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Abstract

The number of available biological sequences has increased significantly in re-
cent years due to various genomic sequencing projects, creating a huge volume
of data. Consequently, new computational methods are needed to analyze
and extract information from these sequences. Machine learning methods
have shown broad applicability in computational biology and bioinformatics.
The utilization of machine learning methods has helped to extract relevant
information from various biological datasets. However, there are still sev-
eral problems that motivate new algorithms and pipeline proposals, mainly
involving feature extraction problems, in which extracting significant discrim-
inatory information from a biological set is challenging. Considering this, our
work proposes to study and analyze a feature extraction pipeline based on
mathematical models (Numerical Mapping, Fourier, Entropy, and Complex
Networks). As a case study, we analyze Long Non-Coding RNA sequences.
Moreover, we divided this work into two studies, e.g., (I) we assessed our
proposal with the most addressed problem in our review, e.g., lncRNA vs.
mRNA; (II) we tested its generalization on different classification problems,
e.g., circRNA vs. lncRNA. The experimental results demonstrated three
main contributions: (1) An in-depth study of several mathematical models;
(2) a new feature extraction pipeline and (3) its generalization and robustness
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for distinct biological sequence classification.
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1. Background1

In recent years, due to advances in DNA sequencing, an increasing num-2

ber of biological sequences have been generated by thousands of sequencing3

projects [1], creating a huge volume of data [2]. During the last decade,4

Machine Learning (ML) methods have shown broad applicability in compu-5

tational biology and bioinformatics [3]. Consequently, the ability to process6

and analyze biological data has advanced significantly [4]. Tools have been7

applied in gene networks, protein structure prediction, genomics, proteomics,8

protein-coding genes detection, disease diagnosis, and drug planning [5, 6].9

Fundamentally, ML investigates how computers can learn (or improve their10

performance) based on the data. Moreover, ML is a specialization of com-11

puter science related to pattern recognition and artificial intelligence [7].12

Based on this, several works have focused on investigating sequences of13

DNA and RNA molecules. Applying ML methods in these sequences has14

helped to extract important information from various datasets to explain15

biological phenomena [3]. The development of efficient approaches benefits16

the mathematical understanding of the structure of biological sequences [1],17

e.g., Precision cancer diagnostics [8] and the Coronavirus epidemic [9, 10].18

However, according to [3, 11], there are still several challenging biological19

problems that motivated the emergence of proposals for new algorithms.20

Fundamentally, biological sequence analysis with ML presents one major21

problem: Feature Extraction [12].22

Feature extraction seeks to generate a feature vector, optimally trans-23

forming the input data [12]. This procedure is exceptionally relevant for the24

success of the ML application. Another primary goal of feature extraction is25

to extract important information from input data compactly, as well as re-26

moving noise and redundancy to increase the accuracy of ML models [13, 12].27

Furthermore, the feature extraction is an inevitable method, especially in the28

stage of biological sequence preprocessing [14].29

Necessarily, several methods in bioinformatics apply ML algorithms for30

sequence classification, and as many algorithms can deal only with numerical31
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data, sequences need to be translated into sequences of numbers. Thereby,32

modern applications extract relevant features from sequences based on several33

biological properties, e.g., physicochemical, Open Reading Frames (ORF)-34

based, usage frequency of adjoining nucleotide triplets, GC content, among35

others. This approach is common in biological problems, but these implemen-36

tations are often difficult to reuse or adapt to another specific problem, e.g.,37

ORF features are an essential guideline for distinguishing Long non-coding38

RNAs (lncRNA) from protein-coding genes [15], but not useful features for39

classifying lncRNA classes [2]. Consequently, the feature extraction problem40

arises, in which extracting a set of useful features that contain significant41

discriminatory information becomes a fundamental step in the construction42

of a predictive model [16].43

Therefore, these problems make the process of biological sequence clas-44

sification a challenging task, creating a growing need to develop new tech-45

niques and methods to analyze sequences effectively and efficiently. Thereby,46

this work studies the performance of different feature extraction methods47

for biological sequence analysis, using mathematical models, e.g., numerical48

mapping, Fourier transform, entropy, and graphs. As a case study, we will49

use lncRNA sequences, which are fundamentally unable to produce proteins50

[17] and have recently casted doubt on its functionality [18].51

LncRNAs present several problem classes (e.g., lncRNA vs. mRNA [19,52

20] and lncRNA vs. circRNA [21]), thus enabling us to create a scenario to53

answer the questions raised in this work. Fundamentally, our main objective54

is to propose generalist techniques, demonstrating their efficiency concerning55

biological features. We consider biological approaches, those characteristics56

that present a bias to the analyzed problem or some biological explanation,57

e.g., ORF for lncRNA vs. mRNA [6, 15], as well as mathematical approaches58

and information quantity measures such as entropy. Based on this context59

and objectives, we assume the following hypothesis:60

• Hypothesis: Feature extraction approaches based on mathematical61

models are as efficient and generalist as biological approaches.62

Considering this, our work contributes to the area of computer science63

and bioinformatics. Specifically, it introduces new ideas and analysis for64

the feature extraction problem in biological sequences. Thereby, we present65

four new contributions: (1) A feature extraction pipeline using mathematical66

models; (2) Analysis of 9 different mathematical models; (3) Analysis of 667
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numerical mappings with Fourier, proposing statistical characteristics; (4)68

The generalization and robustness of mathematical approaches for the feature69

extraction in biological sequences.70

2. Related Works71

Essentially, as emphasized, we adopt lncRNA sequences as a case study, a72

class of Non-Coding RNAs (ncRNAs). Fundamentally, ncRNAs are unable to73

produce proteins. However, these ncRNAs contain unique information that74

produces other functional RNA molecules [22, 17]. Moreover, they demon-75

strate essential roles in cellular mechanisms, playing regulatory roles in a76

wide variety of biological reactions and processes [22]. The ncRNAs can be77

classified by length into two classes: Long Non-Coding RNA (lncRNA - 20078

nucleotides (nt) or more) and short ncRNA (less than 200 nt) [23, 24]. The79

lncRNAs are sequences with a length greater than 200 nucleotides [25], and80

according to recent studies, play essential roles in several critical biological81

processes [26, 27, 28], including transcriptional regulation [29], epigenetics82

[30], cellular differentiation [31], and immune response [32]. Moreover, they83

are correlated with some complex human diseases, such as cancer and neu-84

rodegenerative diseases [6, 33, 34].85

In plants, according to [6, 35], the lncRNAs act in gene silencing, flowering86

time control, organogenesis in roots, photomorphogenesis in seedlings, stress87

responses [36, 37], and reproduction [38]. Furthermore, lncRNAs are present88

in large numbers in genome [39] and have similar sequence characteristics89

with protein-coding genes, such as 5’ cap, alternative splicing, two or more90

exons [40], and polyA+ tails [41]. They are also observed in almost all living91

beings, not only in animals and plants but also yeasts, prokaryotes, and even92

viruses [42, 43].93

According to [39], lncRNAs do not contain functional ORFs. However,94

recent studies have found bifunctional RNAs [44], raising the possibility that95

many protein-coding genes may also have non-coding functions. Further-96

more, lncRNAs can be grouped into five broad categories. The classifi-97

cation occurs conforming to the genomic location, that is, where they are98

transcribed, concerning well-established markers, e.g., protein-coding genes.99

Among the categories are [45, 40]: sense, antisense, bidirectional, intronic,100

intergenic. The genomic context does not necessarily provide some informa-101

tion about the lncRNAs function or evolutionary origin; nevertheless, it can102

be used to organize these broad categories [46].103
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In this context, we have conducted an in-depth review of the lncRNAs104

classification methods, in which several approaches have been developed,105

such as: CPC [47], CPAT [48], CNCI [49], PLEK [50], lncRNA-MFDL [51],106

LncRNA-ID [52], lncRScan-SVM [53], LncRNApred [54], DeepLNC [55],107

PlantRNA Sniffer [56], PLncPRO [57], RNAplonc [58], BASiNET [59], and108

LncFinder [20]. For better understanding, Figure 1 presents theses works109

divided into Mathematical, Biological, and Hybrid approaches.110

BASiNET

Feature Extraction
Approaches

BiologicalMathematical Hybrid

CPC

CPAT

CNCI

lncRNA-MFDL

PlantRNA-
Sniffer

lncRScan-SVM

LncRNA-ID

PLncPRO

LncRNApred

LncFinder

Legend

RNAplonc

PLEK

DeepLNC

Ribosome

Fourier

Complex Networks

Entropy

ORF

Sequence structure

Codon

Alignment

Protein

Figure 1: Feature extraction approaches in our case study divided into: Mathematical,
Biological, and Hybrid.

