the ‘Independent Effort Level GLM’. The number of run regressors was 

different across GLMs because ‘Independent Effort GLM’ included the regressor for each effort 

level separately.  

2.4.1.1.  Linear Effort-Level GLM 

The linear effort-level GLM tested which voxels in the brain parametrically increased or decreased 

linearly with effort level during learning. Two event regressors were used. First, Execution events 

were modeled as an impulse function at the end of the presentation of the last trial stimulus of the 

sequence. Second, the Anticipation event regressor modeled each anticipation event with a fixed 

boxcar of 3 secs. We used orthogonalized parametric modulators on these event regressors to test 

the linear effect of effort level. The Execution event regressor was modulated in order by (a) a 

Prediction Error parametric regressor, and (b) an Effort Level parametric regressor corresponding 
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to the effort level of that task sequence (1 through 6). The Anticipation event regressor was 

modulated in order by (a) an expected cost regressor that scaled with the estimated expected cost 

of the upcoming effort execution (b) an Effort Level parametric regressor based on the presented 

effort level deck symbol (1 through 6). The Execution and Anticipation event regressors, along 

with their parametric modulators, were modeled separately for each scanning run within the GLM. 

Two run regressors and a linear drift over the whole experiment were included as regressors of no 

interest.  

2.4.1.2. Independent Effort Level GLM 

The independent effort level GLM sought to characterize the signal change related to each 

effort level independently of each other or of any particular function (e.g., linear). This GLM 

included twelve event regressors, one for each effort level (1 through 6) by epoch (Execution and 

Anticipation). Events in the Execution regressors were modeled as boxcars that onset with the 

presentation of the first trial stimulus of the sequence and ended with the participant’s response to 

the final item. Events in the Anticipation regressors were modeled with a 3 sec boxcar at the onset 

of deck symbol. Two run regressors and a linear drift over the whole experiment were included as 

regressors of no interest.  

For both GLMs, SPM-generated regressors were created by convolving onset boxcars and 

parametric functions with the canonical hemodynamic response (HRF) function. To account for 

error due to differences in the HRF shape from the canonical, nuisance regressors were also created 

that convolved the onset functions with the temporal derivative of the HRF. Beta weights for each 

regressor were estimated in a first-level, subject-specific fixed-effects model. For group analysis, 

the subject-specific beta estimates were analyzed with subject treated as a random effect. At each 

voxel, a one-sample t-test against a contrast value of zero gave us our estimate of statistical 
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reliability. For whole brain analysis, we corrected for multiple comparison using cluster correction, 

with a cluster forming threshold of p < .001 and an extent threshold, k, calculated with SPM to set 

a family-wise error cluster level corrected threshold of p<.05 for each contrast and group. Note 

that the higher cluster forming threshold helps avoid violation of parametric assumptions such that 

the rate of false positive is appropriate (Eklund et al., 2016; Flandin & Friston, 2016).  

2.4.1.3. ROI analysis 

ROI definition is described below. For each ROI, a mean time course was extracted using 

the MarsBar toolbox (http://marsbar.sourceforge.net/). The GLM design was estimated against this 

mean time series, yielding parameter estimates (beta weights) for the entire ROI for each regressor 

in the design matrix.  

We defined a fronto-parietal control (FPN) network ROI and Default Mode Network ROI 

derived from previously published cortical parcellations based on patterns of functional 

connectivity (Yeo et al., 2011; see Fig 3). The FPN (Network 12 in Yeo et al. 2011) included 

bilateral prefrontal cortex, bilateral parietal cortex, and SMA. The DMN network (Network 16 

from Yeo et al. 2011) included ventromedial prefrontal cortex, orbitofrontal cortex, posterior 

cingulate cortex and parts of precuneus.  

As a complement to these network definitions, we also included definitions of FPN and 

DMN based on our prior work on effort avoidance. Our previous study (Sayali and Badre, 2019, 

Fig 3 & Fig 4) parametrically manipulated implicitly learned effort cost/values in DST in fMRI. 

