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Abstract

After training on large datasets, certain deep neural networks are surprisingly
good models of the neural mechanisms of adult primate visual object recognition.
Nevertheless, these models are poor models of the development of the visual
system because they posit millions of sequential, precisely coordinated synaptic
updates, each based on a labeled image. While ongoing research is pursuing
the use of unsupervised proxies for labels, we here explore a complementary
strategy of reducing the required number of supervised synaptic updates to produce
an adult-like ventral visual stream (as judged by the match to V1, V2, V4, IT,
and behavior). Such models might require less precise machinery and energy
expenditure to coordinate these updates and would thus move us closer to viable
neuroscientific hypotheses about how the visual system wires itself up. Relative
to the current leading model of the adult ventral stream, we here demonstrate that
the total number of supervised weight updates can be substantially reduced using
three complementary strategies: First, we find that only 2% of supervised updates
(epochs and images) are needed to achieve ~80% of the match to adult ventral
stream. Second, by improving the random distribution of synaptic connectivity,
we find that 54% of the brain match can already be achieved “at birth" (i.e. no
training at all). Third, we find that, by training only ~5% of model synapses, we
can still achieve nearly 80% of the match to the ventral stream. When these three
strategies are applied in combination, we find that these new models achieve ~80%
of a fully trained model’s match to the brain, while using two orders of magnitude
fewer supervised synaptic updates. These results reflect first steps in modeling
not just primate adult visual processing during inference, but also how the ventral
visual stream might be "wired up" by evolution (a model’s "birth" state) and by
developmental learning (a model’s updates based on visual experience).

1 Introduction

Particular artificial neural networks (ANNs) are the leading mechanistic models of visual processing
in the primate visual ventral stream [1, 2]. After training on large-scale datasets such as ImageNet [3]
and updating weights with back-propagation in the process, internal representations of these ANNs
partly match neural representations in the primate visual system from early visual cortex V1 through
V2 and V4 to high-level IT [4-7, 1, 2], and patterns of model object recognition behavior can partly
account for patterns of primate object recognition behavior [8, 1, 2].

Preprint. Under review.


https://doi.org/10.1101/2020.06.08.140111
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.08.140111; this version posted June 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

However, all the current top models of the primate ventral stream rely on trillions of supervised synaptic
updates, i.e. the training of millions of parameters with millions of labeled examples over dozens of
epochs. In biological systems on the other hand, the at-birth synaptic wiring as encoded by the genome
already provides structure that is sufficient for squirrels to jump from tree to tree within months of
birth, horses to walk within hours [9], and macaques to exhibit adult-like visual representations after
months [10-12]. The heavy reliance of current ANNSs on supervised synaptic updates has been a
focus of critique in neuroscience; Zador [9] argues that “a child would need to ask one question every
second of her life to receive a comparable volume of labeled data”. While current models provide a
basic understanding of the neural mechanisms of adult ventral stream inference, can we start
to build models that provide an understanding of how the ventral stream ''wires itself up'' —
models of the initial state at birth and how it develops during postnatal life?

Related Work. Several papers have addressed related questions in machine learning: Distilled
student networks can be trained on the outputs of a teacher network [13—15], and, in pruning studies,
networks with knocked out synapses perform reasonably well [16, 17], demonstrating that models
with many trained parameters can be compressed. Tian et al. [18] show that a pre-trained encoder’s
fixed features can be used to train a thin decoder with performance close to full fine-tuning and recent
theoretically-driven work has found that training only BatchNorm layers [19] or picking the right
parameters from a large pool of weights [20, 21] can already achieve high classification accuracy.
Unsupervised approaches are also starting to develop useful representations without requiring many
labels by inferring internal labels such as clusters or representational similarity [22-25]. Nevertheless,
all of these approaches require many synaptic updates in the form of labeled samples or precise
machinery to determine the right set of weights. In this work, we wanted to take first steps of using
such models to explore hypotheses about the product of evolution (a model’s "birth state") while
simultaneously reducing the number of supervised synaptic updates (a model’s visual experience
dependent development) without sacrificing high brain predictivity.

