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Deep Treatment Learning (deepTL), a robust yet efficient deep
learning-based semiparametric regression approach, is proposed to
adjust the complex confounding structures in comparative effective-
ness analysis of observational data, e.g. electronic health record (EHR)
data, in which complex confounding structures are often embedded.
Specifically, we develop a deep learning neural network with a score-
based ensembling scheme for flexible function approximation. An im-
proved semiparametric procedure is further developed to enhance
the performance of the proposed method under finite sample set-
tings. Comprehensive numerical studies have demonstrated the su-
perior performance of the proposed methods as compared with ex-
isting methods, with a remarkably reduced bias and mean squared
error in parameter estimates. The proposed research is motivated by
a post-surgery pain study, which is also used to illustrate the practical
application of deepTL. Finally, an R package, “deepTL”, is developed
to implement the proposed method.

1. Introduction. The amount of electronic health record (EHR) data
has expanded rapidly (Shah and Tenenbaum, 2012; Murdoch and Detsky,
2013; Psaty and Larson, 2013), and is inevitably used in various data-driven
analyses in health care (Chen et al., 2013). EHR data typically contain a
large number of samples and often reflect daily clinical practice to offer valu-
able information on intervention efficacy under practical settings. Though
comparative effectiveness analysis could be easily performed with random-
ized controlled trials (RCTs) (Britton et al., 1997; MacLehose et al., 2000;
Benson and Hartz, 2000), in practice, RCTs cannot always be conducted
for a variety of reasons (McCulloch et al., 2002; Curry, Reeves and Stringer,
2003). EHR data, on the other hand, are often readily available with rich in-
formation, and serve as cost-effective alternatives to RCTs (Miriovsky, Shul-
man and Abernethy, 2012). However, the dependence among the treatment
assignment, response, and baseline characteristics can result in complicated
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2 X. MI ET AL.

confounding issues which can lead to biased estimation of intervention ef-
ficacy and misleading conclusions if they are not handled properly. In this
paper, we aim to perform valid comparative effectiveness analysis for EHR
data with complex confounding structures.

In comparative effectiveness analysis, a commonly used method to adjust
for confounding factors is propensity score (PS) based methods (Rosenbaum
and Rubin, 1983), including matching, covariate adjustment, stratification
and inverse probability weighting (IPW) by PS. The PS methods use propen-
sity scores to mimic RCTs such that samples with similar propensity scores
have similar baseline features, and thus are frequently used to analyze EHR
data (Toh, Garćıa Rodŕıguez and Hernán, 2011; Kazley and Ozcan, 2008).
Under the strongly ignorable treatment assignment assumption, as shown
by Rosenbaum and Rubin (1983), an unbiased estimate of the true treat-
ment effect can be obtained by any of the PS-based methods. However,
all PS-based methods heavily depend on the accuracy of the PS estimates,
especially for PS-IPW and PS covariate adjustment (Austin, 2011).

For EHR data, confounding variables can impact the outcome and treat-
ment allocation process in different ways with unknown functional formats,
which makes PS modeling challenging. The motivating example in this pa-
per is a post-surgery pain EHR data set (Tighe et al., 2016). One of the
study objectives is to compare the effectiveness of two anesthetic proce-
dures, nerve block versus general anesthesia, for relieving post-surgery pain
intensity. Traditional methods, including a simple ANOVA analysis, a mul-
tivariate linear regression, and a PS covariate adjustment method with PS
estimated by a logistic regression, all lead to a non-significant difference be-
tween the two anesthesia groups (Table 3). However, previous findings in
closely related postoperative pain studies under RCT designs suggest that
the two groups are significantly different (Tverskoy et al., 1990; Shir, Raja
and Frank, 1994). This raises awareness of the possibility that traditional
parametric methods may fail to adequately detect complicated structures
describing the connections among the pain intensity, the anesthesia and the
covariates.

The performance of traditional parametric statistical methods heavily de-
pends on their assumptions, such as the linearity assumption in the least
square regression or logistic regression. To deal with the potential non-
linearity and other complexity in EHR data, non-parametric methods can
be applied, such as kernel-based methods, including Nadaraya-Watson ker-
nel estimators, Gaussian process models (Williams and Barber, 1998), and
kernel-based support vector machines (SVMs). However, these local kernel-
based machines are sensitive to the curse of dimensionality (Bengio, Delal-
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DEEP LEARNING FOR CONFOUNDING 3

leau and Roux, 2006). Though SVMs suffer less from the increase of dimen-
sionality due to sufficient regularization and post-processing techniques for
discrete outcomes (Platt et al., 1999), it is argued that they may not be
reliable for binary or multinomial outcomes (Tipping, 2001). In the recent
literature, the predictive modeling techniques for comparative effectiveness
analysis have expanded, and now include Lasso, gradient boosting machine,
random forest and neural networks (Chernozhukov et al., 2016; Nie and
Wager, 2017; Chernozhukov et al., 2018).

