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Abstract—Mathematical and computational oncology has in-
creased the pace of cancer research towards the advancement
of personalized therapy. Serving the pressing need to exploit
the large amounts of currently underutilized data, such ap-
proaches bring a significant clinical advantage in tailoring the
therapy. CHIMERA is a novel system that combines mechanistic
modelling and machine learning for personalized chemotherapy
and surgery sequencing in breast cancer. It optimizes decision-
making in personalized breast cancer therapy by connecting
tumor growth behaviour and chemotherapy effects through
predictive modelling and learning. We demonstrate the capa-
bilities of CHIMERA in learning simultaneously the tumor
growth patterns, across several types of breast cancer, and the
pharmacokinetics of a typical breast cancer chemotoxic drug.
The learnt functions are subsequently used to predict how to
sequence the intervention. We demonstrate the versatility of
CHIMERA in learning from tumor growth and pharmacokinetics
data to provide robust predictions under two, typically used,
chemotherapy protocol hypotheses.

Index Terms—Machine Learning, Chemotherapy Sequencing,
Breast Cancer, Personalized Medicine, Mathematical Oncology

I. BACKGROUND

With over 70000 new cases in 2018 and almost 500000
prevalent cases on a 5-year prediction in Germany [1], breast
cancer is still in the foreground of chronic diseases that require
innovative therapeutic solutions. As the last decades have
shown, early diagnosis and new drugs have led to impressive
increases in survival rates of cancer patients. Yet, tailoring
standard treatment schemes to patient needs is still a sought
for objective. A personalised approach, requires new methods
that exploit tumor biology and the effect chemotoxic drugs
have upon the tumor, in order to sequence the interventions
[2]. Neoadjuvant therapy (i.e., chemotherapy administered
before surgery) has grown into a well-established, safe and
often beneficial approach to breast cancer treatment. In terms
of survival and overall disease progression, neoadjuvant and
adjuvant treatments tend to be similar treatment choices for
breast cancer [3]. Yet, the neoadjuvant treatment increases
breast-conserving surgery levels and improves resectability
by reducing the primary tumour. Moreover, it can support
the early evaluation of the efficacy of the therapy chosen

[4]. This assessment may allow the clinician to discontinue
ineffective treatment or may help switch to another regimen
to maximise response [5]. For a wide range of reasons, initial
surgery accompanied by adjuvant chemotherapy may be the
prevalent procedure or preferred choice for a particular patient
compared with preoperative or neoadjuvant chemotherapy [6].
Moreover, patients who do not achieve a pathologic complete
response after neoadjuvant chemotherapy, consider the use of
adjuvant scheme [7]. Overall, it is reported that chemotherapy
use in the neoadjuvant and adjuvant settings generally provides
the same long-term outcome. But what is the best course of
action for a particular patient? This question targets those
quantifiable patient-specific factors (e.g. tumor growth curve
and chemotherapy effect parameters, such as drug pharma-
cokinetics) that influence the sequencing of chemotherapy and
surgery and taps into personalized therapy.

A. Formalizing therapy sequencing

A model for personalized sequencing should include tumor
cells growth and the effects of chemotherapy and surgery un-
der cell-kill hypotheses. This hypothesis proposes that actions
of chemotoxic drugs follow first order kinetics: a given dose
kills a constant proportion of a tumor cell population (rather
than a constant number of cells) [8]. Assuming that the the
tumor size at time t0 = 0 is V0, there are two possible
sequences:

• Adjuvant chemotherapy (chemotherapy after surgery).
At time t0 > 0 a fraction of the tumor is removed through
surgery and subsequently chemotherapy is administered
with a killing rate of 1−e−ks where ks is a rate constant.
The final size after the intervention, at tf > t0 is VSC .

• Neoadjuvant chemotherapy (chemotherapy before
surgery). At time t0 > 0 chemotherapy is administered
with a predefined killing rate. At tf > t0 a fraction
1 − e−ks of the tumor is removed through surgery for
a final size after the intervention VCS .