The CPC uses the extent and quality of the ORF, and derivation of the111

BLASTX [60] search to measure the protein-coding potential of a transcript.112

In the classification, the authors applied the LIBSVM package to train a Sup-113

port Vector Machine (SVM) model, using the standard radial basis function114

kernel. CPAT classifies transcripts of coding and non-coding using the Logis-115

tic Regression (LR) classifier. This approach implements four features: ORF116
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coverage, ORF size, hexamer usage bias, and Fickett TESTCODE statis-117

tic. CNCI was induced with SVM and applies profiling Adjoining Nucleotide118

Triplets, and most-like CDS (MLCDS).119

In contrast, PLEK (2014) is based on the k-mer scheme (k = 1, . . . , 5)120

to predict lncRNA, also applying the SVM classifier. lncRNA-MFDL uses121

Deep Learning (DL) and multiple features, among them: ORF, K-mer (k =122

1, 2, 3), secondary structure (minimum free energy), and MLCDS. LncRNA-123

ID predicts lncRNAs with Random Forest (RF) through ORF (length and124

coverage), sequence structure (Kozak motif), ribosome interaction, alignment125

(profile Hidden Markov Mode - profile HMM), and protein conservation.126

lncRScan-SVM uses stop codon count, GC content, ORF (score, CDS127

length and CDS percentage), transcript length, exon count, exon length, and128

average PhastCons scores. LncRNApred classified lncRNAs with RF and129

features based on ORF, signal to noise ratio, k-mer (k = 1, 2, 3), sequence130

length, and GC content. DeepLNC uses only the k-mer scheme with entropy131

and Deep Neural Network (DNN). PlantRNA Sniffer was developed in 2017132

to predict Long Intergenic Non-Coding RNAs (lincRNAs). The method ap-133

plied SVM and extracted features from ORF (proportion and length) and134

nucleotide patterns.135

PLncPRO is based on machine learning and uses RF. The features se-136

lected include ORF quality (score and coverage), number of hits, significance137

score, total bit score, and frame entropy. RNAplonc classified sequences138

with the REPtree algorithm, considering 16 features (ORF, GC content, K-139

mer scheme (k = 1, . . . , 6), sequence length). BASiNET classifies sequences140

based on the feature extraction from complex network measurements. Lastly,141

LncFinder tests five classifiers (LR, SVM, RF, Extreme Learning Machine,142

and Deep Learning), to apply the algorithm that obtains the highest ac-143

curacy. The authors extract features from ORF, secondary structural, and144

EIIP-based physicochemical properties.145

In general, the aforementioned works apply supervised learning methods146

using binary classification (two classes - lncRNAs and protein-coding genes147

(mRNA)). There is a considerable amount of research on humans, followed148

by animals and plants. Regarding feature extraction, we observed a full do-149

main of ORF and sequence-structure descriptors. As seen in Figure 1, there150

is a frequent use of biological features. On the other hand, some works have151

explored mathematical approaches for feature extraction, such as Genomic152

Signal Processing (GSP), DNA Numerical Representation (DNR) [54, 20],153

and Complex Networks [59]. Nevertheless, the authors used these charac-154
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teristics in conjunction with other biological feature extraction techniques155

or without testing other mathematical features. Practically no papers have156

focused on several mathematical approaches. Based on this, the objective of157

this section was to summarize the main methods of the literature and their158

characteristic descriptors. Therefore, we will not use the works shown for159

comparison, but the most applied features.160

3. Materials and Methods161

In this section. we describe the methodological approach used to achieve162

the proposed objectives, as shown in Figure 2. Essentially, we divided our163

study into five stages: (1) Data selection and preprocessing; (2) Feature164

extraction; (3) Training; (4) Testing; (5) Performance analysis. Hence, each165

stage of the study is described, as well as information about the adopted166

process.167

Biological
Sequences Preprocessing Feature

Extraction

Test Set

Algorithms

Training Set

Model

Biological
Sequences Preprocessing Feature

Extraction Predict Target

Training

Predicting

 Mappings
Fourier
Graphs
Entropy

Evaluation

Figure 2: Proposed Pipeline. Essentially, (1) datasets are preprocessed; (2) Feature extrac-
tion techniques are applied to each dataset; (3) Machine learning algorithms are executed
in the training set to induce predictive models; (4) Induced models are applied to the test
set; Finally, (5) the models are evaluated.

This work was also divided into two case studies: (I) We assessed our168

mathematical approaches with the most addressed problem in our review,169
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e.g., lncRNA vs. mRNA; (II) We tested its generalization on different clas-170

sification problems.171

3.1. Data Selection172

As previously mentioned, we chose the lncRNAs classification problem,173

because it is a new and relevant theme in the literature, in which, recently,174

it has presented several works, mainly with ML, as explored in Section 2.175

However, we will also adopt other datasets to assess the generalization of176

mathematical features. As preprocessing, we used only sequences longer177

than 200nt [50], and we also removed sequence redundancy. Moreover, the178

sampling method was adopted in our dataset, since we are faced with the179

imbalanced data problem [2]. Therefore, we applied random majority under-180

sampling, which consists of removing samples from the majority class (to181

adjust the class distribution) [61]. Finally, we divided this paper into two182

case studies.183

3.1.1. Case Study I184

Sequences of five plant species were adopted to validate the proposed185

approaches. The summary of the dataset can be seen in Table 1. According to186

the literature approaches, this study also adopts two classes for the datasets:187

the positive class, with lncRNAs, and the negative class, with protein-coding188

genes (mRNAs).189

Table 1: Adopted species to create the datasets.

