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and constant population size was compared with exponential population growth. All models were run 275 

using default priors except for the exponential growth rate (Laplace distribution) in which scale was set 276 

to 100. The chain length was set to 100 million states and burn-in of 10 million. Convergence was 277 

checked with Tracer 1.7.136. Based on ESS values, estimates for tMRCA of the European Clade spike 278 

protein mutation and root age are reported under the strict molecular clock and constant population 279 

growth (ESSs > 900). The resulting coalescent tree was generated using TreeAnnotator37 and visualized 280 

using ggtree package38 in R version 3.6.1 (https://www.r-project.org/). 281 

 282 

Structural analyses 283 

Visualization, analysis and in silico mutations of protein structures were done in UCSF Chimera18. 284 

First, we downloaded the molecular structure of the spike protein from the Protein Data Bank (PDB). 285 

This structure corresponds to that resolved by Wrapp and colleagues19 and deposited in PDB with 286 

identifier number 6vsb. We replaced the aspartate residue in position 614 by glycine using the 287 

“Rotamers” function in Chimera with default parameters.  Then, inter-atomic contacts of both residues 288 

at position 614 were derived with the CSU package19 freely available at http://oca.weizmann.ac.il/oca-289 

bin/lpccsu. 290 

 291 
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Figures and Tables 408 

 409 

 410 

 411 
 412 
 413 
 414 
 415 
 416 
 417 
Figure 1. Global Distribution of SARS-CoV-2 Genome Sequences Possessing the Spike Protein 418 
D614G Mutation. G mutation as percentage of total sequences (% G) is represented with color shades 419 
as detailed in legend including data available as of A) 17 March and B) 30 March 2020. Hatched lines 420 
were added when less than 10 sequences were available for one country.  421 

A B 
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Figure 2.  Estimated Molecular Dating of Evolutionary history of 442 Representative Global 422 
SARS-CoV-2 Sequences (Late-December 2019 – Mid-March 2020) and the Emergence of the 423 
D614G Clade. Maximum clade credibility (MCC) tree with dated branches estimated by Bayesian 424 
Evolutionary Analysis Sampling Trees (BEAST). Node colors indicate continents of isolation; x-axis 425 
indicating dates by year and days in decimal notation; D614G clade sequences are highlighted in a 426 
yellow box. 427 
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 428 

 429 
 430 
Figure 3. Structural analysis of SARS-CoV-2 spike protein around position 614. (A) Location and 431 
distribution of SARS-CoV-2 viral proteins. The full trimeric form of the spike protein results from a 432 
complex of three identical spike monomers (right panel). (B) Three-dimensional depiction of a spike 433 
protein monomer. The receptor-binding domain is colored purple and the location of the aspartate 434 
residue in position 614 is highlighted in green. (C) Inter-atomic contacts between aspartate 614 (green) 435 
in a reference spike monomer (blue) and four residues (pink) in its adjacent spike protein monomer 436 
chain (white). These four contacts are destabilizing and create a hydrophilic-hydrophobic repelling 437 
effect that is lost upon replacement of aspartate by glycine in the D614G mutation (see Table 1). (D) 438 
Spatial distribution of aspartate 614 residue (green) and an adjacent glycosylated asparagine residue in 439 
position 616 (orange). The two residues point in opposite directions and thus it is unlikely they share a 440 
meaningful interaction. 441 
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 442 

Figure 4. SARS-CoV-2 PCR Cycle threshold (Ct) values of different clinical samples plotted 443 
according to variant D (black dots) and G (white squares) at the position 614 in the spike protein. 444 
Dots represent individual Ct values; horizontal lines represent the mean and standard deviation. 445 
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Table 1. Inter-chain contacts lost upon D614G mutation between adjacent chains in the SARS-446 
CoV-2 Spike protein. 447 

Residue in non-
reference adjacent 
chain 

Distance  
(Å) 

Contact surface 
area (Å^2) 