The question of interest in our study is if VSC > VCS?
If we consider f(V ) the tumor growth model and P (t, V )
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the pharmacokinetics of the chemotherapeutic drug, we can
formalize the two sequences as following:

• Sequence 1: Chemotherapy after surgery
-before surgery

dv1
dt

= f(v1), v1(0) = V0, t ∈ [0, t0] (1)

-after surgery

dV1
dt

= f(V1)−P (t, V1), V1(t0) = e−ksv1(t0), t ∈ [t0, tf ]

(2)
In this case, the final volume of the tumor is

VSC = V1(tf ) (3)

• Sequence 2: Chemotherapy before surgery
-before chemotherapy onset

dv2
dt

= f(v2), v2(0) = V0, t ∈ [0, t0] (4)

-after chemotherapy onset

dV2
dt

= f(V2)− P (t, V2), V2(t0) = v2(t0), t ∈ [t0, tf ]

(5)
Hence, for the neo-adjuvant sequence, the final volume
of the tumor is

VCS = e−ksV2(tf ) (6)

Such sequencing is typically valid under some cell-kill hy-
potheses. Basically, these hypotheses define the effect that
the chemotherapy drug has upon the tumor. The two cell-kill
hypotheses we employ in our study are the log-kill hypothesis
[9] and the Norton-Simon hypothesis, respectively [10]. The
log-kill hypothesis states that the effect the chemotoxic drug
has upon the tumor is

P (t, V ) = c(t)V (7)

where V is the volume of the tumor or number of cells,
and c(t) is a function proportional with the chemotoxic drug
concentration at time t. On the other side, the Norton-Simon
hypothesis, defines the effect of the chemotoxic drug as

P (t, V ) = c(t)f(V ) (8)

where f(V ) is the tumor growth curve function depending
on the volume of the tumor or number of cells. Various
studies [11] considering average values over the populations
of patients demonstrated that under the log-kill hypothesis
VSC > VCS whereas under the Norton-Simpson hypothesis
VSC > VCS or VSC < VCS . In order to ensure that such
sequencing is personalized, we explore how can a machine
learning algorithm extract the two functions of interest, namely
tumor growth function f and pharmacokinetics effect P from
data, without constraining the choice of a specific model.
Such a limiting approach would be detrimental for patients
as it might not capture the tumor dynamics and the effect
chemotherapy has for the long-term intervention.

Model Equation
Logistic [14] fL(V ) = dV

dt = αV − βV 2

Bertalanffy [15] fB(V ) = dV
dt = αV λ − βV

Gompertz [16] fG(V ) = dV
dt = V (β − α lnV )

TABLE I
OVERVIEW OF TUMOR GROWTH MODELS f(V ) IN OUR STUDY.

PARAMETERS: V - VOLUME (OR CELL POPULATION SIZE THROUGH
CONVERSION - V (t) = VonecellICNe

kN t WHERE N IS THE POPULATION
SIZE, ICN IS THE INITIAL CELL NUMBER, Vonecell IS THE VOLUME OF

ONE CELL AND kN IS THE RATE CONSTANT FOR CHANGES IN CELL
NUMBER AS CONSIDERED IN [17]), α - GROWTH RATE, β - CELL DEATH

RATE, λ - NUTRIENT LIMITED PROLIFERATION RATE, k - CARRYING
CAPACITY OF CELLS.

B. Models of tumor growth

A large variety of breast cancer tumor growth patterns were
identified experimentally and clinically, and modelled over the
years. Ordinary differential equations (ODE) tumor growth
models [13] are typically used in cancer treatments planning.
In our study, we explored three of the most representative
and typically used scalar growth models, namely Logistic, von
Bertalanffy, and Gompertz, described in Table I-B.

Despite their ubiquitous use, the aforementioned scalar
tumor growth models are confined due to: a) the requirement
of a precise biological description (i.e. values for α, β, λ and k
correspond to biophysical processes); b) incapacity to describe
the diversity of tumor types (i.e. each is priming on a type
of tumor), and c) the small amount and irregular sampling
of the data. Usually, tumor growth data is small, only a
few data points with, typically, days level granularity [18]
and irregular spacing among measurements [19]. Moreover,
the data has high variability due to: within tumor types
specifics, chemotherapy effect on tumor growth [20], and
heterogeneous measurement types (e.g. bio-markers, fMRI,
fluorescence imaging [21], flow cytometry, or calipers [22]).

C. Models of chemotherapy pharmacokinetics

Pharmacokinetics describe the distribution of chemotoxins
in the body and their effects. From the point of view of a par-
ticular drug, the body can be thought of as comprising one or
more compartments, each of which can be considered to be a
space throughout which the substance is uniformly distributed,
and has uniform kinetics of distribution or transport [23].