Species Sequences Samples Preprocessing Selected

A. trichopoda lncRNA 5698 4556 4556
mRNA 26846 22326 4556

A. thaliana lncRNA 2540 2540 2540
mRNA 13973 13973 2540

C. sinensis lncRNA 2562 2215 2215
mRNA 46147 45846 2215

C. sativus lncRNA 1929 1730 1730
mRNA 30364 29829 1730

R. communis lncRNA 4198 3487 3487
mRNA 31221 29042 3487

The mRNA data of the Arabidopsis thaliana (obtained from CPC2 [19])190

were built from the RefSeq database with protein sequences annotated by191
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Swiss-Prot [19], and lncRNA data from the Ensembl (v87) and Ensembl192

Plants (v32) database. The mRNA transcript data of the Amborella tri-193

chopoda, Citrus sinensis, Cucumis sativus and Ricinus communis were ex-194

tracted from Phytozome (version 13) [62]. The lncRNAs data from these195

species were extracted from GreeNC (version 1.12) [63].196

3.1.2. Case Study II197

In this case study, we will apply the best mathematical models (con-198

sidering accuracy) of case study I to different classification problems with199

lncRNAs, in order to test their generalization. Thus, divided this part into200

three problems:201

• Problem 1 (lncRNA vs. sncRNA): Dataset with only non-coding202

sequences (lncRNA and Small non-coding RNAs (sncRNAs), also ob-203

tained from [19])204

– lncRNA: 1291 sequences — sncRNA: 1291 sequences205

• Problem 2 (lncRNA vs. Antisense): Dataset with lncRNAs and long206

noncoding antisense transcripts (obtained from [64]).207

– lncRNA: 57 sequences — Antisense: 57 sequences208

• Problem 3 (circRNA vs. lncRNA): Dataset with lncRNA and circu-209

lar RNAs (cirRNAs) sequences (circRNA obtained from PlantcircBase210

[65]. This problem was based on [66] and [21], in order to classify211

circRNA from other lncRNAs.212

– circRNA: 2540 sequences — lncRNA: 2540 sequences213

It is important to emphasize that we used only sequences from Arabidop-214

sis thaliana in this second case study because it is the model species in215

plants. Moreover, plant sequences is the least addressed field by the studies,216

consequently presenting more challenges.217

3.2. Feature Extraction218

In this section, 9 feature extraction approaches are shown: 6 numer-219

ical mapping techniques with Fourier transform, Entropy, Complex Net-220

works. It is necessary to emphasize that we denote a biological sequence221

s = (s[0], s[1], . . . , s[N − 1]) such that s ∈ {A,C,G, T}N [2].222
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3.3. Fourier Transform and Numerical Mappings223

To extract features based on a Fourier model, we applied the Discrete224

Fourier Transform (DFT), widely used for digital image and signal processing225

(here GSP), which can reveal hidden periodicities after transformation of226

time domain data to frequency domain space [67]. According to Yin and227

Yau [68], the DFT of a signal with length N , x ∈ RN , at frequency k, can228

be defined by Equation (1):229

X[k] =
N−1∑
n=0

x[n] e−j
2π
N

kn, k = 0, 1, . . . , N − 1. (1)

This method is has been widely studied in bioinformatics, mainly for230

analysis of periodicities and repetitive elements in DNA sequences [69] and231

protein structures [70]. This approach is shown in Figure 3 and was based232

on [2].233

Biological 
Sequence

Numerical
Sequence

Fourier
SpectrumFeatures

Discrete Fourier
Transform

Spectrum Power
Calculation

Numerical
Mapping

Feature
Extraction

Figure 3: Fourier Transform and Numerical Mapping Pipeline. (1) Each sequence is
mapped to a numerical sequence; (2) DFT is applied to the generated sequence; (3) The
spectrum power is calculated; (4) The Feature Extraction is performed; Finally, (5) the
features are generated.

To calculate DFT, we will use the Fast Fourier Transform (FFT), that234

is a highly efficient procedure for computing the DFT of a time series [71].235

However, to use GSP techniques, a numeric representation should be used236

for the transformation or mapping of genomic data. In the literature, dis-237

tinct DNR techniques have been developed [72]. According to Mendizabal-238

Ruiz et al. [73], these representations can be divided into three categories:239

single-value mapping, multidimensional sequence mapping, and cumulative240

sequence mapping. Thereby, we study 6 numerical mapping techniques (or241

representations), which will be presented below: Voss [74], Integer [73, 75],242

Real [76], Z-curve [77], EIIP [78] and Complex Numbers [72, 79, 80].243
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3.3.1. Voss Representation244

This representation can use single or multidimensional vectors. Funda-245

mentally, this approach transforms a sequence s ∈ {A, C, G, T}N into a246

matrix V ∈ {0, 1}4×N such that V = [v1, v2, v3, v4]T , where T is the trans-247

pose operator and each vi array is constructed according to the following248

relation:249

vi[n] =

{
1, s[n] = α[i]
0, s[n] 6= α[i]

, where α = (A, C, G, T ), n = 0, 1, . . . , N − 1.

(2)
As a result, each row of matrix V may be seen as an array that marks each250

base position such that the first row denotes the presence of base A, row two251

for base C, row three base G and the last row for base T . For example, let s =252

(G,A,G,A,G, T,G,A,C,C,A) be a sequence that needs to be represented253

using Voss representation, therefore, v1 = (0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1), which254

represents the locations of bases A, v2 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0) for bases255

C, v3 = (1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0) for the G bases, v4 = (0, 0, 0, 0, 0, 1, 0,256

0, 0, 0, 0) for T bases. Then, using the DFT in the indicator sequences shown257

above, we obtain (see Equation 3):258

Vi[k] =
N−1∑
n=0

vi[n]e−j
2π
N

kn, ∀ i ∈ [1, 4], k = 0, 1, . . . , N − 1. (3)

The power spectrum of a biological sequence can be obtained by Equation259

(4):260

PV [k] =
4∑

i=1

|Vi[k]|2 , k = 0, 1, . . . , N − 1. (4)

3.3.2. Integer Representation261

This representation is one-dimensional [75, 73]. This mapping can be262

obtained by substituting the four nucleotides (T, C, A, G) of a biological263

sequence for integers (0, 1, 2, 3), respectively, e.g., let s = (G, A, G, A, G,264

T, G, A, C, C, A), thus, d = (3, 2, 3, 2, 3, 0, 3, 2, 1, 1, 2), as exposed in265

Equation (5). The DFT and power spectrum are presented in Equation (6).266

11

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.140368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.140368


d[n] =


3, s[n] = G
2, s[n] = A
1, s[n] = C
0, s[n] = T

, n = 0, 1, . . . , N − 1. (5)

D[k] =
N−1∑
n=0

d[n]e−j
2π
N

kn, PD[k] = |D[k]|2, k = 0, 1, . . . , N − 1. (6)

3.3.3. Real Representation267

In this representation, Chakravarthy et al. [76] use real mapping based on268

the complement property of the complex mapping of [69]. This mapping ap-269

plies negative decimal values for the purines (A,G), and positive decimal val-270

ues for the pyrimidines (C, T ), e.g., let s = (G,A,G,A,G, T,G,A,C,C,A),271

thus, r = (-0.5, -1.5, -0.5, -1.5, -0.5, 1.5, -0.5, -1.5, 0.5, 0.5, -1.5), as Equation272

(7) and Equation (8).273

r[n] =


−0.5, s[n] = G
−1.5, s[n] = A
0.5, s[n] = C
1.5, s[n] = T

, n = 0, 1, . . . , N − 1. (7)

274

R[k] =
N−1∑
n=0

r[n]e−j
2π
N

kn, PR[k] = |R[k]|2, k = 0, 1, . . . , N − 1. (8)

3.3.4. Z-curve Representation275

The Z-curve scheme is a three-dimensional curve presented by [77], to276

encode DNA sequences with more biological semantics. Essentially, we can277

inspect a given sequence s[n] of length N , taking into account the n-th el-278

ement of the sequence (n = 1, 2, . . . , N). Then, we denote the cumulative279

occurrence numbers An, Cn, Gn and Tn for each base A, C, G and T , as the280

number of times that a base occurred from s[1] up until s[n]. Fundamentally,281

this method reduces the number of indicator sequences from four (Voss) to282

three (Z-curve) in a symmetrical way for all four components [81]. Therefore:283

An + Cn +Gn + Tn = n (9)
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Where the Z-curve consists of a series of nodes P1, P2, . . . , PN , whose284

coordinates x[n], y[n], and z[n] (n = 1, 2, . . . , N) are uniquely determined by285

the Z-transform, shown in Equation (10):286

P [n] =


x[n] = (An +Gn)− (Cn + Tn)
y[n] = (An + Cn)− (Gn + Tn)
z[n] = (An + Tn)− (Cn +Gn)

,

x[n], y[n], z[n] ∈ [−n, n], n = 1, 2, . . . , N.