Our contributions follow from a framework in which evolution endows the visual system with a
well-chosen, yet still random "birth" pattern of synaptic connectivity (architecture + initialization),
and developmental learning corresponds to training a fraction of the synaptic weights using very few
supervised labels. Specifically,

1. we build models with a fraction of supervised updates (training epochs and labeled im-
ages) that retain high similarity to the primate ventral visual stream (referred to as brain
predictivity),

2. we improve the "at-birth" synaptic connectivity to achieve reasonable brain predictivity with
no training at all,

3. we propose a thin, "critical training" technique which reduces the number of trained synapses
while maintaining high brain predictivity,

4. we combine these three techniques to build models with two orders of magnitude fewer
supervised synaptic updates but high brain predictivity relative to a fully trained model

Code and pre-trained models will be available through GitHub.

2 Modeling Primate Vision

We evaluate all models on a suite of ventral stream benchmarks in Brain-Score [1], and we base the
new models presented here on the CORnet-S architecture as this is currently the most accurate model
of adult primate visual processing [2].

Brain-Score benchmarks. To obtain quantified scores for brain-likeness, we use a thorough set
of benchmarks from Brain-Score [1]. All these benchmarks feed the same images to a candidate
model that were used for primate experiments while "recording” activations or measuring behavioral
outputs. Specifically, the V1 and V2 benchmarks present 315 images of 4deg naturalistic textures and
compare model representations to primate single-unit recordings from Freeman et al. [26] (102 V1
and 103 V2 neurons); the V4 and IT benchmarks present 2,560 naturalistic 8deg images and compare
models to primate Utah array recordings from Majaj et al. [27] (88 V4 and 168 IT electrodes). A
linear regression is fit from model to primate representations in response to 90% of the images and its
prediction score on the held-out 10% of images is evaluated with Pearson correlation, cross-validated
10 times. The behavioral benchmark presents 240 images of 8deg and compares model to primate
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Figure 1: High brain predictivity can be achieved with few supervised updates (log x-axes). A
Average brain predictivity of models trained with a range of supervised updates (epochs X images).
Fairly brain-like representations are already realized with few supervised updates, relative to a fully
trained model (black dot). B Individual brain predictivity scores over epochs. Models start to
approximate the primate ventral stream with few training epochs. Lower visual areas (V1, V2) are
approximated earlier in training. C Like B, but number of training images instead of epochs. Few
images are sufficient to approximate especially early visual areas.

behavioral responses from Rajalingham et al. [8]. A logistic classifier is fit on models’ penultimate
representations on a separate set of 2,160 labeled images. The classifier is then used to estimate
probabilities for 240 held-out images. Per-image confusion patterns between model and primate are
compared with a Pearson correlation. All benchmark scores are normalized by the respective ceiling.
We primarily report the average score as the mean of V1, V2, V4, IT, and behavioral scores.

Brain-Score provides separate sets of data as public benchmarks which we use to determine the type
of distribution in Section 4, and the layer-to-region commitments of reference models.

CORnet-S. The current best model on the Brain-Score benchmarks is CORnet-S [2], a shallow
recurrent model which anatomically commits to ventral stream regions. CORnet-S has four compu-
tational areas, analogous to the ventral visual areas V1, V2, V4, and IT, and a linear decoder that
maps from neurons in the model’s last visual area to its behavioral choices. The recurrent circuitry
(Figure 3B) uses up- and down-sampling convolutions to process features and is identical in each of
the models visual areas (except for V1-5p), but varies by the total number of neurons in each area.

We base all models developed here on the CORnet-S architecture and use the same hyper-parameters
as proposed in [2]. Representations are read out at the end of anatomically corresponding areas.

3 High brain predictivity can be achieved with few supervised updates

We evaluated the brain predictivity of CORnet-S variants that were trained with fewer epochs and
images. Models are trained with an initial learning rate of 0.1, divided by 10 when loss did not
improve over 3 epochs, and stopping after three decrements.