Apart from the PS framework, another commonly used strategy in com-
parative effectiveness analysis is to employ a semiparametric framework, as
given below,

Y = βZ + γ(X) + ε,(1.1)

where (Y,Z,X) is the vector of the outcome, binary treatment assignment
status, and observed covariates; β is the treatment effect, γ is an unknown
continuous function of X, and ε ∼ N(0, σ2). This semiparametric model
has been widely investigated in the statistical literature (Engle et al., 1986;
Robinson, 1988; Stock, 1991). Robinson (1988) proposed an innovative strat-
egy for obtaining an estimate of β with an optimal root-N-convergence rate.
Instead of modeling Equation (1.1) directly, Robinson (1988) proposed the
following semiparametric model,

(1.2) Y − E(Y |X) = β(Z − E(Z|X)) + ε.

With E(Y |X) and E(Z|X) pre-estimated from the Nadaraya-Watson kernel
machine approach, a root-N-consistent estimate for β can be obtained via a
simple linear regression model based on Model (1.2) (Robinson, 1988).

Despite its root-N-consistency, Robinson’s estimator has several limita-
tions when applied to real-world EHR data. The performance of this semi-
parametric modeling strategy heavily depends on the accuracy of the estima-
tion of E(Y |X) and E(Z|X). One obvious drawback is that the prediction
accuracy of the Nadaraya-Watson kernel approach drops dramatically with
the increase of the number of covariates due to the curse of dimensionality
(Bengio, Delalleau and Roux, 2006). In this paper, we employ the deep neu-
ral network (DNN), a fully-connected and feedforward neural network with
multiple hidden layers, as a function approximator in the proposed frame-
work of Robinson (1988) for comparative effectiveness analysis. The neural
network, a universally consistent function approximator, can approximate
continuous functions on compact sets under certain assumptions (Cybenko,
1989; Faragó and Lugosi, 1993). The strong universal consistency of the neu-
ral network offers a great potential to model complicated data, compared
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4 X. MI ET AL.

to traditional methods such as logistic regression (Tu, 1996). To improve
the accuracy and address the potential overfitting issue of the DNN, we
further develop a score-based ensembling scheme via bootstrap aggregating
(bagging) (Breiman, 1996).

Moreover, in modeling E(Y |X) ≡ ξ(X), the residual Y − E(Y |X) =
β(Z − E(Z|X)) + ε, no longer follows a unimodal distribution, especially
when β deviates far from 0, which can potentially lead to inefficient estima-
tion of ξ(X). To minimize the impact from these limitations and offer an
accurate estimate of the treatment effect, we propose a revised semipara-
metric procedure.

The rest of the paper is arranged as follows. A brief introduction of DNN
implementation and an improved DNN ensemble model will first be pre-
sented in Section 2, followed by a detailed illustration of the modified semi-
parametric framework: deep treatment learning (deepTL). Extensive simu-
lation studies and an application of the proposed method to a post-surgery
pain study are presented in Section 3. Discussions and remarks conclude the
paper in Section 4.

2. Deep Treatment Learning.

2.1. Deep Neural Network. For a general review of DNNs, we refer the
readers to LeCun, Bengio and Hinton (2015). In this paper, we only intro-
duce minimum but necessary concepts, to facilitate the description of the
proposed method.