Lys 854 5.2 10.0 

Thr 859 2.7 28.8 

Val 860 4.5 5.6 

Leu 861 5.6 1.0 

 448 
 449 
Supplementary data Table 1. Country Distribution of SARS-CoV-2 Genome Sequences 450 
Possessing the Spike Protein D614G Mutation. 451 
 452 

Country n = D n = G Total n % G 

Algeria 0 2 2 100% 

Australia 56 8 64 13% 

Belgium 9 81 90 90% 

Brazil 6 29 35 83% 

Cambodia 1 0 1 0% 

Canada 46 34 80 43% 

Chile 6 1 7 14% 

China 310 4 314 1% 

Colombia 1 1 2 50% 

Congo (Kinshasa) 2 17 19 89% 

Czechia 0 3 3 100% 

Denmark 0 9 9 100% 

Ecuador 1 0 1 0% 

Finland 8 32 40 80% 

France 16 103 119 87% 

Georgia 5 5 10 50% 

Germany 15 11 26 42% 

Greece 1 2 3 67% 

Hungary 0 3 3 100% 

Iceland 71 271 342 79% 

India 2 0 2 0% 

Ireland 4 9 13 69% 

Italy 3 20 23 87% 
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Japan 82 2 84 2% 

Korea, South 13 0 13 0% 

Kuwait 4 0 4 0% 

Lithuania 0 1 1 100% 

Luxembourg 1 9 10 90% 

Malaysia 10 0 10 0% 

Mexico 0 1 1 100% 

Nepal 1 0 1 0% 

Netherlands 84 106 190 56% 

New Zealand 6 2 8 25% 

Nigeria 0 1 1 100% 

Norway 7 1 8 13% 

Pakistan 1 0 1 0% 

Panama 0 1 1 100% 

Peru 0 1 1 100% 

Poland 1 0 1 0% 

Portugal 6 38 44 86% 

Russia 0 1 1 100% 

Saudi Arabia 1 2 3 67% 

Senegal 1 11 12 92% 

Singapore 14 0 14 0% 

Slovakia 1 3 4 75% 

South Africa 0 1 1 100% 

Spain 22 18 40 45% 

Sweden 1 0 1 0% 

Switzerland 2 50 52 96% 

Taiwan* 16 2 18 11% 

Thailand 2 0 2 0% 

Turkey 1 0 1 0% 

United Kingdom 242 183 425 43% 

US 471 155 626 25% 

Vietnam 5 3 8 38% 

Total 1558 1237 2795 44% 

 453 
 454 
 455 
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Supplementary data Table 2. Crude Fatality Rate by age and percent of D614G mutation for 456 
China, Italy, South Korea, Spain and Canada. 457 
 458 

Age group 
(yrs) 

Case Fatality Rate by country (%) 
Spearman’s 
rank 
correlation r 
 

P-value 

China as 
of 11 Feb 
2020 

Italy as 
of 17 
March 
2020 

South 
Korea as of 
12 March 
2020  

Spain as 
10 April 
2020 

Canada 
as of 9 
April 
2020* 

≥ 80 14.8 20.2 8.5 21.5 12.3 0.80 0.33 
70-79 8 12.8 5.0 10.7 2.8 1.00 0.08 
60-69 3.6 3.5 1.5 3.4 0.40 0.75 
50-59 1.3 1 0.4 1.0 0.3 0.32 >0.99 
40-49 0.4 0.4 0.1 0.4 0.77 0.50 
30-39 0.2 0.3 0.1 0.2 0.1 0.95 0.17 
20-29 0.2 0 0 0.2 0 >0.99 
10 to 19 0.2 0 0 0.2 0 0 >0.99 
0-9 0 0 0 0.3 0.26 >0.99 
All ages 2.3 7.2 0.9 6.5 2.3 1.00 0.08 
 Percent of G (%)   
All ages 1.2 86.9 0 45.0 42.5 - - 

 *Canadian data presented in 20 years ranges were excluded from Pearson correlation analysis.  459 
 460 
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