Figure 1 shows model scores on neural and behavioral Brain-Score measures, relative to a model
trained for 43 epochs on all 1.28M labeled ImageNet images. In Panel A, we compare the average
score over the five brain measures of various models to the number of supervised updates that each
model was trained with, defined as the number of labeled images times the number of epochs. While a
fully trained model reaches an average score of .42 after 55,040,000 supervised updates (43 epochs X
1.28M images), a model with only 100,000 updates already achieves 50% of that score, and 1,000,000
updates increase brain predictivity to 76%. Models are close to convergence score after 10,000,000
supervised updates with performance nearly equal to full training (97%). Scores grow logarithmically
with an approximate 5% score increase for every order of magnitude more supervised updates.

Figures 1B and C show individual neural and behavioral scores of models trained with fewer training
epochs or labeled images independently. Early to mid visual representations (V1, V2, and V4 scores)
seem to be especially closely met with only few supervised updates, reaching 50% of the final trained
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model in fractions of the first epoch (Figure 1B). After only one full iteration over the training set,
V1, V2, and V4 scores are close to their final score (all >80%) while IT requires two epochs to reach
a comparable level. Behavioral scores take slightly longer to converge (>80% after 7 epochs).

Similarly, when training until convergence with fractions of the 1.28M total images, 50,000 images
are sufficient to obtain high neural scores (80% of full training in V1, V2, V4, IT). Behavioral scores
again require more training: half the standard number of labeled images is needed to surpass 80%.

Concretely relating supervised updates to primate ventral stream development, Seibert [12] establishes
that no more than ~4 months — or 10 million seconds — of waking visual experience is needed to
reach adult-level primate inferior-temporal cortex (IT; as assessed by its capability to support adult
level object recogntion). From this estimate, we can compute how many supervised updates per
second different models in Figure 1A would require (assuming those updates are evenly distributed
over the 10 million seconds). For instance, the fully trained model’s 55 million supervised updates
translate to 5.5 updates every second, whereas the model with 1 million updates and 76% relative
brain predictivity translates to one labeled image update every 10 seconds.

4 "At-birth" synaptic connectivity yields reasonable brain predictivity with
no training at all

If few supervised updates can get model representations fairly close to a fully trained model (Figure 1),
how close are the initial representations without any training? In relation to biology and following the
introduced framework of treating all consecutive training as developmental learning, these "at-birth"
synaptic connections would result from information encoded in the genome as a product of evolution.

Due to the genome’s capacity bottleneck, it is thought to be infeasible to precisely encode every
synapse. Primary visual cortex alone contains ~1.4E8 neurons per hemisphere [29], ~1E3 synapses
per neuron, each requiring ~35 bits per synapse [9]. Thus, without any clever rules, specifying the
connections in one hemisphere of V1 could require up to ~4.9E12 bits — an order of magnitude more
than the entire genome’s 1GB = 8E9 bits [9].

Sampling synaptic weights from reasonably compressed distributions on the other hand places only
little memory requirements on genetic encoding while potentially yielding reasonably useful initial
weights. Seibert [12] for instance found that the representations in juvenile (19-32 weeks) primate
high-level ventral stream IT seem no different from adult monkeys, suggesting that synaptic weights
up to IT after that age change only minimally, if at all. Current machine learning techniques for
initializing weights, such as Kaiming Normal [28], sample from a Gaussian distribution with 4 = 0

and o = \/E /N where N is the number of incoming connections per layer.

To improve on Kaiming Normal initialization, we explored multi-dimensional distributions as a more
expressive alternative. Like current initializations, these distributions only require a small number of
parameters, but we explicitly specify them for each layer. To determine the right parameterization, we
compress a trained model’s weights into clusters which we then sample from ("Weight Compression").
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More specifically, for all convolutional layers except the first, we cluster kernel weights in a layer
using the k-nearest-neighbors algorithm [30]. The number of clusters is determined using elbow [31].
To capture the relative importance of clusters we fit a normal distribution N’ 1 for each cluster with
as the cluster frequency over kernels and o s as the frequency standard deviation. To sample weights

for a kernel, we first sample a cluster distribution i ~ N ¢ per kernel and then obtain channel weights

by sampling from a Gaussian with f; as the cluster center and the standard deviation &; of clustered
weights. In batch normalization layers, we fit one normal distribution each to the weights and biases.