We first introduce the general form of an L-hidden-layer feedforward
DNN. The model contains L hidden layers of nodes that transform the ini-
tial input covariates X to the estimation of the output R, which can be a
continuous or a binary response. For example, in our semiparametric regres-
sion framework, to model E(Z|X), R = Z is a binary treatment assignment,
while modeling E(Y |X), R = Y is a continuous response. For each hidden
layer l ∈ {1, . . . L}, the model takes the input, denoted by h(l−1), from the
previous layer and the outputs h(l) through function gl(X). For any l, denote
nl as the number of elements in h(l), then

h(l) = gl

(
b(l) +M (l)h(l−1)

)
,

where b(l) is the bias vector with length nl and M (l) is an nl × nl−1 weight
matrix. The function gl is regarded as applying an activation function gl
element-wise to the nl dimensional vector b(l) +M (l)h(l−1). The activation
function gl is a non-linear function that transforms the output values of
neurons in the previous layer into the input values of the next layer. Often
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DEEP LEARNING FOR CONFOUNDING 5

a common function g is applied to all gl’s (l = 1, ..., L), e.g. a rectified linear
unit (ReLU) function (Hornik, Stinchcombe and White, 1989). For the first
layer, i.e. l = 1, h(0) is simply the original p dimensional feature X, and g1
takes a p dimensional input and produces an n1 dimensional output. Finally,
the Lth hidden layer h(L) is tied to the output R through

R ∼ gout
(
b(L+1) +M (L+1)h(L)

)
,

where gout gives a scalar output.
The output function is selected depending on the outcome R. For a con-

tinuous R, we use an identity output function gout(t) = t; while for a binary
R, a sigmoid output function gout(t) = 1/(1 + e−t) is used.

The final convolved output function is

f = gout ◦ gL ◦ · · · ◦ g1,

then f takes X as input and contains θ = {b(i),M (i)}L+1
i=1 as a collection

of parameters. Under this setup, θ can be estimated by minimizing the
following empirical risk function,

argmin
θ

1

N

N∑
i=1

`{f(Xi;θ); ri}+ λΩ(θ)

where `(·; ·) is the loss function, Ω(θ) is a penalty function and λ is a hy-
perparameter that controls the degree of regularization. For a continuous
R, we set the loss function `(f, r) to 1

2 (r − f)2. For a binary R, `(f, r) is
set to the Bernoulli negative log-likelihood, −{r log f + (1− r) log (1− f)}.
Furthermore, to shrink the model size, we put an l1 regularizer on the weight

matrices M (l) (l = 1, ..., L + 1), such that Ω(θ) =
∑L+1

l=1

∑nl
i=1

∑nl−1

j=1

∣∣∣m(l)
ij

∣∣∣
is used, where m

(l)
ij is the ijth element in the weight matrix M (l).

We optimize the risk function by using the mini-batch stochastic gradient
descent algorithm (Byrd et al., 2012), together with an adaptive learning
rate adjustment method, i.e. adaptive moment estimation (Adam) (Kinga
and Adam, 2015).

2.2. Bootstrap Aggregating. The total number of parameters in θ is Nθ =∑L+1
l=1 nl(nl−1 + 1), which is usually greater than the sample size N , lead-

ing to over-parameterization and unstable prediction. The accuracy of the
prediction from a single DNN model, therefore, is expected to be unreli-
able when the sample size is finite. An ensemble of neural networks has
been shown to outperform a single neural network (Hansen and Salamon,
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6 X. MI ET AL.

1990) in such scenarios. Thus, we apply bagging, i.e. bootstrap aggregating
(Breiman, 1996), to increase the robustness and accuracy of DNNs.

Specifically, we randomly sample the training set with replacement K
times (i.e., bootstrap samples). Each time we fit a DNN model using a
bootstrap sample and keep all the unused samples, namely the out-of-bag
(OOB) samples, as the validation set. Let f̂1(·), ..., f̂K(·) be the fitted models
out of the K bootstrap samples. To aggregate the predictions from the K
fitted models, a natural choice of the aggregated bagging prediction for a
new observation with input x is f̂(x) =

∑K
k=1 f̂k(x)/K.

However, due to the randomness of the initial parameters, some DNNs
may not converge to a stable solution and thus perform poorly. In neural
network ensembles, it is argued that “many could be better than all”, mean-
ing that using a subset of bagged DNNs that are well fit to the data could
be better than using all of them (Zhou, Wu and Tang, 2002; Mi, Zou and
Zhu, 2019). Therefore, in our proposed method, we remove certain DNNs
according to criteria defined below, which is consequently beneficial to the
final ensemble model. For the kth bootstrap sample, we define a performance
score vk as follows,

vk =


1

|DOk
|
∑

i∈DOk

{
(ri − rOk

)2 − (ri − r̂ik)2
}
, for continuous R,

1
|DOk

|
∑

i∈DOk

{
ri log

(
r̂ik
rOk

)
+ (1− ri) log

(
1−r̂ik
1−rOk

)}
, for binary R,

where DOk
is the set of OOB samples with |DOk

| being the associated sample

size, rOk
=
∑

i∈DOk
ri/|DOk

| and r̂ik = f̂k(xi) (i ∈ DOk
). For the regression

DNN, vk is the mean squared error loss, while for the classification DNN,
vk can be interpreted as the negated binomial deviance.