In that study, in order to have an unbiased analysis of the neural response function across effort 

levels, we conducted a Principal Component Analysis (PCA) of the whole brain to explore the 

shape of the neural functions of different brain areas that respond to effort execution during the 

Test Phase. Activity in these ROIs was associated in that study with effort avoidance decisions. 
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To draw connection with that prior work, we also defined fronto-parietal control and DMN ROIs 

based on previous study’s Test Phase PCAs (Fig. 3).    

 
Figure 3.  overlays the DMN (top) and FPN (bottom) ROIs on canonical brain as they are separately defined by Yeo et al (2011) 
and Sayali & Badre (2019) principle component ROIs. 

We additionally defined Subjective Value (SV) Network ROIs based on the regions cited 

by Westbrook et al. (2019, Fig 3) in order to test the involvement of those brain regions that have 

been shown to significantly track subjective value during effort discounting. Accordingly, we drew 

a 6 mm sphere around each region that significantly correlated with the subjective value of effort. 

 

Figure 4. Sayali and Badre, 2019 ROIs of FPN and DMN overlayed on Subjective Value Network ROIs (Westbrook et al., 2019). 
FPN: green, DMN: blue, SV Network: red, Overlapping regions: yellow, purple. 
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3. Results 

3.1. Demand avoidance behavior 

 Overall, participants performed accurately during task execution across both phases (mean 

error: 13% in the Learning Phase, 13% in the Test Phase), and participants missed the deadline on 

few trials (2.6% of Learning phase trials, SE=0.01, 1.2% of Test phase trials, SE=0.03). RTs but 

not error rates improved from the Learning to Test phase (RT: F(1,17)=43.43, p< .001, ηp
2 =.72; 

errors: F(1,17)=0.22, p= .65, ηp
2 =.01).  

Task performance was impacted by the proportion of task switches across tasks. Across 

Learning and Test phases, there was a significant effect of effort level on both error rates and 

correct trial RTs (error rates: (F(5,85)=20.07, p< .001, ηp
2 =.54), RT: (F(2.14,36.37)=143.19, p< 

.001, ηp
2 =.89), and the effect of effort was linear for both (errors: F(1,17)=40.82, p< .001, ηp

2 

=.71; RT: F(1,17)=215.79, p< .001, ηp
2 =.93). Additionally, both correct trial RTs and error rates 

of all effort levels reduced across the runs of the Learning phase (error rates: (F(1,18)=6.32, p= 

.022, ηp
2 =.26), RT: (F(1,18)=24.17, p< .001, ηp

2 =.57), indicating participants improved their 

performance during the Learning Phase. 

Effort level affected task selections, as expected. On average, participants avoided the 

harder task 67% (SE=0.02) of the time (Fig. 5a), which differed from chance (t(18)=6.87, 

p<0.001). The probability of avoiding the harder task did not change across Test blocks 

(F(3,54)=2.73, p=.53, ηp
2 =.13), indicating that participants’ effort selections were stable across 

time.  
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Figure 5.  Demand avoidance across participants. 1A) Overall probability of selecting the easier task across all participants. The 
probability distribution of demand avoidance across subjects is plotted. Individual subjects are plotted as blue dots. All 
participants selected the easier task more than 50% of the time. 1B) Probability of selecting an effort level across participants. 
Probability distribution of task selections at each effort level is plotted. Individual subjects are plotted as dots to the right of each 
probability distribution. The probability of selecting a task significantly decreased across all participants with increasing effort 
level. Red dashed lines indicate chance (0.5) level.   

Participants avoided higher effort levels at a greater rate than lower effort levels 

(F(5,90)=8.86, p<.001, ηp
2 =.33), and the rate of task avoidance was linear across effort levels 

(F(1,18)=47.88, p<.001, ηp
2 =.73; Fig. 5b), replicating Sayali and Badre (2019). The probability 

of selecting the easier task also significantly changed depending on the difference between effort 

levels for a given choice (F(2.30,41.35)=5.14, p=.001, ηp
2 =.22), such that larger differences 

increased the probability of choosing the easier task. This effect was also linear across effort levels 

(F(1,18)=13.48, p=.002, ηp
2 =.43). We observed a marginal increase in decision time across effort 

levels (F(5,85)=1.74, p=.06, ηp
2 =.09). 