For the first convolutional layer only, we employ a Gabor prior on the weights following studies in
V1 [32, 33] by fitting channels’ weights to a Gabor function and then fit a mixture-of-Gaussians to
the Gabor parameters per kernel (supplement). To sample new weights, we sample Gabor parameters
and set the weights to the thereby specified Gabor. Such a wiring mechanism might require more
machinery than the direct distributional sampling employed in later layers — however, smooth Gabors
could be implemented as a changing growth factor gradually modulating spatial connections [34].

Applying WC to CORnet-S, we first obtain a compressed and clustered set of parameters, from which
we sample entirely new weights to yield a new model CORnet-Sy,c. This model is not trained at
all and we only evaluate the goodness of its initial wiring on the suite of Brain-Score benchmarks.
Strikingly, we find that even without any training, CORnet-Sy,c achieves 54% of the brain predictivity
relative to a fully-trained model (Figure 2). Early ventral stream regions V1 and V2 are predicted
especially well with no loss in score but we note that these two benchmarks are less well predicted by
the trained model to begin with. V4 scores also approximate those of a trained model relatively well
(75%). The major drop occurs in the IT and especially behavioral scores where CORnet-Sy,c only
reaches 39% and 6% of the trained model’s score respectively. Similarly, a trained linear decoder on
CORnet-Sy’ IT representations only reaches 5% of a trained model’s ImageNet top-1 accuracy.

S Training thin down-sampling layers reduces the number of updated
synapses while maintaining high brain predictivity

While improved "at-birth" synaptic connectivity can reach 54% of a fully-trained model’s score (Sec-
tion 4), additional visual-experience dependent updates appear necessary to reach higher predictivities.
With standard back-propagation, each such iteration updates millions of synaptic weights in the model,
which, related to biology, would require precise machinery to coordinate these updates.

We propose a novel thin training technique which we term Critical Training (CT; Figure 3A). Instead
of updating every single model synapse, CT updates only the weights in down-sampling layers. In
CORnet-S, each of the V2, V4, and IT blocks has one down-sampling layer to produce an area’s final
representation. We explore successive variants of applying CT up to a block in the architecture and
then training the following blocks, e.g. freezing V1, V2, V4 with critical training of the respective
down-sampling layers and additional IT training. The final CT ventral stream model is almost
completely frozen and only the synapses generating each cortical area’s output are trained.

We compared Critical Training to a naive approach of reducing the trained parameters by freezing
model blocks from the bottom up, for instance keeping the V1 and V2 blocks fixed while training V4
and IT blocks. We term this block-wise freezing and training approach Downstream Training (DT).

Compared to standard back-propagation training all the weights, both CT and DT reduce the number
of trained parameters (Figure 3B). However, while the average score with DT (gray) already drops
below 65% with over a quarter of trained parameters remaining, CT (blue) maintains over 75% with
only 1.4 out of 52.8 million parameters trained. Note that we count model parameters and do not
compute how many biological synapses each convolutional weight would be equivalent to. In detail,
CT maintains over 75% of the score in V1, V2, V4, IT, 58% of behavior and 40% ImageNet accuracy.

By reducing the number of trained parameters, Critical Training also yields engineering benefits in
training time with a 30% reduction in the time per epoch at over 80% of the brain predictivity and
more than 40% of the ImageNet score. The training time reduction is less drastic than the parameter
reduction because most gradients are still computed for early down-sampling layers (Discussion).
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Figure 3: Training thin down-sampling layers reduces the number of updated synapses while
maintaining high brain predictivity. A We could naively reduce the parameters of a fully-trained
model by freezing layers from the bottom up, training only the top layers ("Downstream Training DT";
gray box). We instead propose Critical Training (CT) which only trains down-sampling layers (blue
box). B CORnet-S circuitry. CT only trains the thin down-sampling convolution. C Naively reducing
parameters from standard training (black dot, top right) quickly deteriorates brain predictivity (D7,
gray line) whereas Critical Training reduces parameters while retaining high scores (blue line, CT). D
Like C, but measuring ImageNet score. CT retains nearly half the score with a fraction of parameters.