To determine the optimal subset of DNNs retained in the ensemble, we
first rank DNNs based on their performance scores, i.e. v(1) ≥ ... ≥ v(K).
The prediction for xi (i = 1, ..., N) by aggregating the top q DNNs is then,

f̂ (q)(xi) =
1

q

∑
k≤q

f̂(k)(xi), (q = 1, ...,K),

where f̂(k)(·) is the fitted DNN corresponding to the performance score v(k).
The optimal number of DNNs utilized by the ensemble, qopt, is determined
by minimizing the training loss, i.e.,

qopt = argmin
1≤q≤K

N∑
i=1

`{f̂ (q)(xi), zi},

based on which we obtain the revised bagging prediction f̂ (qopt)(x) for a new
observation with input x.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.140418doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.140418
http://creativecommons.org/licenses/by-nc-nd/4.0/


DEEP LEARNING FOR CONFOUNDING 7

2.3. Revised Semiparametric Regression. Following (1.2), we let ξ(X) ≡
E(Y |X) and e(X) ≡ Pr(Z = 1|X) = E(Z|X). As Z in this paper is a
binary treatment assignment status, e(X) is the conditional probability for
a subject being assigned to the treated group, or the PS in Rosenbaum
and Rubin (1983). Let (Yi, Zi,Xi) be the observed data of the ith sample
(i = 1, ..., N), and ξ̂(X) and ê(X) be the corresponding approximation
functions of ξ(X) and e(X), respectively, estimated from the observed data.
Then, we can rewrite (1.2) as:

Y − ξ̂(X) = β(Z − ê(X)) + ε.

The estimate of β and its associated variance estimation can be obtained
from the above simple linear regression model without an intercept as follows
(Robinson, 1988)

β̂ =

∑N
i=1{Yi − ξ̂(Xi)}{Zi − ê(Xi)}∑N

i=1{Zi − ê(Xi)}2
,(2.1)

V̂ (β̂) =
σ̂2∑N

i=1{Zi − ê(Xi)}2
,(2.2)

where σ̂2 = 1
N

∑N
i=1[Yi − ξ̂(Xi) − β̂{Zi − ê(Xi)}]2. Estimate β̂ is shown to

be root-N-consistent under mild conditions, i.e.,
√
N(β̂−β)

d−→ N(0, σ2Φ−1)

and σ̂2
(

1
N

∑N
i=1{Zi − ê(Xi)}2

)−1 p−→ σ2Φ−1, where Φ = E{Z − e(X)}2

(Robinson, 1988).
With an infinite number of observations from (Y, Z,X), ξ̂(X) and ê(X)

can consistently approximate ξ(X) and e(X) due to the universal consis-
tency of DNNs (Hornik, Stinchcombe and White, 1989; Faragó and Lugosi,
1993; Sonoda and Murata, 2017). However, under finite-sample situations,
the model errors, ξ(X) − ξ̂(X) and e(X) − ê(X) exist. Note, the residual
Y − ξ(X) = β(Z− e(X)) + ε, which is the sum of β(Z− e(X)) and ε. When
β is small, the sum is dominated by ε, which is Gaussian, and minimizing
the mean squared difference of ξ(X) from Y is equivalent to maximizing
the log-likelihood of Gaussian random variables. This is expected to be effi-
cient. However, when β is large, the distribution of the sum departs from a
Gaussian distribution and is no longer unimodal, thus estimating ξ(X) by
minimizing the mean squared difference can become less efficient.

Accordingly, we propose to approach Model (1.1) by replacing (1.2) with
the following modified model

Y ∗ − E(Y ∗|X, β1) = (β − β1)(Z − E(Z|X)) + ε(2.3)
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8 X. MI ET AL.

where Y ∗ = Y − β1Z for a given constant β1. Instead of approximating
ξ(X), we approximate ξ∗(X, β1) = E(Y ∗|X, β1) by our proposed score-
based bagged DNNs in Section 2.2. The modified estimate of β and its
associated variance estimation then become

β̂∗ =

∑N
i=1{Yi − β1Zi − ξ̂∗(Xi, β1)}{Zi − ê(Xi)}∑N

i=1{Zi − ê(Xi)}2
+ β1 and(2.4)

V̂ (β̂∗) =
σ̂2
∗∑N

i=1{Zi − ê(Xi)}2
,(2.5)

where σ̂2
∗

= 1
N

∑N
i=1[Yi − β1Z − ξ̂∗(Xi, β1)− (β̂∗ − β1){Zi − ê(Xi)}]2.