 

3.2. Computational Modeling– Learning effects 

We modeled effort learning using a reinforcement-learning model that acquires 

expectations about task performance (errors and RT) and task-switching probability for each task 

context (i.e., deck). In order to test our model estimates, we tested the effects of predicted response 

time, error rate and task-switching probability on subsequent effort selection behavior by 
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conducting a mixed effects hierarchical regression analysis. Using a mixed-effect regression 

analysis, we tested which model explained selection rates better by testing the relationship between 

the finalized expected costs at each effort level during the Learning Phase and the selection rates 

in the Test Phase.  

First, we tested the Error Rate Cost model that assumed effort costs to be the average error 

rates during effort execution in the Learning Phase. However, mixed-effects regression analysis 

showed that final expected error-rate costs did not explain selection rates during the subsequent 

Test phase, (t(114)=-1.20, p=0.23). We repeated the same analysis by calculating expected values 

using a learning rate that increments with 0.1 steps between 0.2 and 0.7. None of the models 

revealed a significant relationship between expected error rate costs and selection rates, so we did 

not include the error rate cost model in further analysis.  

Second, we tested the two separate RT models that differentially initialized the expected 

cost parameter. The first RT model initialized the expected cost as the average RT from the repeat 

trials of the first effort run. The second initialized expected cost as the first trial RT on the first 

effort run of the Learning Phase. The model that assumed initial expected cost to be the first RT 

significantly correlated with subsequent task selection rates during the Test phase (t(114)=-3.67, 

p< 0.001). This model performed almost the same as the model that assumed initial expected cost 

to be the average Repeat RT of the first effort run (t(114)=-3.66, p<0.001). Thus, we picked one 

of these models (first trial RT) for model-based fMRI analysis. 

Next, we tested whether task-switch probability explained selection rates. Note that the 

Task Switch Cost model updated expected costs by the difference between expected switch 

probabilities that are initiated at 0.5 and the actual switch probabilities of the effort task. Thus, 

given the trial numbers at learning, finalized expected costs always converged to the true switch 
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probabilities of the effort tasks (see Table 1 for an example of average expected effort costs). Task-

switch probability significantly predicted selection rates across participants, (t(114)=-6.83, p< 

0.001).  

Table 1. Finalized average expected costs values for RT cost models, Task Switch Cost model (TScostModel) and Error Rate cost 
(ERcostModel) models. RTcostModel1 refers to the model expected cost of the first trial is initialized at first trial of the first effort 
run of the Learning Phase. RTcostModel2 refers to the model expected of the first trial is initialized at the average repeat trial RT 
of the first effort run.  

Finally, we asked whether RT cost predicts selection rates over and above task-switch 

probability. In the presence of task-switching probability, neither RT model explained additional 

variance in selection rates (both ps>0.05). As the task-switch cost model alone explained 29% and 

RT cost models alone explained 10% of the variance in selection rates, model comparisons showed 

that including the RT cost expected costs in the same model did not significantly improve model 

fit (X2 (1, N = 2) = 0.4, p > .05). However, in order to understand the potential contribution of 

performance based effort learning and as RT cost does correlate with subsequent task selections, 

we included the RT cost model in our model-based fMRI analysis as well as the Task Switch Cost 

model. 

 

3.3. The functional form of univariate brain activity over effort levels 

We next sought to replicate and extend our prior observations from the Test phase (Sayali and 

Badre, 2019) to the Learning phase in a new sample of participants. We investigated the pattern of 

fMRI activity across effort levels during the Learning Phase using ROIs defined from the Test 
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phase of Sayali & Badre (2019, see Methods), as well as ROIs in the a priori SV network 

(Westbrook et al., 2019). Note that we also separately tested independent ROIs in FPN and DMN 

defined from a large scale study of resting state functional connectivity (Yeo et al., 2011). 