(10)

The coordinates x[n], y[n], and z[n] represent three independent distri-287

butions that fully describe a sequence [72]. Therefore, we will have three dis-288

tributions with definite biological significance: (1) x[n] = purine/pyrimidine,289

(2) y[n] = amino/keto, (3) z[n] = weak hydrogen bonds/strong hydro-290

gen bonds [77], e.g., let s = (G, A, G, A, G, T, G, A, C, C, A), thus,291

x = (1, 2, 3, 4, 5, 4, 5, 6, 5, 4, 5); y = (-1, 0, -1, 0, -1, -2, -3, -2, -1, 0, 1);292

z = (−1, 0,−1, 0,−1, 0,−1, 0,−1,−2,−1). Essentially, the difference be-293

tween each dimension at the n-th position and the previous (n− 1) position294

can be either 1 or −1 [77]. Therefore, we may define the following set of295

equations in order to update the values of each dimension array considering296

that x[−1] = y[−1] = z[−1] = 0:297

x[n] =

{
x[n− 1] + 1, s[n] = A or G
x[n− 1]− 1, s[n] = C or T

. (11)

y[n] =

{
y[n− 1] + 1, s[n] = A or C
y[n− 1]− 1, s[n] = G or T

, n = 1, 2, . . . , N. (12)

z[n] =

{
z[n− 1] + 1, s[n] = A or T
z[n− 1]− 1, s[n] = G or C

. (13)

Finally, the DFT and power spectrum of the Z-Curve representation may298

be defined as [82]:299

X[k] =
N∑

n=1

x[n]e−j
2π
N

kn, Y [k] =
N∑

n=1

y[n]e−j
2π
N

kn, Z[k] =
N∑

n=1

z[n]e−j
2π
N

kn.(14)

PC [k] = |X[k]|2 + |Y [k]|2 + |Z[k]|2, k = 1, 2, . . . , N. (15)
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3.3.5. EIIP Representation300

Nair and Sreenadhan [78] proposed EIIP values of nucleotides to repre-301

sent biological sequences and to locate exons. According to the authors, a302

numerical sequence representing the distribution of free electron energies can303

be called ”EIIP indicator sequence”, e.g., let s = (G, A, G, A, G, T, G, A,304

C, C, A), thus, b = (0.0806, 0.1260, 0.0806, 0.1260, 0.0806, 0.1335, 0.0806,305

0.1260, 0.1340, 0.1340, 0.1260), as shown in Equation (16). The DFT and306

power spectrum of this representation are presented in Equation (17).307

b[n] =


0.0806, s[n] = G
0.1260, s[n] = A
0.1340, s[n] = C
0.1335, s[n] = T

, n = 0, 1, . . . , N − 1. (16)

B[k] =
N−1∑
n=0

b[n]e−j
2π
N

kn, PB[k] = |B[k]|2, k = 0, 1, . . . , N − 1. (17)

3.3.6. Complex Numbers Representation308

This numerical mapping has the advantage of better translating some of309

the nucleotides features into mathematical properties [80] and represents the310

complementary nature of AT and CG pairs [72]; e.g., let s = (G, A, G, A,311

G, T, G, A, C, C, A), thus, r̄ = (−1− j, 1 + j, −1− j, 1 + j, −1− j, 1− j,312

−1− j, 1 + j, −1 + j, −1 + j, 1 + j), as shown in Equation (18). The DFT313

and power spectrum of this representation are presented in Equation (19).314

r̄[n] =


−1− j, s[n] = G
1 + j, s[n] = A
−1 + j, s[n] = C
1− j, s[n] = T

, n = 0, 1, . . . , N − 1. (18)

R̄[k] =
N−1∑
n=0

r̄[n]e−j
2π
N

kn, PR̄[k] = |R̄[k]|2, k = 0, 1, . . . , N − 1. (19)

3.3.7. Features315

The feature extraction is applied in each representation with Fourier316

transform, adopting Peak to Average Power Ratio (PAPR), mistakenly con-317

fused with the Signal to Noise Ratio (SNR), average power spectrum, me-318

dian, maximum, minimum, sample standard deviation, population stan-319

dard deviation, percentile (15/25/50/75), amplitude, variance, interquartile320
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range, semi-interquartile range, coefficient of variation, skewness, and kurto-321

sis. Since according to [83] the RNA has a statistical phenomenon known as322

period-3 behavior or 3-base periodicity, where the peak power will always be323

at the sample N/3. Nevertheless, the PAPR is defined as [84]:324

PAPR =
max0≤k≤N−1(P [k])

1

N

N−1∑
k=0

P [k]

(20)

3.4. Entropy325

Information theory has been widely used in bioinformatics [85, 86]. Based326

on this, we consider the study of [87], which applied an algorithmic and math-327

ematical approach to DNA code analysis using entropy and phase plane.328

Fundamentally, according to [86], entropy is a measure of the uncertainty329

associated with a probabilistic experiment. To generate a probabilistic ex-330

periment, we use a known method in bioinformatics, the k-mer (our pipeline331

is shown in Figure 4).332

or

Biological 
Sequence

Absolute
Frequency

Features
Shannon Entropy

Tsallis Entropy

Extract k-mer Relative
Frequency

For each k

Figure 4: Entropy Pipeline. (1) Each sequence is mapped in k-mers; (2) The absolute
frequency of each k is calculated; (3) Based on absolute frequency, the relative frequency
is calculated; (4) The Tsallis or Shannon entropy is applied to each k; Finally, (5) features
are generated.

In this method, each sequence is mapped in the frequency of neighboring333

bases k, generating statistical information. The k-mer is denoted in this work334

by Pk, corresponding to Equation (21).335
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Pk(s) =
cki

N − k + 1
=

(
c1

1

N − 1 + 1
, . . . ,

c1
4

N − 1 + 1
,

c2
4+1

N − 2 + 1
, . . . ,

cki
N − k + 1

)
k = 1, 2, . . . , 24.

(21)

We applied this equation to each sequence with frequencies of k = 1, 2,336

. . . , 24. Where, cki is the number of substring occurrences with length k in a337

sequence (s) with length N , in which the index i ∈ {1, 2, . . . , 41 + . . . + 4k}338

represents the analyzed substring. For a better understanding, Figure 5339

demonstrated an example with k = 6 and k = 9.340

T G A C C A G A G A 
TGA-CCA

GAC-CAG

ACC-AGA

CCA-GAG

T G A C C A G A G A 
TGA-CCA-GAG

GAC-CAG-AGA

k = 6

k = 9

Figure 5: k-mer Workflow. Example with k = 6 and k = 9.