Intuitively, if β1 is close to β, or when |β − β1| is small, the function
approximation by bagged DNNs is expected to be more efficient which sub-
sequently leads to an improved estimate of β. A reasonable candidate for β1
can be an estimate of β from any PS approach in Rosenbaum and Rubin
(1983). For the simulated data and real data analysis, we set β1 to the es-
timate derived from the PS covariate adjustment, where the estimated PS,
ê(X) from bagged DNNs, is used. The accuracy of the estimated PS, ê(X)
does not depend on β, nor the PS covariate adjustment which only depends
on ê(X) (Rosenbaum and Rubin, 1983).

In summary, deepDL first approximates e(X) by our proposed DNNs,
based on which the treatment effect estimate is obtained from the PS co-
variate adjustment, and β1 is subsequently set to this estimate. Next, we
approximate ξ∗(X, β1) again by our proposed DNNs, and obtain ξ̂∗(X, β1).
With ê(X) and ξ̂∗(X, β1) obtained, we finally get β̂ and its associated vari-
ance through (2.4) and (2.5). The modified estimator has the advantages
of both the PS based method and the original semiparametric regression
framework. The final algorithm is summarized as follows:

Algorithm 1 deepTL: A Revised Semiparametric Regression
1: Approximate e(X) by using a bagged-DNN approximator ê(X).
2: Estimate β1 via the PS covariate adjustment method.
3: Approximate ξ∗(X, β1) based on a bagged-DNN approximator ξ̂∗(X).

4: Estimate β, i.e. β̂∗, and Var(β̂∗) following (2.4) and (2.5).

3. Numerical Studies. To investigate the performance of our pro-
posed methods, we (i) conduct extensive numerical studies under different
confounding structures, from simple to complex settings; and (ii) perform a
real data analysis on a post-surgery pain data.
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DEEP LEARNING FOR CONFOUNDING 9

3.1. Simulation Studies. We conduct simulation studies in three scenar-
ios with different confounding structures. Specifically, we adopt the fol-
lowing models to generate data with three confounding structures under
the semiparametric framework: X ∼ MVN(0, Ip), Z|X ∼ Bin(1, e(X)),
Y = βZ + γ(X) + ε, ε ∼ N(0, σ2) and,

log

(
e(X)

1− e(X)

)
=


1−

∑5
j=1 α1,jXj , Scenario I,

1−
∑5

j=1 α1,jXj + 2 cos(X6), Scenario II,

1−
∑5

j=1 α1,jXj −X2
6 , Scenario III;

γ(X) =


−1 +

∑5
j=1 α2,jXj , Scenario I,

−1 +
∑5

j=1 α2,jXj − cos(2X6) +X2
7 , Scenario II,

−1 +
∑5

j=1 α2,jXj + |X6|X2
7 , Scenario III.

The total sample size is set to N = 5000, and the dimension of X, p = 20
with the treatment effect β = 1 or 2, the noise size σ2 = 1. α1 and α2 are
both 5-valued vectors with elements αk,j ∼ U(−1, 1) i.i.d for k = 1, 2, j =
1, ..., 5, which are generated at the beginning of Monte Carlo simulations
and kept unchanged in the subsequent replications. All results are based on
1000 replicates. Besides the input and the output layers, all DNNs have six
hidden layers, with 20, 18, 16, 14, 12 and 10 hidden nodes from the first to
the last hidden layers, respectively.

Besides deepTL, we also add semiDNN, which uses the same bagged
DNNs as deepTL, but directly implements Robinson’s original semiparamet-
ric procedure (Equation 2.1 and 2.2), or essentially deepTL with β1 being
set to 0. In addition, we include an oracle linear regression method with un-
derlying structures of E(Y |Z,X) known, denoted as “LM-Oracle”. We also
add “LM-Naive”, a multiple linear regression method with all linear terms
of the observed covariates and the treatment assignment status. We further
include a PS covariate adjustment method, with the PS estimated by a logis-
tic regression, denoted as “PS-Naive”. Finally, the two cross-fitting double
machine learning estimators introduced in Chernozhukov et al. (2016) are
included, with all functions estimated by random forests, denoted as “DML-
PLM” and “DML-DR”. DML-PLM follows Robinson (1988) and adopts the
original semiparametric regression framework, while DML-DR employs a
double robust framework (Robins, Rotnitzky and Zhao, 1994).