However, these ROIs showed similar trends to those reported below, so we do not detail them 

further.  

 As expected, activation in FPN showed a linear increase across effort levels during task 

execution (Fig. 6 left panel). There was a significant effect of effort on FPN activation 

(F(5,90)=11.12, p< .001, ηp
2 =.38) such that activity linearly increased with greater effort 

requirements of the task (F(1,18)=26.02, p< .001, ηp
2 =.59). Additionally, FPN activation 

decreased over time (in terms of blocks; F(1,18)=11.29, p= .003, ηp
2 =.39). There was no effect of 

anticipated effort on the FPN activation during the Anticipation epoch (Fig. 6 right panel: 

F(3.51,63.21)=1.22, p= .31, ηp
2 =.06).  
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Figure 6. Regressor coefficients at the time of Execution and Anticipation Epochs for FPN component, DMN component and the 
Subjective Value Network.  

 Consistent with our prior observation from the Test Phase (Sayali and Badre, 2019), during 

the Learning Phase, the DMN showed a negative linear trend in activation across effort levels (Fig. 

6 left panel). There was a significant effect of effort on DMN activity (F(5,90)=3.31, p= .01, ηp
2 

=.16) and a linear decrease in activity with increasing effort requirements of the task  

(F(1,18)=11.59, p = .003, ηp
2 =.39). There was no effect of time (in terms of runs) on DMN activity 

(F(1,18)=1.19, p= .29, ηp
2 =.06). There was a marginal effect of effort on the DMN during the 

Anticipation epoch (Fig. 6 right panel, F(5,90)=2.25, p= .06, ηp
2 =.11; Yeo et al definition of DMN: 

F(5,90)=2.34, p= .05, ηp2 =.12), suggesting that DMN marginally reduced activity in the 

anticipation of increasing effortful task exertion.  

We did not find a significant positive or negative trend in SV network activity across levels 

of effort execution (F(5,90)=1.23, p= .30, ηp
2 =.06) or across blocks during task execution 
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(F(1,18)=0.03, p= .26, ηp
2 =.002).  During the anticipation interval prior to each imposed task, SV 

network activity was positively related to effort level (F(5,90)=2.44, p= .04, ηp
2 =.12, Fig. 6 right 

panel). Within-subject contrast results showed that the SV network showed a cubic trend across 

the anticipation of effort levels (F(1,18)=5.70, p = .028, ηp
2 =.24). There was no effect of run 

during the anticipation epoch on activity in SV Network (F(1,18)=0.02, p = .88, ηp
2 =.001).  

In sum, the FPN and DMN exhibited similar modulation of brain activity during the 

Learning of effort tasks as previously observed during the Test phase. Further, FPN recruitment 

decreases with increased experience in the Learning Phase, which is expected based on the prior 

literature on task learning and experience (Ruge and Wolfensteller, 2010; Bhandari and Badre, 

2020). The a priori SV Network showed a reliable omnibus effect of increase activity with greater 

anticipated effort prior to task performance.  

3.4. Model-based fMRI 

 3.4.1. Task Switch Cost model 

 Our modeling analysis of learning behavior indicated that the expected likelihood of task 

switching acquired during the Learning phase was the best predictor of subsequent task selections 

during the Test phase. In the model, this expected likelihood is formed by incrementally adjusting 

an expected task switch probability based on task switch prediction errors. We next sought to test 

how the a priori hypothesized networks, FPN, DMN, and SV network, track prediction errors 

related to task switch probability. Thus, we tested the contribution to activity in these brain regions 

from the parametric functions of Prediction Error and expected cost parametric regressors in these 

ROIs, in addition to the Execution Level and the onset of Execution and Anticipation events. These 

effects were modeled within the Linear Effort Level GLM, described in the Methods.  
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Figure 7. Regressor coefficients for Linear Effort Level GLM for DMN, FPN and Value Network ROIs. FPN showed positive, DMN 

and Value Network showed negative activation during Execution onset. FPN positively scaled with PE.  