6 High brain predictivity can be achieved with a relatively small number of
supervised synaptic updates

All three training reduction methods independently minimize the number of supervised synaptic
updates required to reach a reasonably high brain predictivity. Reducing the number of supervised
updates minimizes required updates by a smaller number of epochs and images (Section 3); Weight
Compression (WC) improves the at-birth synaptic connectivity for high initial scores with no training
at all (Section 4); and Critical Training (CT) reduces the number of synapses that are updated during
training (Section 5). We now combine these three methods to build novel models that only require a
small number of supervised synaptic updates to reasonably capture the mechanisms of adult ventral
visual stream processing and object recognition behavior.

Figure 4A shows the average brain predictivity of a range of models with varying numbers of
supervised synaptic updates relative to a standard trained CORnet-S (black dot). With a reduced
number of supervised updates (training epochs and labeled images) but standard initialization and
training all weights (light blue dots), models require 5.2 trillion updates to achieve >50% of the score
of a fully trained model and about 100 trillion updates to reach 80% brain score. Adding WC+CT
(dark blue dots), the corresponding model already reaches 53% at birth with O supervised synaptic
updates. At 0.5% the updates of a fully trained model (14 trillion vs. 3000 trillion), models then reach
79% of the score (sr model with modeling choices marked in Figures 1 to 3). Reference models (gray
dots) MobileNet [35] and ResNet [36] obtain high scores, but also require many supervised synaptic
updates. HMAX [37] is fully specified with no updates but lacks in score.
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Figure 4: High brain predictivity can be achieved with few supervised synaptic updates through
a combination of training reductions (log x-axis). A By reducing updates with a combination of
fewer supervised updates (Figure 1), improved initialization WC (Figure 2), and training only down-
sampling layers CT (Figure 3), the resulting models (dark blue dots; fewer supervised updates
alone in light blue) maintain high brain predictivity while requiring only a fraction of supervised
synaptic updates compared to standard CORnet-S (black dot, top right). B Comparison between
WC-initialized models trained with CT versus standardly initialized models training all weights, when
varying training epochs and labeled images. Colors represent their percent point difference in brain
predictivity. WC+CT improve performance in regimes with few epochs and images.

Zooming in on individual benchmarks, early and mid visual cortex can be approximated by models
that only require minimal to no training as well as a fully trained model: V1 reaches >90% with no
updates at all, V2 after 0.2 trillion updates, and V4 reaches >80% after 18 trillion updates. Matching
high-level visual cortex IT and behavioral outputs on the other hand requires more supervised synaptic
updates, albeit still vastly fewer than often believed: with 68 trillion for 80% of IT and 35 trillion for
66% of behavior — all compared to a fully trained model’s 3,000 trillion supervised synaptic updates.

We next examined interactions between the methods by comparing models initialized with WC and
trained with CT to models with standard initialization and training all weights, when both are trained
with fewer epochs and images. Figure 4B shows the percent point difference between the two model
families. Positive numbers (green) indicate an improvement by using WC+CT whereas negative
numbers (red) indicate a decrease in score with respect to standard training. WC+CT yield strong
benefits in a regime with few supervised updates, improving by up to 27 percent points when training
for only 1 epoch on 1,000 images. With many updates on the other hand, WC+CT is actually less
advantageous than standard training: with all 43 epochs and 1.28M images, the score reduces by 17
percent points. WC+CT therefore most positively interacts with a small budget of supervised updates.

7 Dissecting training reductions

We asked whether the developed techniques would generalize to architectures other than the CORnet-S
architecture that they were based on. We therefore applied Weight Compression (WC) and Critical
Training (CT) to ResNet-50 [36] and MobileNet [35] architectures, both high-performing models
on Brain-Score. We used WC distributions determined on CORnet-S, i.e. we tested their transfer
without re-fitting. WC+CT maintain most of the score in ResNet with 91% of the score despite an
almost 80% reduction in parameters. When applied to MobileNet, the average score drops by 22%
and parameters are reduced less strongly (43%). This difference in retaining the score could be due to
MobileNet already being very compressed, or having a less similar architecture.