For DNNs, an l1 penalty with weight λ = 1e − 4 is applied. The mini-
batch stochastic gradient descent has a batch size NB = 100, and Adam is
employed with a starting learning rate of 0.001. The maximum number of
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10 X. MI ET AL.

epochs in DNN optimization is set to 250. The bagging size K = 100. All
random forest models consist of 2,000 trees.

To evaluate the performance of all methods, we provide the mean treat-
ment effect estimate (Avg(β̂)), Monte Carlo standard error (SE(β̂)), esti-

mated standard error (ŜE(β̂)), squared root of mean squared error (
√

MSE),
and the 95% confidence interval (95% CI) coverage.

Simulation results are summarized in Table 1. In Scenario I, because all
the components are linear, LM-Naive is essentially the same as LM-Oracle.
In this scenario, LM-Naive, PS-Naive, deepTL and LM-Oracle all estimate
β unbiasedly. However, PS-Naive shows a 95% CI coverage of 98%, which
is due to the inflated variance estimate of β̂ (Zou et al., 2016). In addition,
we observe a small bias in DML-PLM when true β = 2, and thus a slightly
increased MSE and a lower CI coverage than the targeted 95% coverage
level. DML-DR appears to have a larger bias and Monte Carlo standard
error, and the largest MSE among all the methods. Among the two bagged
DNN approaches, the coverage of 95% CIs provided by deepTL is more
precise than that of semiDNN. As the true β increases, we observe a larger
bias and a remarkable decrease in 95% CI coverage in semiDNN, while the
performance of deepTL remains almost unchanged, with unbiased estimate
and the targeted 95% CI coverage.

In Scenario II, as complex structures are introduced in e(X) and γ(X),
naive methods, including LM-Naive and PS-Naive, fail as expected due to
violations of the model assumptions. DML-PLM and DML-DR both show
a reduced bias and Monte Carlo standard error, compared to naive meth-
ods. However, the biases from these methods are still not minor, leading to
poor 95% CI coverages. semiDNN outperforms these methods. As expected,
deepTL outperforms semiDNN especially when β = 2, with an ignorable
bias and a smaller standard error that is only slightly larger than that of
LM-Oracle.

In Scenario III, deepTL and semiDNN continue to achieve a better per-
formance than other competing methods, further indicating the robustness
and advantages of our proposed methods. deepTL continues to perform sim-
ilarly as LM-Oracle, with a significant improvement in bias compared to
semiDNN. As more complex structure is introduced, DML-PLM and DML-
DR show more severe biases and worse 95% CI coverages, and LM-Naive
and PS-Naive continue to show a remarkably large bias.
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To further investigate the performance of the proposed methods, we ex-
tend the simulations with different N , p, σ and β values under the same
setting of Scenario III. Each time we vary one of the parameters and keep
the rest of the parameters fixed. We exclude the results for LM-Naive and
PS-Naive due to their poor performance. The results are displayed in Fig-
ure 1.

First, we observe that the bias from semiDNN increases with the incre-
ment of β. In contrast, deepTL consistently offers an unbiased treatment
effect estimate, regardless of the true treatment effect value. Next, as we
increase N from 1,000 to 20,000, as expected, all methods result in reduced
biases and MSE. deepTL shows a negligible bias as N increases to 2,000 or
above, while the other methods still show noticeable biases at N = 2000.
Moreover, as p increases from 10 to 50, semiDNN, DML-PLM and DML-
DR all show increased biases, while deepTL is not affected as severely as the
others. Finally, deepTL and semiDNN outperform DML-PLM and DML-DR
regardless of the value of σ. In summary, deepTL performs better than, or
equally as well as other methods across all simulation parameters, reflect-
ing its advantages with the modification of the semiparametric framework
procedure and the use of bagged DNN models.