We focus here on the key model-based results related to prediction error and expected cost 

(see Fig. 7 for summary of complete results). The FPN correlated positively with prediction error 

(p < 0.001), such that FPN activation was greater when tasks switched more frequently during a 

run than expected based on prior experience (Fig. 7). This effect was strongest during the second 

relative to the first run of the task. Neither the DMN nor the SV network correlated with prediction 

error (both ps > 0.05), despite strong trends, particularly for the former. Neither FPN, DMN or SV 

networks correlated with expected costs.  

In order to test specific nodes within the hypothesized SV network, we analyzed additional 

ROIs in left, right VS, two rVMPFC ROIs, lVMPFC and dACC that were included in Westbrook 

et al., (2019). While both left and right vMPFC showed significant deactivations during effort 

execution and anticipation, only dACC significantly tracked PE regressor during the first run and 

parametrically increased with effort anticipation in the second run. 

 Finally, to complement the ROI analyses, we performed a whole-brain voxel-wise analysis 

(Fig. 8) of the key model-based regressors. As shown in Figure 8, the expected cost regressor 

negatively correlated with one cluster at left middle frontal gyrus (x=-26, y=4, z=46). Two clusters 
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positively correlated with prediction error (Figure 8). One cluster was centered at superior parietal 

lobule (x=-12, y=-68, z=56) and the other was centered at left middle frontal gyrus (x=-40, y=24, 

z=24).  

 

3.4.2. RT cost model 

As the RT cost model also predicted selection rates, we repeated our fMRI analysis using 

expected values and prediction errors derived from this model. Analysis of our a priori ROIs 

yielded results weaker but qualitatively similar results to that of the Task Switch Cost model. The 

FPN (p < 0.001) again correlated with prediction error in the 1st run, but the DMN and the SV 

network did not (both ps > 0.05). Neither FPN, DMN nor SV networks correlated with expected 

costs.  

Also consistent with Task Switch Cost model, whole-brain voxel-wise analysis (Fig. 10) 

showed that expected cost regressor negatively correlated with one cluster at left precentral gyrus 

(x=-32, y=-10, z=36), additionally one at right lingual gyrus (x=10,y=-46,z=-4) and one at left 

insula (x=-46, y=12, z=-4).  

Importantly, the whole brain analysis based on RT Cost PE did differ from the Task Switch 

Cost PE. Seven clusters survived the family-wise error-correction (Figure 8). Peaks positively 

correlated with PE were identified in precuneus (x=6, y=-92, z=22), dACC (x=-10, y=20, z=26), 

right supramarginal gyrus (x=60, y=-42, z=28), right superior frontal gyrus (x=24, y=46, z=10), 

right anterior insula (x=50, y=20, z=-6), left middle temporal gyrus (x=-54, y=-56, z=-6), and 

posterior cingulate gyrus (x=-4, y=-32, z=26). Notably, these clusters fall within the previously 

defined cingulo-operculum networks (CON) (Yeo et al., 2011), but not FPN.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.08.139618doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.139618
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
Neural Systems of Effort Learning  

30 
 

 

Figure 8. Whole Brain Results for Task Switch Probability Cost and Response Time Cost Models. All results thresholded at FWE 

p < .05.  