Moreover, pharmacokinetic modelling is a useful tool to
describe and investigate the effect of covariates in drug varia-
tion. A number of population pharmacokinetic models have
described the pharmacokinetics of the taxanes drug family
[24]. More precisely, they addressed Paclitaxel monotherapy
and have provided important insight into Paclitaxel pharma-
cokinetics - for more information see [25]. The importance
of such a model was described by Norton and Simon which
postulated that kinetic resistance of tumors can be counteracted
through modulating dose density [10] but also dose adjustment
in patients with hepatic impairment, suggesting, for example,
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that no dose adjustments are needed in patients with mild to
moderate renal impairment [26].

In our study, we use the data from the computational model
of intracellular pharmacokinetics of Paclitaxel of [17] due to
its wide use in breast cancer chemotherapy schemes. The
model describes the factors that determine the kinetics of
Paclitaxel uptake, binding, and efflux from cells:

dc(t)

dt
= [
−A+

√
A2 + 4Kd,mcm(t)

2
−

−B +
√
B2 + 4(1 +NSB)Kd,cc(t)

2(1 +NSB)
]

CLf
Vonecell

− kcellnumberc(t) (9)

where:Vonecell is the average cell volume, ICN is the initial
cell number at time 0, NSB is the proportionality constant
for nonsaturable binding sites in cells, kcellnumber is the rate
constant for changes in cell number (i.e. depends on the
pharmacological effect of Paclitaxel), A is a function of the
constant for drug binding to proteins in medium Kd,m and B is
a function of the constant for drug binding to proteins in cells,
CLf is the clearance of free drug by passive diffusion, on a
per cell basis, and cm concentration of drug in the medium,
calculated as:

dcm(t)

dt
= [
−A+

√
A2 + 4Kd,mcm(t)

2
−

−B +
√
B2 + 4(1 +NSB)Kd,cc(t)

2(1 +NSB)
]

CLfICNe
kcellnumbert

Vm
(10)

The intracellular pharmacokinetic model was used in [17]
and in our study to predict the effect of cell density on drug
accumulation with the mean value of experimental parameters
chosen as: Kd,m = 781nM,Kd,c = 4.93nM,NSB =
0.148, CLf = 3.3410−3ul/h/cell, kcellnumber = 0.0046h−1

(see [17], Table 3). The model predictions were then compared
with experimental results to evaluate the validity of the model.

Changes in cell number were represented by changes in
volume which: 1) increased with time at low initial total
extracellular drug concentrations due to continued cell pro-
liferation and 2) decreased with time at high initial total
extracellular drug concentrations due to the antiproliferative
and/or cytotoxic drug effects, as reported in [17].

Such nonlinear effects are patient specific and parametrizing
the model needs very detailed biological specification and
analysis, which in vivo might not be feasible. Another chal-
lenge regarding the clinical use of Paclitaxel is the identifica-
tion of optimal treatment drug administering schedules. The
difficulty is in part due to the lack of a precise understanding
of individual pharmacokinetics of Paclitaxel, i.e., drug effect
as a function of drug concentration and treatment duration for
each patient. Such challenges motivated our study.

D. Objectives of the study

The objectives of our study are to demonstrate how
CHIMERA, a combination of machine learning and mech-
anistic modelling can predict the chemotherapy and surgery
sequencing, through:

• learning the tumor growth model f(V ) from tumor
growth data of breast cancer, and

• learning the pharmacokinetics P (t, V ) of the chemotoxic
dose response in the sequencing scheme,

for a truly personalized intervention in breast cancer patients.

II. MATERIALS AND METHODS

In the next section we introduce the underlying mechanisms
of CHIMERA as well as the experimental procedures used in
our experiments.

A. Introducing CHIMERA

CHIMERA is an unsupervised machine learning system
based on Self-Organizing Maps (SOM) [27] and Hebbian
Learning (HL) [28] used for extracting underlying functional
relations among correlated timeseries describing therapy vari-
ables, such as tumor growth and chemotherapy pharmacokinet-
ics. We introduce the basic mechanisms in CHIMERA through
a simple example in Figure 1. Here, we consider data from a
breast cancer growth function under sequential chemotherapy
carried over 150 weeks from [29]. The two input timeseries
(i.e. the number of tumor cells and the irregular measurement
index over the weeks) follow a cubic dependency, depicted in
Figure 1b-left.