Basically, histograms with short bins are adopted, such as [{A}, {C},341

{G}, {T}], that occur for k = 1, up to histograms with long sequence count-342

ing bins such as [{GGGGGGGGGGGG}, . . . , {AAAAAAAAAAAA}], that343

result for k = 12. Where, after counting the absolute frequencies of each k,344

we generate relative frequencies (see Equation (21)), and then apply Shannon345

and Tsallis entropy to generate the features.346

3.4.1. Shannon and Tsallis Entropy347

Fundamentally, we chose Shannon entropy, because it quantifies the amount348

of information in a variable [88], that is, we can reach a single value that349
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quantifies the information contained in different observation periods (e.g.,350

our case: k-mer). However, according to [89], it is important to explore a351

generalized form of the Shannon’s entropy. Based on this, we have opted for352

a generalized entropy proposed by Tsallis, applied by several works in the353

literature [90, 91]. Thereby, for a discrete random variable F taking values in354

{f [0], f [1], f [2], . . . , f [N−1]} with probabilities {p[0], p[1], p[2], . . . , p[N−1]},355

represented as P (F = f [n]) = p[n]. The Shannon (Equation 22) and Tsallis356

(Equation 23) entropy associated with this variable is given by the following357

expressions:358

HS[k] = −
N−1∑
n=0

pk[n] log2 pk[n] k = 1, 2, . . . 24. (22)

HT [k] =
1

q − 1

(
1−

N−1∑
n=0

pk[n]q

)
k = 1, 2, . . . 24. (23)

Where k represents the analyzed k-mer, N the number of possible events359

and p[n] the probability that event n occurs.360

3.5. Complex Networks361

Complex networks are widely used in mathematical modeling and have362

been an extremely active field in recent years [92], as well as becoming an363

ideal research area for mathematicians, computer scientists, and biologists.364

Based on this, we consider the study of [59], in which we propose a feature365

extraction model based on complex networks, as shown in Figure 6.366

Each sequence is mapped to the frequency of neighboring bases k (k = 3367

- see Figure 5). This mapping is converted into an undirected graph repre-368

sented by an adjacency matrix, in which we applied a threshold scheme for369

feature extraction, thus generating our characteristic vector. Fundamentally,370

we represent our structure by undirected weighted graphs. According to [92],371

a graph G = {V,E} is structured by a set V of vertices (or nodes) connected372

by a set E of edges (or links). Each edge reflects a link between two vertices,373

e.g., ep = (i, j) connection between the vertices i and j [92]. If there is an374

edge connecting the vertices i and j, the elements aij are equal to 1, and375

equal to 0 otherwise.376

In our case, the graph is undirected, that is, the adjacency matrix A is377

symmetric, e.g., elements aij = aji for any i and j [92]. Furthermore, we378

apply a threshold scheme presented by [59], in which we extract weight of379
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Biological Sequence

GAGAGTGACCA

Extracting k = 3

Adjacency Matrix

0 2 1 0 0 0 0 0
2 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0

A =

GAG
AGA
GAG
AGT
GTG
TGA
GAC
ACC
CCA

Threshold	(t)

0 2 1 0 0 0 0 0
2 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0

A =

0 2 0 0 0 0 0 0
2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

A =

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

A =

Feature ExtractionFeatures

t = 0

t = 1

t ++

G A G A G T G A C C A

Figure 6: Complex Networks Pipeline. (1) Each sequence is mapped in the frequency
of neighboring bases k (k = 3); (2) This mapping is converted to a undirected graph
represented by an adjacency matrix; (3) Feature extraction is performed using a threshold
scheme; Finally, (4) the features are generated.

the edges to capture adjacencies at different frequencies. Finally, as fea-380

tures, several network characterization measures were obtained, based on381

[59, 93], among them: Betweenness, assortativity, average degree, average382

path length, minimum degree, maximum degree, degree standard deviation,383

frequency of motifs (size 3 and 4), clustering coefficient.384

3.6. Normalization, Training and Evaluation Metrics385

Data normalization is a preprocessing technique often applied to a dataset.386

Essentially, features can have different dynamic ranges. This problem may387

have a stronger effect in the induction of a predictive model, mainly for388

distance-based ML algorithms. Consequently, the application of a normal-389

ization procedure makes the ranges similar, reducing this problem [94]. We390

used the min-max normalization, which reduces the data range to 0 and 1391

(or -1 to 1, if there are negative values) [2]. The general formula is given as392

(Equation (24)) [95]:393
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x′ij =
xij −min(j)

max(j)−min(j)
. (24)

Where x is the original value and x′ij is its normalized version. Further-394

more, min(j) and max(j) are, respectively, the smallest and largest values of395

a feature j [6, 95]. Next, we investigate three classification algorithms, such396

as Random Forest (RF) [96], AdaBoost [97] and CatBoost [98]. We chose397

these ML algorithms because they induce interpretable predictive models398

when humans can easily understand the internal decision-making process.399

Thus, domain experts can validate the knowledge used by the models for400

the classification of new sequences [6]. Finally, to induce our models, we401

used 70% of samples for training (with 10-fold cross-validation) and 30% for402

testing, as shown in Table 2.403

Table 2: Number of sequences used for training and testing in each dataset.

Case Study Dataset Samples Training Testing

A. trichopoda 9112 6378 2734
A. thaliana 5080 3556 1524

I C. sinensis 4430 3101 1329
C. sativus 3460 2422 1038
R. communis 6974 4881 2093

lncRNA vs. sncRNA 2582 1807 775
II lncRNA vs. Antisense 114 79 35

circRNA vs. lncRNA 5080 3556 1524

The methods were evaluated with four measures: Sensitivity (SE - Equa-404

tion 26), Specificity (SPC - Equation 27), Accuracy (ACC - Equation 25),405

and Cohen’s kappa coefficient [99] (Equation 28).406

ACC =
TP + TN

TN + FP + TP + FN
(25)

SE =
TP

TP + FN
(26)

SPC =
TN

TN + FP
(27)

Kappa =
po − pe
1− pe

(28)

These measures use True Positive (TP), True Negative (TN), False Posi-407

tive (FP) and False Negative (FN) values, where: TP measures the correctly408
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predicted positive label; TN represents the correctly classified negative label;409

FP describes all those negative entities that are incorrectly classified as pos-410

itive and; FN represents the positive label that are incorrectly classified as411

the negative label.412

4. Results413

This section shows experimental results from 9 feature extraction ap-414

proaches with mathematical models for biological sequences, divided into415

two parts: Case Study I and Case Study II.416

4.1. Case Study I417

Initially, we induced models with the RF, AdaBoost, and CatBoost clas-418

sifiers in the training set of three datasets (A. trichopoda, A. thaliana, and419

R. communis). Our initial goal is to choose the best classifier to follow in the420

testing phases. Thereby, to estimate the real accuracy, we applied 10-fold421

cross-validation, as shown in Table 3.422

Table 3: Accuracy for the training set (A. trichopoda, A. thaliana, and R.
communis) using 10-fold cross-validation.

Dataset Model RF AdaBoost CatBoost

Z-curve 0.90 (± 0.03) 0.91 (± 0.02) 0.92 (± 0.02)
Binary 0.92 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)
Real 0.91 (± 0.02) 0.93 (± 0.02) 0.94 (± 0.02)
Integer 0.91 (± 0.02) 0.93 (± 0.02) 0.94 (± 0.02)

A. trichopoda EIIP 0.92 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)
Complex 0.92 (± 0.03) 0.94 (± 0.02) 0.94 (± 0.02)
Graphs 0.92 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)
Shannon 0.92 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)
Tsallis 0.92 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)

Z-curve 0.95 (± 0.02) 0.93 (± 0.03) 0.94 (± 0.02)
Binary 0.94 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)
Real 0.95 (± 0.02) 0.94 (± 0.02) 0.95 (± 0.02)
Integer 0.94 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)

A. thaliana EIIP 0.95 (± 0.02) 0.94 (± 0.02) 0.95 (± 0.03)
Complex 0.94 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.01)
Graphs 0.94 (± 0.02) 0.94 (± 0.02) 0.95 (± 0.02)
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Shannon 0.94 (± 0.02) 0.94 (± 0.02) 0.95 (± 0.02)
Tsallis 0.94 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)