Given this apparent difference in networks correlating with the two PEs, we ran a posthoc 

analysis testing whether Task Switch Cost PE and RT cost PE significantly differ in activating 

FPN (as defined in Yeo et al. 2011) vs. CON during PE. We used a priori ROI definitions of 

each network from Yeo et al. (2011, Network 8) and tested the effect of experimental run, model 

type (Task Switch Cost, RT cost) and ROI (FPN and CON) on BOLD response during PE. This 

analysis revealed a significant 3-way-interaction of model*ROI*run (F(1,18)=12.28, p= .003, ηp
2 

=.41). Pairwise comparisons confirmed greater RT cost PE activation in CON the 1st run 

compared to Task Switch Cost PE. In contrast, there was greater Task Switch Cost PE activation 

in the FPN in the 2nd run compared to RT cost PE (Fig. 9). Thus, FPN and CON showed a 

differential relationship to PE derived from RT versus task switch frequency and in different 

phases of learning.  
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Figure 9. Three-way interaction between model, Yeo et al. 2011 defined ROIs and experimental run for PE regressor beta means 

obtained from Task Switch Cost and RT Cost Models. TScost: Task Switch Cost Model; RTcost: Response Time Cost Model.  
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4. Discussion  

A central problem in cognitive neuroscience has concerned why people choose to perform 

certain tasks over others when prospective rewards are otherwise comparable. The widespread 

view is that cognitive tasks are subjectively costly and discount outcomes accordingly. Thus, an 

open question has been what aspects of a task make it costly and how does the brain track these 

demands. The present study adds a new perspective on this question by considering which 

demands are tracked during experience with a task, in the absence of any decision, but that later 

correlate with avoidance. 

We find evidence that at least two factors are tracked: the frequency of task switching and the 

expected RT. These factors are correlated, and so it was hard to distinguish them behaviorally. 

Indeed, task switching frequency held a stronger relationship to choice and was able to fully 

explain the variance that was accounted for by expected RT.  

Unexpectedly, however, using model-based fMRI, we found that trial-to-trial PE from each 

source held stronger relationships with distinct brain networks and at different stages of learning. 

Specifically, when RT was greater than expected, PE-related brain activity in control networks 

was greatest early in learning and this association declined by the second run. Further, this effect 

was differentially greater in the CON relative to FPN. In contrast, the correlation of brain activity 

with PE derived from the expected frequency of task switching was primarily in the second run of 

learning, and was differentially correlated with the FPN relative to CON.  

We did not hypothesize these differences a priori and so future work must replicate them. 

Nonetheless, if verified, these results offer intriguing insights into the nature of task demands. At 

the surface, they suggest that multiple factors likely contribute separately to our assessment of task 

demands. Thus, rather than a single demand that drives all evaluations of cognitive effort, multiple 
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factors are weighed, likely dynamically, depending on the situation. For example, there may be 

contexts where time-on-task is more or less salient than the frequency of task switching. And 

further, there may be more than one brain system that contributes to these decisions.  

The early association of control network activity, and particularly the CON, with PE derived 

from RT is intriguing in light of the broader literature on task learning and automaticity. It is well 

established that when new tasks are performed, the first trial is associated with a higher RT and 

error rate that declines in log form toward an asymptote (Bhandari and Badre, 2018). Studies 

testing these early trial effects have repeatedly associated this period of rapid task adjustment with 

activation in control networks (Cole et al., 2010; Ruge and Wolfensteller, 2010; Mohr et al., 2016; 

Hampshire et al., 2019). A recent study that held the stimulus-response rules constant, but required 

adjustments only in control settings – analogous to the task switching demands that distinguish 

context in the present study – specifically found these rapid changes to be tied to adjustments in 

control settings (Bhandari and Badre, 2018). Further, these changes were specifically correlated 

with activation in the CON (Bhandari and Badre, 2020) along with striatum. This rapid change 

contrasted with slower changes in the FPN. 

Following from this discussion, one hypothesis is that early learning is characterized by 

adjustments in control settings that adapt to the specific task context. Optimization in this stage is 

closely tied to changes in RT, and thus, PEs related to RT are informative regarding task demands. 

The CON may be important in tracking these errors of prediction.  

This interpretation is broadly consistent with current views that ascribe a monitoring role to 

the CON network and dACC in particular (Shenhav et al., 2013; Botvinick, 2007). As one example, 

the Predicted Response-Outcome Model (PRO; Alexander and Brown, 2011) argues that the 

medial portion of PFC, including the dACC, implements two functions: 1) learning to predict 
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response outcome requirements, 2) signaling prediction errors. Accordingly, dACC activity 

reflects changes in the predicted value of the effortful task. 