Core model The input SOMs (i.e. 1D lattice networks
with N neurons) encode timeseries samples in a distributed
activity pattern, as shown in Figure 1a. This activity pattern
is generated such that the closest preferred value of a neuron
to the input sample will be strongly activated and will decay,
proportional with distance, for neighbouring units. The SOM
specialises to represent a certain (preferred) value in the
timeseries and learns its sensitivity, by updating its tuning
curves shape. Given an input sample sp(k) from one timeseries
at time step k, the network computes for each i-th neuron in
the p-th input SOM (with preferred value wpin,i and tuning
curve size ξpi (k)) the elicited neural activation as

api (k) =
1√

2πξpi (k)
e

−(sp(k)−wp
in,i

(k))2

2ξ
p
i
(k)2 . (11)

The winning neuron of the p-th population, bp(k), is the one
which elicits the highest activation given the timeseries sample
at time k

bp(k) = argmax
i

api (k). (12)

The competition for highest activation in the SOM is followed
by cooperation in representing the input space. Hence, given
the winning neuron, bp(k), the cooperation kernel,

hpb,i(k) = e
−||ri−rb||

2

2σ(k)2 . (13)
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Fig. 1. Basic functionality of CHIMERA: a) Basic architecture of CHIMERA:
1D SOM networks with N neurons encoding the timeseries (i.e. number
of cells vs. measurement index), and a NxN Hebbian connection matrix
coupling the two 1D SOMs that will eventually encode the relation between
the timeseries, i.e. growth curve. b) Left: Tumor growth data resembling a non-
linear relation hidden in the timeseries (i.e. number of cells vs. measurement
index) Data from [29]. Right: Learnt tumor growth curve.

allows neighbouring neurons (i.e. found at position ri in the
network) to precisely represent the input sample given their
location in the neighbourhood σ(k) of the winning neuron. The
neighbourhood width σ(k) decays in time, to avoid twisting
effects in the SOM. The cooperation kernel in Equation 13,
ensures that specific neurons in the network specialise on
different areas in the input space, such that the input weights
(i.e. preferred values) of the neurons are pulled closer to the
input sample,

∆wpin,i(k) = α(k)hpb,i(k)(sp(k)− wpin,i(k)). (14)

Neurons in the two SOMs are then linked by a fully (all-
to-all) connected matrix of synaptic connections, where the
weights in the matrix are computed using Hebbian learning.
The connections between uncorrelated (or weakly correlated)
neurons in each population (i.e. wcross) are suppressed (i.e.
darker color) while correlated neurons connections are en-
hanced (i.e. brighter color), as depicted in Figure 1b-right.
Formally, the connection weight wpcross,i,j between neurons

i, j in the different input SOMs are updated with a Hebbian
learning rule as follows:

∆wpcross,i,j(k) = η(k)(api (k)− api (k))(aqj(k)− aqj(k)), (15)

where api (k) is a ”momentum” like exponential moving
average. Hebbian learning ensures that when neurons fire
synchronously their connection strengths increase, whereas if
their firing patterns are anti-correlated the weights decrease.
The weight matrix encodes the co-activation patterns between
the input layers (i.e. SOMs), as shown in Figure 1a, and,
eventually, the learned growth law (i.e. functional relation)
given the timeseries, as shown in Figure 1b-right.

Self-organisation and Hebbian correlation learning pro-
cesses evolve simultaneously, such that both the representation
and the extracted relation are continuously refined, as new
samples are presented. This can be observed in the encoding
and decoding functions where the input activations are pro-
jected though win (Equation 11) to the Hebbian matrix and
then decoded through wcross.

Parametrization and read-out In all of our experiments the
data is fed to the CHIMERA which encodes each timeseries
in the SOMs and learns the underlying relation in the Hebbian
matrix. The SOM neural networks are responsible of bringing
the timeseries in the same latent representation space where
they can interact (i.e. through their internal correlation). In
our experiments, each of the SOM has N = 100 neurons, the
Hebbian connection matrix has size NxN and parametrization
is done as: alpha = [0.01, 0.1] decaying, η = 0.9, σ = N

2
decaying following an inverse time law. We use as decoding
mechanism an optimisation method that recovers the real-
world value given the self-calculated bounds of the input time-
series. The bounds are obtained as minimum and maximum of
a cost function of the distance between the current preferred
value of the winning neuron (i.e. the value in the input which
is closest to the weight vector of the neuron in Euclidian
distance) and the input sample at the SOM level.