With most analyses so far comparing an average score, we dissected the relative contributions of WC
and CT to individual benchmarks (Figure 5B). We compared KN to WC initialization, as well as
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Figure 5: Dissecting training reductions. A Transfer to other networks. We sample from WC
initializations determined on CORnet-S, followed by Critical Training of only down-sampling layers.
B Absolute scores on individual benchmarks of combinations of initialization (KN/WC, Figure 2),
and with critical training (CT, Figure 3) techniques. C Visualization of WC kernel cluster centers.

resulting models after critical training (KN+CT and WC+CT). WC initialization improves most over
KN in early visual regions V1 and V2, with additional gains in IT. Additional training with CT is
most beneficial in mid- to high-level visual cortex V4 and IT, as well as the behavioral benchmark.

Studies in model interpretability [38—40] analyze and classify model weights, similar to WC. Visual-
izing the centers of weight clusters at different locations in the network (Figure 5C), we find that the
first layer’s Gabors qualitatively align with an analysis by Cammarata et al. [40]. Consecutive cluster
centers seem to represent an intuitive division of channel types with opposite types in every layer.

8 Discussion

We developed a range of models with neural and behavioral scores approaching those of the current
leading model of the adult ventral visual stream, while requiring only a fraction of supervised
synaptic updates. These models were built by complementarily 1) reducing the number of supervised
updates, i.e. training epochs and labeled images; 2) improving the "at birth" distribution of synaptic
connectivity; and 3) training only critical synapses at the end of each model area. The techniques and
resulting models proposed here are first steps to more closely modeling not just adult primate visual
processing, but also exploring the underlying mechanisms of evolution and developmental learning.

These first steps are far from accounting for the rich information encoded in the genome or the
developmental learning that together result in adult mechanisms of visual processing. We here started
from CORnet-S, which is the current leading model of the adult ventral stream, but does not fully
predict neural or behavioral measurements. The architecture we based our techniques on might
therefore be flawed. We verified favorable transfer to models with similar architectures such as
ResNet, but generalization to an already compressed MobileNet was limited (Figure 5A).

Relating the proposed techniques to genomic mechanisms, such “principles” should generalize to
other domains such as auditory processing. With the capacity bottleneck in the genome, mechanisms
for wiring up would likely be shared between similar systems. With early visual areas being predicted
much better than later ones by the model resulting from WC initialization, early regions in general
might be more hard-wired than later ones such that synaptic updates primarily take place in higher
cortical regions based on representations hard-wired through DNA. One potential short-coming of WC
to account for higher regions is that it does not consider cross-layer dependencies, and incorporating
these into mechanisms for wiring up might further improve representations without any training.

A critical component in more closely modeling primate development is to reduce the dependence on
labels altogether. Recent unsupervised approaches are starting to rival the classification performance
of supervised models [22-25] and combining them with the advances presented here could further
reduce the number of synaptic updates. With critical training (Figure 3), only few weights need to be
updated for high scores, so unsupervised learning might not need to tackle all the weights. Current
unsupervised techniques still require back-propagation however which is routinely criticized as non-
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biological, among others due to the propagation of gradients [41-43]. Local learning rules might
alleviate these concerns and additionally yield engineering gains due to increased parallelizability.

The changes to model initialization and training presented here already lead to models that more
closely align with primate development than prior models, but they are still far from the actual
biological mechanisms. We expect future work in this direction to further close the gap with improved
evolutionarily encoded wiring mechanisms and developmental learning rules.

Broader Impact

The techniques proposed in this paper have broader implications for two fields:

First, the field of neuroscience may benefit from improved models of primate visual evolution,
development, and function. These models may be useful in the eventual correction of diseases or
abnormal development. However, excessive confidence in such systems may be equally dangerous and
we here base "match-to-brain" on only a handful of measures. These models further only capture the
average human so far, and do not take individual differences into account; the definition of "normal"
thus brings ethical questions with it, as it could amplify existing biases.

Second, the field of computer vision may benefit from a reduced number of weight updates which
reduces training time, and we hope this will make the resulting models more accessible to researchers
without access to large compute resources. These models have so far not been thoroughly tested on a
range of benchmarks other than ImageNet and generalization to other classification tasks is therefore
unproven.
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A Weight compression details

A.1 Compressing the first layer with a Gabor prior

The weight compression approach we use in Section 4 is based on different initialization techniques,
applied to different layers. For the very first layer of size 7 X 7 we found a Gabor filter most effective.
To generate the Gabor kernels we fit trained channel weights to a Gabor function

1
G5 = G50 0508, 2+ 2 D eosns + i )
where
nx
. Gx = —
X,or = X cos(f) + ysin(f) @ f 3)

Vpor = —X sin(@) + y cos(6) o = ny
Yo

x,,; and y, , are the orthogonal and parallel orientations relative to the grating, € is the angle of the
grating orientation, f is the spatial frequency of the grating, ¢ is the phase of the grating relative to
the Gaussian envelope, 6, and o, are the standard deviations of the Gaussian envelope orthogonal
and parallel to the grating, which can be defined as multiples (n, and n,) of the inverse of the grating
frequency and C is a scaling factor.