Z-curve 0.93 (± 0.02) 0.92 (± 0.02) 0.93 (± 0.02)
Binary 0.95 (± 0.01) 0.95 (± 0.02) 0.95 (± 0.02)
Real 0.95 (± 0.02) 0.94 (± 0.02) 0.94 (± 0.02)
Integer 0.94 (± 0.01) 0.94 (± 0.01) 0.94 (± 0.02)

R. communis EIIP 0.95 (± 0.02) 0.95 (± 0.02) 0.95 (± 0.01)
Complex 0.95 (± 0.02) 0.95 (± 0.01) 0.95 (± 0.01)
Graphs 0.95 (± 0.01) 0.95 (± 0.01) 0.95 (± 0.02)
Shannon 0.95 (± 0.02) 0.95 (± 0.02) 0.95 (± 0.01)
Tsallis 0.95 (± 0.01) 0.95 (± 0.01) 0.95 (± 0.01)

Assessing each classifier, we noted that the best performance was of the423

CatBoost with all mathematical models in A. trichopoda, followed by Ad-424

aBoost (6 best results) and RF (no better results). In A. thaliana, CatBoost425

kept the best performance (7 best results), followed by RF (6 best results)426

and AdaBoost (3 best results). In contrast, the RF classifier obtained the427

best results (6) in R. communis, followed by CatBoost (5 best results) and428

AdaBoost (3 best results). Based on this, we continued testing the models429

with the CatBoost classifier. Thus, in Table 4, we present the results of all430

mathematical models using 4 evaluation metrics.431

Table 4: Performance analysis. This table compares the sensitivity, speci-
ficity, accuracy and kappa metrics for each model in the test sets using Cat-
Boost classifier.

Dataset Model SE SPC ACC Kappa

Z-curve 0.9744 0.8566 0.9155 0.8310
Binary 0.9795 0.9005 0.9400 0.8800
Real 0.9802 0.8837 0.9320 0.8639
Integer 0.9773 0.8822 0.9298 0.8595

A. trichopoda EIIP 0.9781 0.8990 0.9386 0.8771
Complex 0.9802 0.9012 0.9407 0.8815
Graphs 0.9737 0.9020 0.9378 0.8756
Shannon 0.9781 0.9020 0.9400 0.8800
Tsallis 0.9795 0.9005 0.9400 0.8800

Z-curve 0.9777 0.9383 0.9580 0.9160
Binary 0.9619 0.9449 0.9534 0.9068
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Real 0.9803 0.9409 0.9606 0.9213
Integer 0.9698 0.9436 0.9567 0.9134

A. thaliana EIIP 0.9646 0.9449 0.9547 0.9094
Complex 0.9724 0.9409 0.9567 0.9134
Graphs 0.9685 0.9423 0.9554 0.9108
Shannon 0.9738 0.9462 0.9600 0.9200
Tsallis 0.9764 0.9409 0.9587 0.9173

Z-curve 0.9021 0.8707 0.8864 0.7728
Binary 0.8901 0.8707 0.8804 0.7607
Real 0.9142 0.8571 0.8856 0.7713
Integer 0.8825 0.8692 0.8758 0.7517

C. sinensis EIIP 0.8840 0.8526 0.8683 0.7367
Complex 0.9081 0.8496 0.8789 0.7577
Graphs 0.9006 0.8632 0.8819 0.7637
Shannon 0.9172 0.8586 0.8879 0.7758
Tsallis 0.9262 0.8541 0.8901 0.7803

Z-curve 0.8979 0.8478 0.8728 0.7457
Binary 0.9056 0.8459 0.8757 0.7514
Real 0.9268 0.8439 0.8854 0.7707
Integer 0.9056 0.8536 0.8796 0.7592

C. sativus EIIP 0.8979 0.8459 0.8719 0.7437
Complex 0.9326 0.8343 0.8834 0.7669
Graphs 0.9075 0.8536 0.8805 0.7611
Shannon 0.9326 0.8382 0.8854 0.7707
Tsallis 0.9403 0.8401 0.8902 0.7803

Z-curve 0.9446 0.9140 0.9293 0.8586
Binary 0.9417 0.9589 0.9503 0.9006
Real 0.9589 0.9408 0.9498 0.8997
Integer 0.9465 0.9456 0.9460 0.8920

R. communis EIIP 0.9455 0.9551 0.9503 0.9006
Complex 0.9398 0.9561 0.9479 0.8958
Graphs 0.9455 0.9542 0.9498 0.8997
Shannon 0.9388 0.9589 0.9489 0.8978
Tsallis 0.9417 0.9608 0.9513 0.9025

As can be seen, all models presented excellent results, with the worst per-432

formance (ACC) of 0.8901 (C. sinensis) and the best of 0.9606 (A. thaliana).433

That is, all models were robust in different datasets without a high loss of434
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performance. Assessing each metric individually, we realized that in SE,435

the best performance was from Real representation (3 datasets), followed by436

Tsallis (2 datasets) and Complex numbers (1 dataset). In SPC, the best437

results were from Entropy (3 datasets), followed by Graphs (2 datasets).438

In ACC, Tsallis presented the best performance (3 datasets), followed by439

Real representation and Complex numbers (1 dataset). For each dataset, we440

can see in A. trichopoda the best ACC was 0.9407 (Complex); A. thaliana441

with 0.9606 (Real); C. sinensis with 0.8901 (Tsallis); C. sativus with 0.8902442

(Tsallis); and R. communis with 0.9513 (Tsallis).443

4.2. Case Study II444

After evaluating all methods in 5 different datasets (lncRNA of different445

species) and observing their results, we applied a second case study, where we446

used only three mathematical models for generalization analysis, including447

GSP (Fourier + complex numbers), entropy (Tsallis) and graphs (complex448

networks). Here, our objective was to analyze how each model behaved in449

different biological sequence classification problems. For this, we tested 3450

new datasets established in Section 3.1.2, as can be seen in Figure 7.451

Again, all showed robust results, in which, graph-based models are the452

best in 2 of the 3 problems analyzed, followed by entropy and GSP. In the453

first three datasets, our methods achieved excellent accuracy. Furthermore, if454

we analyze at the last problem (circRNA vs. lncRNA), our approaches were455

effective when compared to our references that reached an ACC of 0.7780 [66]456

and 0.7890 [21] in their datasets against 0.8307 from our best model (graph457

- using these comparisons as an (indirect) reference indicator).458

4.3. Statistical Significance Tests459

The statistical significance was assessed in both case studies (difference460

in ACC), using Friedman’s statistical test and the Conover post-hoc test.461

Thereby, our null hypothesis (H0 = M(1) = M(2) = . . . = M(k)), is tested462

against the alternative hypothesis (HA = at least one model has statistical463

significance (α = 0.05, p < α)). First, we apply the global test in the case464

study I, in which the Friedman test indicates significance (χ2(8) = 17.34, p-465

value = 0.0268), that is, we can reject H0, as p < 0.05. Thus, it is essential to466

execute the post-hoc statistical test. Conover statistics values were obtained,467

as well as p-values (see Table 5), using 95% of significance (α = 0.05).468
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Figure 7: Performance analysis of three mathematical models, GSP (fourier + complex
numbers), entropy (Tsallis) and graphs (complex networks), for different problems.

Table 5: Conover statistics values - The accepted alternative hypothesis is in bold (p-values
for α = 0.05).