B. Datasets

In our experiments we used publicly available tumor growth
datasets (see Table II), with real clinical tumor volume mea-
surements, for different cell lines of breast cancer. This choice
is to probe and demonstrate the versatility of CHIMERA
in learning from tumor growth patterns induced by different
types of cancer. For the pharmacokinetics of the chemotoxic
drug (i.e. Paclitaxel), we used the data from [17] describing
intracellular and extracellular concentrations of Paclitaxel dur-
ing uptake. MCF7 breast cancer cells were incubated with
1 to 1000 nM Paclitaxel. The concentration of Paclitaxel in
cells and culture medium were monitored for 24 h (see Table
1 and Table 2 in [17]. The volume of MCF7 cells in the
exponential growth phase was determined using microscopic
imaging (i.e. resolution of 164 x 200 px), where maximum
(L) and minimum (W) diameters of a cell, were determined
by counting the number of pixels and converting the value to
micrometers Vonecell = π

6LW
2.
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Experimental dataset setup

Dataset Cancer Type Data Type Data Points Data Freq. Source

1 Breast (MDA-MB-231 cell line) Fluorescence imaging 7 2x/week [21]

2 Breast (MDA-MB-435 cell line) Digital Caliper 14 2x/week [19]

3 Breast (MCF7, T47D cell lines) Caliper 8 1x/week [30]

4 Breast (LM2-4LUC+ cell line) Digital Caliper 10 3x/week [31]

TABLE II
DESCRIPTION OF THE DATASETS USED IN THE EXPERIMENTS.

C. Procedures

In order to reproduce the experiments in our study, the
MATLAB ® code and copies of all the datasets are available
on GITLAB 1. Each of the three mechanistic tumor growth
models (i.e. Logistic, Bertalanffy, Gompertz) and CHIMERA
were presented the tumor growth data in each of the four
datasets. When a dataset contained multiple trials and patients,
a random one was chosen for testing and evaluation.

Mechanistic models setup Each of the three ODE tumor
growth models and the drug pharmacokinetic model was
implemented as ordinary differential equation (ODE) and
integrated over the dataset length. We used a solver based
on a modified Rosenbrock formula of order 2 that evaluates
the Jacobian during each step of the integration. To provide
initial values and the best parameters (i.e. α, β, λ, k) for each
of the four models the Nelder-Mead simplex direct search
(i.e. derivative-free minimum of unconstrained multi-variable
functions) was used, with a termination tolerance of 10e−4

and upper bounded to 1000 iterations. Finally, fitting was
performed by minimizing the sum of squared residuals (SSR).

CHIMERA setup For CHIMERA the data was normalized
before training and de-normalized for the evaluation. The
system was comprised of two input SOMs, each with N = 50
neurons, encoding the volume data and the irregular sam-
pling time sequence, respectively. Both input density learning
and cross-modal learning cycles were bound to 100 epochs.
The full parametrization details of CHIMERA are given in
Parametrization and read-out section.

III. RESULTS

In the current section, we present the experimental results
of our study and demonstrate that CHIMERA is capable to:
a) learn the tumor growth model f(V ) from tumor growth
data of breast cancer, b) learn the pharmacokinetics P (t, V )
of chemotoxic drug dose and c) to use the learnt quantities
to provide a data-driven sequencing scheme for chemotherapy
and surgery in a personalized breast cancer intervention.

A. Learning the tumor growth function f(V )

The first experiment addressed the capability to learn the
tumor growth model f(V ) from data without imposing bio-

1https://gitlab.com/akii-microlab/bibe2020

logical constraints upon the cell line, tumor size, number of
cells etc. We demonstrate the superior learning capabilities
of CHIMERA on the four publicly-available brest cancer
clinical datasets described in Table II. As we can observe in
Figure 2, CHIMERA learns a superior fit (i.e. lowest Sum
Squared Error (SSE), Root Mean Squared Error (RMSE) and
symmetric Mean Absolute Percentage Error (sMAPE)) to the
tumor growth data, despite the limited number of samples (i.e.
7 data points for MDA-MD-231 cell line dataset and up to
14 data points for MDA-MD-435 cell line dataset). Despite
their ubiquitous use, the classical tumor growth models (e.g.
Gompertz, von Bertalanffy, Logistic) are confined due to: a)
the requirement of a precise biological description - as one can
see in the different sigmoid shapes in Figure 2; b) incapacity
to describe the diversity of tumor types - as shown in the
across-cell line summary statistics in Figure 3 and; c) the
small amount and irregular sampling of the data - visible in
the relatively poor fit to the data, captured in Figure 2.