The function is fit per channel, which leads to a set of Gabor parameter for each of the 3 RGB channels.
We then fit a multidimensional mixture of Gaussians to the combination of all filter parameter per
kernel, resulting in a kernel parameter set. For the three RGB input channels in the first layer and
the 8 Gabor parameters we therefore fit to 3 X 8 = 27 parameters. We evaluate the best number of
components (number of distinct Gaussian distributions) based on the Bayesian Information Criterion
[44]. To generate new kernels we sample a kernel parameter set from this mixture distribution and
apply them to the described Gabor function that spans the weight values.

A.2 Compressing BatchNorm layers

In addition to convolutional layers, models consist of several Batchnorm layers, which contain a
learnable bias and weight term. To initialize these terms, we fit a normal distribution per weight
and bias vector of the trained values and sample from this distribution. Note that BatchNorm layers
contain running average means and standard deviations for normalization purposes. Those terms
are set to zero when no training has happened. During training the mean and standard deviation of
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the current batch are used instead. At validation time to achieve consistent results over epochs, we
disable updates of running mean and averages and set them to a trained models values.

A.3 Alternative approaches

We have explored a variety of weight compression methods applied to different layers and evaluate
their performance "at birth" without training and when trained with critical training.

Figure 6 shows brain predictivities of several alternative compression methods implemented as
follows:

o WC Weight compression approach with clustering as described in Section 4, using a Gabor
prior approach for the first layer, noisy cluster sampling for convolutional layers and fitted
normal distributions for Batchnorm layers.

e Mixture Gaussian Instead of sampling weights from cluster centers, this approach uses
multidimensional distributions for convolutional layers with kernel size > 1. We fit a mixture
Gaussian distribution per layer to the weights of a channel over all kernels. To sample a
new kernel, we sample individual channels from this distribution. For convolutional layers
with kernel size == 1 we draw weights from a normal distribution adjusted per kernel as
described in the next item.

o Kernel normal All weights are sampled based on normal distributions. We fit mean and
standard deviation to the weights of one trained kernel and resample a new kernel from this
distribution. We do this separately for every kernel to generate a whole layer. This approach
is similar to the BatchNorm sampling method where we compress BatchNorm weight and
bias terms instead of kernels.

e No Gabor prior To evaluate the importance of the Gabor prior we use the Kernel normal
model and apply the same normal distribution approach to layer one instead of Gabor
sampling. Performance drops by 13 percent points without training, and by 9 percent points
after critical training.

B WC initialized and CT trained model analysis

Our best model WC+CT benefits from a combination of improved initialization through weight
compression, and critical training. Figure 7A shows models with standard initialization and training
all weights, but with fewer supervised updates (cf. Figure 1), models that only train down-sampling
layers (CT), and models that combine critical training with weight compression (WC+CT). A model
initialized with weight compression achieves (only WC) 54% brain predictivity with O supervised
synaptic updates. Figure 7B and C show detailed brain predicitivity scores, relative to a fully trained
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Figure 7: Detailed analysis of WC+CT. A When reducing the number of supervised synaptic updates,
adding critical training (dark grey) and adding weight compression initialization (dark blue) both
improve brain predictivity at the same number of supervised synaptic updates, in comparison to a
model with standard initialization and training all weights (bright blue). B Brain predictivities for
the WC+CT model when trained with a range of epochs and labeled images. C Same as B, but for a
standardly initialized (KN) model training all weights.
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Figure 8: Individual brain benchmark scores for WC+CT model A Individual brain predictivities
of WC+CT models trained with a range of epochs on all images. These models score especially high
on V1, V2 and V4 already after one epoch in comparison to a model with standard initialization
training all weights. IT and Behavior benchmarks continuously improve over later epochs as well but
fall short of a fully trained model. B Like A, but with models trained until convergence on different
numbers of labeled images, up to the full dataset of 1.28M images (rightmost points). As in A we see
> 80% V1, V2 and V4 scores with only 100,000 images. For comparable IT and behavioral scores,
more images are required.