Z-curve Binary Real Integer EIIP Complex Graphs Shannon

Binary 0.5580 - - - - - - -
Real 0.1416 0.3671 - - - - - -
Integer 0.7896 0.3956 0.0852 - - - - -
EIIP 0.9574 0.5230 0.1284 0.8309 - - - -
Complex 0.3671 0.7489 0.5580 0.2451 0.3399 - - -
Graphs 0.5580 1.0000 0.3671 0.3956 0.5230 0.7489 - -
Shannon 0.0687 0.2057 0.7089 0.0390 0.0616 0.3399 0.2057 -
Tsallis 0.0146 0.0550 0.2898 0.0075 0.0128 0.1050 0.0550 0.4892

Concerning to the Conover post-hoc test, entropy-based models have469

highly significant differences for the Z-curve (p < 0.0146), Integer (p < 0.0075470
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- Tsallis and p < 0.0390 - Shannon), and EIIP (p < 0.0128). Possibly,471

these results indicate that entropy has a more significant performance when472

compared to representations with Fourier. However, other mathematical473

models in case study I do not differ significantly, indicating their efficiency474

in all datasets. Now, evaluating case study II, we realized that the global475

test with Friedman’s statistical test is not significant, in which we obtained476

χ2(2) = 1.64, p-value = 0.4412, indicating that the three studied feature ex-477

traction techniques show a similar performance in the problems, once more478

confirming the effectiveness and robustness of all mathematical models.479

4.4. Computational Time480

In addition, we also assessed the computational time cost of each tested481

model. To do this, we ran three models, GSP (Fourier + complex numbers),482

entropy (Tsallis) and graphs (complex networks)), in 1291 random sequences,483

as shown in Figure 8.484

0 50 100 150 200 250
Time (seconds)

GSP

Entropy

Graphs

M
od

el
s

Figure 8: Execution Time.

We performed the experiments using Intel Core i3-9100F CPU (3.60GHz),485

16GB memory, and running in Debian GNU/Linux 10. The lowest cost in486

computational time is for models based on GSP (0m7.183s) and entropy487

(0m51.427s), while graphs (3m58.208s) have a much higher cost. These re-488

sults demonstrated that, although the models present a similar performance,489

the computational time efficiency is significantly different.490
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5. Discussion491

This section discusses our findings in terms of whether they support our492

hypothesis (feature extraction approaches based on mathematical models are493

as efficient and generalist as biological approaches). Overall, several exper-494

imental tests were assumed in this research, in which all feature extraction495

approaches based on mathematical models showed excellent results, as can496

be seen in Table 4 and Figure 7. Regarding its performance in distinct clas-497

sification problems, case study II, we used only three mathematical models498

for generalization analysis, including GSP (Fourier + complex numbers), en-499

tropy (Tsallis) and graphs (complex networks). In which, entropy and graph-500

based models reported the best performance followed by GSP. Furthermore,501

all models maintained robust results in different sequence classification prob-502

lems.503

Furthermore, to fully support our hypothesis, we also compare three504

mathematical models shown in Figure 7 concerning a biological and hybrid505

approach, in four datasets ((lncRNA vs. mRNA (case study I)); (lncRNA vs.506

sncRNA; lncRNA vs. Antisense; circRNA vs. lncRNA (case study II)). Thus,507

we generate our biological model using some of the most applied features in508

Figure 1. Thus, features used by the models are:509

• Biological: The features were provided by [19]: Fickett TESTCODE510

score, isoelectric point, open reading frame (ORF) length, and ORF511

integrity.512

• Hybrid: The features were generated by one of the most current ap-513

proaches in the literature (lncFinder [20] - 2018). We classify this model514

as a hybrid because it uses a combination of biological and mathemati-515

cal features. Among the biological characteristics is Logarithm-distance516

of hexamer on ORF, length and coverage of the longest ORF. Regard-517

ing mathematical features, [20] uses an EIIP-based physicochemical518

property with Fourier Transform (similar to our approach with GSP,519

but using only EIIP mapping).520

For a fair comparison, the new experiments follow the same methodology521

(70% training, 30% test, and CatBoost classifier), as shown in Table 6.522

As can be seen, the hybrid model (0.9915) reported the best performance523

in the first dataset (lncRNA vs. mRNA), followed by the biological (0.9816)524

and our mathematical model (Entropy - 0.9587), with only a difference of525
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Table 6: Performance analysis of three mathematical models against a biological and
hybrid model for different sequence classification problems.

lncRNA vs. mRNA lncRNA vs. sncRNA

Models SE SPC ACC Models SE SPC ACC

GSP 0.9724 0.9409 0.9567 GSP 1.0000 1.0000 1.0000
Entropy 0.9764 0.9409 0.9587 Entropy 0.9974 0.9974 0.9974
Graphs 0.9685 0.9423 0.9554 Graphs 1.0000 1.0000 1.0000
Biological 0.9869 0.9764 0.9816 Biological 0.7855 0.8273 0.8065
Hybrid 0.9895 0.9934 0.9915 Hybrid 0.9509 0.9485 0.9497

lncRNA vs. Antisense circRNA vs. lncRNA

Models SE SPC ACC Models SE SPC ACC

GSP 0.9412 0.8889 0.9143 GSP 0.7139 0.8727 0.7933
Entropy 1.0000 1.0000 1.0000 Entropy 0.7467 0.8701 0.8084
Graphs 0.9412 1.0000 0.9714 Graphs 0.7822 0.8793 0.8307
Biological 0.8889 0.9412 0.9143 Biological 0.6024 0.7612 0.6818
Hybrid 0.9412 0.7778 0.8571 Hybrid 0.7283 0.8819 0.8051

0.0328 and 0.0229, respectively. However, it is relevant to highlight that526

the biological and hybrid models use the ORF descriptor, a highly employed527

feature for discovering coding sequences and which, according to [15, 6] is an528

essential guideline for distinguishing lncRNAs from mRNA. In other words,529

this explains the great result, but, as mentioned at the beginning of this530

manuscript, this type of feature with a biological insight is often difficult531

to reuse or adapt to another specific problem. Thereby, our study has an532

gain in terms of generalization, since this would not be possible only with533

the ORF. If we analyze at the hybrid model, in this first dataset, the gain534

was minimal compared to the biological (0.0099), which again confirms the535

efficiency of the previously mentioned features. This is different from our536

approaches, which showed an excellent result without using bias features for537

the analyzed problem.538

Consequently, this hypothesis is proven in the other three datasets, where539

our mathematical models perform much better than the biological model,540

mainly in the fourth dataset (circRNA vs. lncRNA), in which we obtained541

a gain of 0.1489 in ACC. Regarding the hybrid model, it can be observed542

that the mixture of biological and mathematical characteristics helped to543
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keep the model competitive in all datasets, indicating the effectiveness of544

mathematical features. Even so, our models showed the best results in three545

of the four proposed problems. Therefore, our pipeline is efficient in terms546

of generalization to classify lncRNA from mRNA, as well as other biological547

sequence classification problems. We also assessed the statistical significance548