The later sensitivity of the FPN to task switching frequency might similarly be related to the 

nature of task learning. The association of FPN with task switching has been widely observed 

(Kim et al., 2012). We also previously observed increasing activation in FPN with task switching 

frequency (Sayali and Badre, 2019), an effect we replicate here. However, the present results 

further show that the FPN is also more active when task switching is greater than expected. The 

later emergence of this association is notable given the overall activation decrease in the FPN with 

greater task experience. 

When people learn control settings, in addition to the fast adjustments in RT noted above, there 

is also a slower process of learning that favors stable performance over variance in task demands 

(Bhandari and Badre, 2020). It is possible that the engagement of control, and the FPN, in this 

stable phase is attuned to unexpected and irregular events, particularly when they require control. 

Thus, deviations in the use of control itself can drive learning about task demands in this later 

phase. Future work should test these hypotheses directly and tie these brain dynamics directly to 

effort avoidance.  

 Based on previous studies of effort-based decisions and learning (Westbrook et al., 2019; 

Nagase et al., 2018), we hypothesized that the SV network would also track PE during the implicit 

learning phase. Surprisingly, we did not locate evidence of an association of either PE or 

anticipated cost with activation in the SV network. This seems at odds with prior observations, 

though at least one prior study also failed to locate an association of the SV network with the 

degree of physical effort required by a task (Prévost et al., 2010). However, given some trends, it 

is possible that our study simply lacked sensitivity in this network to locate an effect over noise.  
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Another possibility is that the SV network is affected by the requirement to make a decision. 

A clue in this regard comes from the anticipation phase, when we would predict less activation in 

SV prior to a difficult task. Instead, we observed greater activation in the SV network during 

anticipation of a more effortful task. This reversal might reflect that participants are anticipating 

an imposed task rather than evaluating which task to perform. Indeed, Schouppe et al. (2014) 

reported that the direction of activation in VS during the anticipation of effortful tasks changed as 

a function of whether the task was imposed or voluntarily selected.  

Finally, we highlight two limitations of the study. First, as participants did not make task 

selections during learning, it was not possible to estimate individual learning rates through model 

fitting. This shortcoming indicates that current study cannot estimate the degree to which task 

switch cost or RT cost during effort learning is directly tied to effort selections. This will be an 

important gap to fill in future work. 

Second, the present study prospectively sought to enroll and test demand avoiding participants. 

The rationale for this choice was that our previous study found significant individual differences 

in demand avoidance behavior on the basis of those who are demand seeking versus demand 

avoiding (Sayali and Badre, 2019), with demand seeking participants showing diminished or even 

reversed task choice behavior. We further found that participants in fMRI experiments tend to be 

disproportionately demand seeking. Thus, in order to reduce variability in our sample, we sought 

only demand avoiding participants.  

Though this approach successfully decreased the individual variance in our study, this 

necessarily affects the generalizability of these results. Thus, our conclusions are most closely 

generalizable to demand avoiding individuals. Nonetheless, we argue that these effects are likely 

also applicable to less avoidant individuals when they choose to avoid effort. Indeed, in our prior 
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work, we found that brain systems highlighted here, showed similar activity patterns across both 

demand avoiders and demand seekers as a function of task demands. However, it was the 

interpretation of these signals, in terms of their relationship to choice, that distinguished the groups.  

What does experience with a task teach us about its demands? Our results indicate that at least 

two factors are critical. First, response time is tracked as an index of performance, particularly 

during our first experiences with a task, when we are rapidly adjusting our control settings and 

automatizing performance. We form expectations about those control settings over time, like task 

switching frequency, such that later deviations from these expectations become a prime source of 

learning about task demands. Thus, separate factors are tracked in the brain by control networks 

such as the FPN and CON, and offer differential sources of information about task demands and 

the prospects for cognitive effort.  
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