model, for models initialized and trained with WC+CT (B) and models initialized with standard
Kaiming Normal and training all weights (C) when trained with a range of epochs and labeled images.
The specific benchmark scores when either training with all labeled images for a varying number of
epochs (Figure 8A) or when training with fewer labeled images until convergence (Figure 8B) show
the benchmarks of early visual achieve the best results, relative to a fully trained model. The V1 score
is identical over all training states, since we do not train the V1 area.

C Dissecting training reductions — details

C.1 Transfer to ResNet and MobileNet
To show the generalization of our approach we applied the weight compression methods to a ResNet-

50 [36] and a MobileNet [35] (version 1, multiplier 1.0, image size 224) architecture. We do not
regenerate sampling distributions or clusters based on the new architectures trained weights, but
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used the CORnet-S based distributions to sample new weights for the different architectures. Since
CORnet-S is inspired by ResNet modules, we applied our critical training approach by training all
conv3 layers (equivalent down sampling layers) of ResNet50. For MobileNet we explored various
layer mappings. When training only the very few layers that result in reduced feature size, which are
implemented as depthwise separable convolutional layers and appear three times overall, performance
performance dropped close to random. Those layers however are mapped to CORnet-S’ conv2 layers
due to their 3 X 3 kernels whereas critical training in CORnet-S trains conv3 down-sampling layers
with a kernel size of 1 X 1. To transfer our critical training approach, we therefore additionally train
the 1 X 1 MobileNet layers corresponding to conv3. This training version allows for more training but
still reduces the amount of trained parameters by 43% while maintaining 78% of the original score.
For both transfer methods we initialize the first layer using the Gabor method based on CORnet-S’s
mixture-of-Gaussian distribution. Since the Gabor function is scalable we can produce Gabor kernels
of varying size. Furthermore we disable BatchNorm biases and weights in all transfer models by
freezing them to default values. We found that transferring those distributions on new architectures
harms brain predictivity scores. Nevertheless, the BatchNorm layers still normalize activations by
applying the running average and standard deviation.

C.2 Comparison of techniques to reduce supervised synaptic updates (Fig. 5B)

To analyse the relative contributions of Weight Compression and Critical Training we compare brain
predictivities of different models in Figure 5B:

o KN A model initialized by standard Kaiming Normal initialization without training.

e WC A model initialized by our Weight Compression initialization, described in Section 4,
without training.

e KN+CT The KN-initialized model trained with Critical Training until convergence, i.e.
three downstream layers and the decoder are trained and all other layers remain unchanged.

o WC+CT The WC-initialized model with Critical Training. V1 scores do not change because
weights in the V1 model area are all frozen.

D Training details

We used PyTorch 0.4.1 and trained the model using the ImageNet 2012 training set [3]. We used
a batch size of 256 images and trained on a QuadroRTX6000 GPU until convergence. We start
with a learning rate of 0.1 and decrease it four times by a factor of ten when training loss does not
decrease over a period of three epochs. For optimization, we use Stochastic Gradient Descent with
a weight decay 0.0001, momentum 0.9, and a cross-entropy loss between image labels and model
logits. We trained all models with these settings except the standard Mobilenet, where we used the
pretrained tensorflow model. Since the number of epochs for this model are not clearly stated, we use
the published value of 100 training epochs [35]. The training time of a full CORnet-S with standard
Imagenet dataset for 43 epochs is ~2.5 days. All variations with less weights/images/epochs trained in
shorter time. Reference models trained for 4 days at most under the described settings. If not further
specified, we show results of one training run. When showing error bars we used seeds 0 and 42 or
when n = 3 we use seeds 0, 42 and 94.

Code to reproduce our analyses from scratch, including the framework for weight compression and
critical training, as well as pre-trained models, will be made available through GitHub.
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