of the mathematical versus biological approach in the previously applied549

tests, in which entropy (p < 0.0480) and graphs (p < 0.0200) indicated550

significant results concerning the biological model. Lastly, considering all551

these findings, we fully support the suggested hypothesis.552

6. Conclusion553

This work proposed to analyze feature extraction approaches for biolog-554

ical sequence classification. Specifically, we concentrated our work on the555

study of feature extraction techniques using mathematical models. We ana-556

lyzed mathematical models to propose efficient and generalist techniques for557

different problems. As a case study, we used lncRNA sequences. Moreover,558

we divided this paper into two case studies. In our experiments, as a start-559

ing point, 9 mathematical models for feature extraction were analyzed: 6560

numerical mapping techniques with Fourier transform; Tsallis and Shannon561

entropy; Graphs (complex networks). Thereby, several biological sequence562

classification problems were adopted to validate the proposed approach.563

As a result, all models presented excellent results, with performances564

(ACC) between 0.8901-0.9606 in case study I. In case study II, once more,565

all showed excellent results with models based on entropy and graphs show-566

ing the best performance, followed by GSP. Furthermore, to validate our567

study, we compared the performance of three mathematical models against568

a biological and hybrid approach, in four different datasets. In which, our569

models demonstrated suitable results, and was superior or competitive and570

robust in terms of generalization. In our experiments, we verified that math-571

ematical approaches perform as accurately as biological approaches and have572

a better generalization capacity since they outperform biological features in573

scenarios not designed for them. Finally, among the different mathematical574

models tested in this work, the combination of k-mer and entropy, as well575

as graph-based models performs better than GSP at the cost of a significant576

increase in computational complexity.577
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W. Miller, D. J. Lipman, Gapped blast and psi-blast: a new genera-
tion of protein database search programs, Nucleic acids research 25 (17)
(1997) 3389–3402.

[61] A. C. Liu, The effect of oversampling and undersampling on classifying
imbalanced text datasets, The University of Texas at Austin (2004).

[62] D. M. Goodstein, S. Shu, R. Howson, R. Neupane, R. D. Hayes, J. Fazo,
T. Mitros, W. Dirks, U. Hellsten, N. Putnam, et al., Phytozome: a
comparative platform for green plant genomics, Nucleic acids research
40 (D1) (2011) D1178–D1186.

[63] A. Paytuv́ı Gallart, A. Hermoso Pulido, I. Anzar Mart́ınez de Lagrán,
W. Sanseverino, R. Aiese Cigliano, Greenc: a wiki-based database of
plant lncrnas, Nucleic acids research 44 (D1) (2015) D1161–D1166.

[64] D. Chen, C. Yuan, J. Zhang, Z. Zhang, L. Bai, Y. Meng, L.-
L. Chen, M. Chen, PlantNATsDB: a comprehensive database of
plant natural antisense transcripts, Nucleic Acids Research 40 (D1)
(2011) D1187–D1193. arXiv:https://academic.oup.com/nar/article-
pdf/40/D1/D1187/9481672/gkr823.pdf, doi:10.1093/nar/gkr823.
URL https://doi.org/10.1093/nar/gkr823

[65] Q. Chu, X. Zhang, X. Zhu, C. Liu, L. Mao, C. Ye, Q.-H. Zhu, L. Fan,
Plantcircbase: a database for plant circular rnas, Molecular plant 10 (8)
(2017) 1126–1128.

[66] X. Pan, K. Xiong, Predcircrna: computational classification of circular
rna from other long non-coding rna using hybrid features, Molecular
Biosystems 11 (8) (2015) 2219–2226.

[67] C. Yin, Y. Chen, S. S.-T. Yau, A measure of dna sequence similarity by
fourier transform with applications on hierarchical clustering, Journal
of theoretical biology 359 (2014) 18–28.

[68] C. Yin, S. S.-T. Yau, A fourier characteristic of coding sequences: ori-
gins and a non-fourier approximation, Journal of computational biology
12 (9) (2005) 1153–1165.

36

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.140368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.140368


[69] D. Anastassiou, Genomic signal processing, IEEE signal processing mag-
azine 18 (4) (2001) 8–20.

[70] L. Marsella, F. Sirocco, A. Trovato, F. Seno, S. C. Tosatto, Repetita: de-
tection and discrimination of the periodicity of protein solenoid repeats
by discrete fourier transform, Bioinformatics 25 (12) (2009) i289–i295.

[71] W. T. Cochran, J. W. Cooley, D. L. Favin, H. D. Helms, R. A. Kaenel,
W. W. Lang, G. C. Maling, D. E. Nelson, C. M. Rader, P. D. Welch,
What is the fast fourier transform?, Proceedings of the IEEE 55 (10)
(1967) 1664–1674.

[72] M. Abo-Zahhad, S. M. Ahmed, S. A. Abd-Elrahman, Genomic analy-
sis and classification of exon and intron sequences using dna numerical
mapping techniques, International Journal of Information Technology
and Computer Science 4 (8) (2012) 22–36.

[73] G. Mendizabal-Ruiz, I. Román-God́ınez, S. Torres-Ramos, R. A. Salido-
Ruiz, J. A. Morales, On dna numerical representations for genomic sim-
ilarity computation, PloS one 12 (3) (2017) e0173288.

[74] R. F. Voss, Evolution of long-range fractal correlations and 1/f noise in
dna base sequences, Physical review letters 68 (25) (1992) 3805.

[75] P. D. Cristea, Conversion of nucleotides sequences into genomic signals,
Journal of cellular and molecular medicine 6 (2) (2002) 279–303.

[76] N. Chakravarthy, A. Spanias, L. D. Iasemidis, K. Tsakalis, Autoregres-
sive modeling and feature analysis of dna sequences, EURASIP Journal
on Applied Signal Processing 2004 (2004) 13–28.

[77] R. Zhang, C.-T. Zhang, Z curves, an intutive tool for visualizing and
analyzing the dna sequences, Journal of Biomolecular Structure and
Dynamics 11 (4) (1994) 767–782.

[78] A. S. Nair, S. P. Sreenadhan, A coding measure scheme employing
electron-ion interaction pseudopotential (eiip), Bioinformation 1 (6)
(2006) 197.

[79] D. Anastassiou, Genomic signal processing, IEEE Signal Processing
Magazine 18 (4) (2001) 8–20. doi:10.1109/79.939833.

37

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.140368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.140368


[80] N. Yu, Z. Li, Z. Yu, Survey on encoding schemes for genomic data
representation and feature learning—from signal processing to machine
learning, Big Data Mining and Analytics 1 (3) (2018) 191–210.

[81] J. Shao, X. Yan, S. Shao, Snr of dna sequences mapped by general affine
transformations of the indicator sequences, Journal of mathematical bi-
ology 67 (2) (2013) 433–451.

[82] C.-T. Zhang, A symmetrical theory of dna sequences and its applica-
tions, Journal of theoretical biology 187 (3) (1997) 297–306.

[83] C. Yin, S. S.-T. Yau, Prediction of protein coding regions by the 3-base
periodicity analysis of a dna sequence, Journal of theoretical biology
247 (4) (2007) 687–694.

[84] H. Nikookar, Peak-to-average power ratio, in: Wavelet Ra-
dio: Adaptive and Reconfigurable Wireless Systems Based
on Wavelets, Cambridge University Press, 2013, pp. 93–111.
doi:10.1017/CBO9781139084697.006.
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entropy analysis of dna using phase plane, Nonlinear Analysis: Real
World Applications 12 (6) (2011) 3135–3144.

[88] A. Lesne, Shannon entropy: a rigorous notion at the crossroads be-
tween probability, information theory, dynamical systems and statistical
physics, Mathematical Structures in Computer Science 24 (3) (2014).

[89] M. P. De Albuquerque, I. A. Esquef, A. G. Mello, Image thresholding
using tsallis entropy, Pattern Recognition Letters 25 (9) (2004) 1059–
1065.

[90] F. M. Lopes, E. A. de Oliveira, R. M. Cesar, Inference of gene regulatory
networks from time series by tsallis entropy, BMC systems biology 5 (1)
(2011) 61.

38

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.140368doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.140368


[91] A. Ramı́rez-Reyes, A. R. Hernández-Montoya, G. Herrera-Corral,
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