Additionally, to investigate how the model size, including L and nl (l =
1, ..., L), and the number of DNNs, K, affect the performance of deepTL,
more simulations under the setting of Scenario III for β = 1 are conducted.
The results are presented in Figure 2. In the top plots, bagged DNNs have
fixed K = 100 but L ranges from 1 to 6, n1 ranges from 10 to 100 as the
x-axis, nl = n1 − l−1

L−1(n1 − 10) for l = 2, ..., L, while in the bottom plots,
bagged DNNs are fixed with L = 6, (n1, ..., n6) = (20, 18, 16, 14, 12, 10) but
K varies from 2 to 500.

Clearly, the impacts of L, n1 and K on deepTL are minor. In the worst
case where L = 2, n1 = 10 and K = 100, the absolute bias is 0.015, smaller
than those from other competing methods, while for most cases, the absolute
bias of deepTL is less than 0.005. For MSE, we have similar observations.
deepTL with n1 ∈ [20, 50] and L ≥ 3 in general performs well. Another
encouraging finding is that the performance of deepTLincreases with the
increase of K. However the improvement becomes less obvious when K >
100, suggesting that deepTL only requires a moderate number of bagged
DNNs.

3.2. A Post-surgery Pain Study. To illustrate the practical application of
deepTL, we apply it to a post-surgery pain data set obtained from the Uni-
versity of Florida Integrated Data Repository, a large-scale EHR database.
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Fig 1. The bias and MSE plot for the simulation setting in Scenario III.
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for the simulation setting in Scenario III when β = 1.
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The study (Tighe et al., 2016) included 3196 patients who underwent dif-
ferent surgeries related to the digestive system, the musculoskeletal system
and the nervous system. One of the objectives of the study was to compare
two anesthetic procedures, i.e. nerve block (Z = 1) versus general anesthe-
sia (Z = 0), on relieving the severest post-surgery pain intensity within 72
hours after the surgery. Among these patients, 2438 (76.3%) patients chose
the nerve block procedure while the remaining patients opted for general
anesthesia. The nerve block procedure interrupts signals traveling along a
nerve and is often used for pain relief. Compared to the traditional anesthe-
sia procedure, the nerve block has some advantages by allowing patients to
remain awake, thereby avoiding some adverse reactions of general anesthe-
sia, such as cognitive loss. However, it is clinically important to test if the
nerve block procedure is as effective as the general anesthesia. The primary
outcome of the study was that the severest post-surgery pain intensity was
experienced by patients within 72 hours after the surgery, which is quanti-
fied numerically and scaled between 0 and 10, where the higher pain scores
mean more severe pain.

Covariates other than the treatment procedures (i.e. nerve block and gen-
eral anesthesia) include patient age, gender, ethnicity, body mass index
(BMI), surgical duration, marital status, opioid use, muscle relaxant use,
nonsteroidal anti-inflammatory drugs (NSAIDs) use, benzo use, selective
serotonin reuptake inhibitors (SSRIs) use, and current procedural terminol-
ogy (CPT). Distributions of the baseline covariates by treatment group are
presented in Table 2. We first apply an ANOVA method to the postoperative
pain data and compare the effects of the two pain relief methods without
any adjustment of the covariates. We also employ methods described in
Section 3.1. The results are summarized in Table 3.

The first row of Table 3 presents the crude treatment effect estimate, i.e.
−0.18, obtained from ANOVA. The nerve block is not significantly different
from general anesthesia in this analysis (p = 0.086). A similar conclusion
is obtained from LM-Naive and PS-Naive, even after the confounding co-
variates are adjusted, i.e. there exists no significant difference between the
two comparison procedures. Besides, DML-DR and DML-PLM show a less
significant result. In contrast, the result from deepTL demonstrates that at
the 0.05 significant level, the nerve block procedure is significantly more ef-
fective in relieving the severest post-surgery pain intensity than the general
anesthesia procedure does (p = 0.04). This conclusion is also consistent with
the results of earlier clinical studies (Tverskoy et al., 1990; Shir, Raja and
Frank, 1994).
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Table 2
Baseline Distribution of the Post-surgery Study Data.

Nerve Block General
2438 (76.3%) 758 (23.7%)

Mean (SD) Mean (SD)
Maximum pain intensity 8.0 (2.6) 8.2 (2.4)
Age (year) 58.1 (15.1) 55.4 (16.1)
BMI (kg/m2) 29.6 (7.7) 29.2 (8.3)
Surgical Duration (hour) 3.9 (2.1) 3.1 (2.0)

N (%) N (%)

Gender
Male 1158 (47.5%) 360 (47.5%)
Female 1280 (52.5%) 398 (52.5%)

Ethnicity
Non-Hispanic 2277 (93.4%) 716 (94.5%)
Hispanic 49 (2.0%) 26 (3.4%)
Unknown 112 (4.6%) 16 (2.1%)

Marital
Married 1329 (54.5%) 381 (50.3%)
Single 602 (24.7%) 225 (29.7%)
Other 507 (20.8%) 152 (20.1%)

Opioid
Yes 977 (40.1%) 296 (39.1%)
No 1461 (59.9%) 462 (60.9%)

Muscle relaxant
Yes 204 (8.4%) 49 (6.5%)
No 2234 (91.6%) 709 (93.5%)

NSAID
Yes 1418 (58.2%) 409 (54.0%)
No 1020 (41.8%) 349 (46.0%)

Benzo
Yes 272 (11.2%) 89 (11.7%)
No 2166 (88.8%) 669 (88.3%)

SSRI
Yes 609 (25.0%) 182 (24.0%)
No 1829 (75.0%) 576 (76.0%)

CPT count
0− 2 1952 (80.1%) 620 (81.8%)
3− 4 433 (17.8%) 127 (16.8%)
≥ 5 53 (2.2%) 11 (1.5%)

Table 3
Post-operative Pain Analysis.

Method β̂ ŜE(β̂) p-value

ANOVA -0.180 0.105 0.086
LM-Naive -0.200 0.106 0.060
PS-Naive -0.205 0.107 0.056
DML-DR -0.079 0.218 0.718
DML-PLM -0.138 0.105 0.188
semiDNN -0.221 0.108 0.040
deepTL -0.222 0.108 0.040
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4. Discussion. In this paper, we proposed a powerful DNN-based semi-
parametric framework, deepTL, to adjust the complex confounding struc-
tures in comparative effectiveness analysis. As a universally consistent ap-
proximator, DNN has a unique advantage over parametric supervised learn-
ing methods, as well as other non-parametric machine learning approaches.
In addition, bagging and the proposed ensembling scheme reduce the level
of overfitting and increase the accuracy of DNN approximating functions,
which consequently increases the treatment effect estimate accuracy (see Ta-
ble S1 of Supplement B). Though the estimator from semiDNN enjoys root-
N-consistency, we have shown that the method can have an elevated bias un-
der finite sample settings when the underlying treatment effect β is not small
which motivates the development of deepTL. Extensive simulation studies
demonstrate that deepTL consistently outperforms other existing competing
methods for data with complex confounding structures, while under simple
settings, deepTL could still perform as well as other competing methods.

For observational data, in addition to confounding bias, overadjustment
bias is another concern (Schisterman, Cole and Platt, 2009). To study over-
adjustment bias of deepTL, we carefully designed a new simulation setup,
similar to DAG2 in Schisterman, Cole and Platt (2009). Under DAG2, we
found that overadjustment bias is common to all comparing methods, while
deepTL delivers the closest estimate to that from LM-Oracle (see Table S2
in Supplement B). Furthermore, when there exist unmeasured confounding
factors, the treatment effect estimate from deepTL, as well as other existing
methods, can be biased in general. However, deepTL appears to control the
bias to the minimal (see Table S3 of Supplement B for simulation results on
studying the robustness of deepTL on data with unmeasured confounding
factors).

In deepTL, for computational efficiency, we set β1 to the estimate from the
PS covariate adjustment method which works sufficiently well in improving
the performance of deepTL over semiDNN. Alternatively, one could set β1
to the estimate from semiDNN which is however, more computationally
demanding.

The proposed method is developed for continuous outcomes. However,
it is not necessary for the DNN to be limited to this data type, though
its performance for other data types, e.g. binary outcomes, deserves fur-
ther investigation. Furthermore, EHR data is often clustered and with re-
peated measurements from the same individual. How to extend the proposed
method to non-independent observational data is practically important as
well, but is beyond the scope of this paper.
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SUPPLEMENTARY MATERIAL

Supplement A: R package “deepTL”
(https://github.com/SkadiEye/deepTL). We have developed an R package,
Deep Treatment Learning “deepTL”, to implement our proposed method.

Supplement B: Additional simulation studies
(doi: COMPLETED BY THE TYPESETTER; .pdf). We provide additional
supporting simulation studies to illustrate (i) the scenarios with unmeasured
confounding; (ii) necessity of the bagging procedure; (iii) β1 estimated by
semiDNN.
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