B. Learning the pharmacokinetics P (t, V )

The second experiment focused on extracting the pharma-
cokinetics of a chemotoxic drug typically used in breast can-
cer, namely Paclitaxel. Its pharmacokinetics function P (t, V )
is dependent of its concentration concentration c(t) at time t
and V the volume of the tumor. In our experiments, the drug
concentration c(t) has two components as following the model
in [17], namely the intracellular and extracellular Paclitaxel
(Equations 9 and 10). Due to the multiple empirical parameters
the model needs and the relatively small dataset, parametrizing
the model in Equations 9 and 10 requires many biological
assumptions that typically do not hold in vivo. Such variability
is typically not captured by such models, hence failing to
actually describe the pharmacokinetic behavior in a certain
patient.

1) Cellular concentration: As one can see in Figure 4,
the intracellular concentration kinetics of Paclitaxel is highly
nonlinear. CHIMERA is able to extract the underlying function
describing the data without any assumption about the data
and other prior information, opposite to the model from [17]
which used Equation 7 to fit the data. Interestingly, CHIMERA
captured a relevant effect consistent with multiple Paclitaxel
studies [25]. Namely, that the intracellular concentration in-
creased with time and approached plateau levels, with the
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Fig. 2. Evaluation of the tumor growth models on the different datasets: accuracy evaluation. CHIMERA is decoded from the learnt Hebbian weight matrix.
The decrease in the MCF7 Dataset is due to the administered chemotherapy and demonstrates the adaptivity of CHIMERA in capturing growth behaviours.

longest time to reach plateau levels at the lowest extracellular
concentration - as shown in Figure 4.

2) Extracellular concentration: Analysing the extracellular
concentration in Figure 5, we can see that CHIMERA ex-
tracted the trend and the individual variation of drug concen-
tration after the administration of the drug (i.e. in the first
6h) and learnt an accurate fit without any priors or other
biological assumptions. Interestingly, CHIMERA captured the
fact that the intracellular drug concentration increased linearly
with extracellular concentration decrease, as shown in Figure 4
and Figure 5.

C. Chemotherapy-Surgery Sequencing

In this sub-section we combine all the results in the previous
sub-sections on learning the tumor growth function f(V ) and
the pharmacokinetics P (t, V ) with a mechanistic modelling
framework that demonstrates the capabilities of CHIMERA
in sequencing chemotherapy and surgery in breast cancer. We
evaluate the potential sequencing under the two hypotheses,
log-kill and Norton-Simon, respectively. In order to simplify
the formulation, we consider the tumor volume V = Nυ,

where N is the number of cells and υ is a constant describing
cell volume and the volume of intercellular space. We assume,
for simplicity, that the growth model follows a Gompertz
growth curve with a transport constant K = e

β
α ,

f(V ) = β
V

υ
ln(

V

υK
) (16)

and the pharmacokinetics function is

P (t, V ) = c(t)
V

υ
. (17)

Following our derivation in Section 1, VCS = e−ksV2(tf )
and VSC = V1(tf ) corresponding to tumor sizes in neo-
adjuvant and adjuvant sequences, respectively. Under the log-
kill assumption if we let c(t) = −

∫ tf
t0
c(s)eβsds then

VCS = Kexp{e−β(tf−t0)(c(tf ) + ln(
V0
υK

))− ks} (18)

and

VSC = Kexp{e−β(tf−t0)(c(tf ) + ln(
V0
υK

)− ks)} (19)
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Fig. 3. Evaluation of the tumor growth models on the different datasets:
summary statistics.

Fig. 4. Learning the pharmacokinetics P (t, V ) of the intracellular Paclitaxel
concentration c(t). Data from [17] and model in Equation 7, log scale plot.

where 1−e−ks , with ks a constant, is the fraction of the tumor
that is removed. Therefore,

VCS
VSC

= exp{−ks(1− e−β(tf−t0))} < 1 (20)

Fig. 5. Learning the pharmacokinetics P (t, V ) of the extracellular Paclitaxel
concentration cm(t). Data from [17] and model in Equation 8, log scale plot.

hence VCS < VSC . Under the Norton-Simon assumption, if
we let c(t) = β

∫ tf
t0
c(s)ds, then

VCS = Kexp{e−β(tf )+c(tf )ln(
V0
υK

)− ks} (21)

and

VSC = Kexp{e−β(tf−t0)+c(tf )(e−βt0 ln(
V0
υK

)− ks)} (22)

where 1−e−ks , with ks a constant, is the fraction of the tumor
that is removed. Therefore,

VCS
VSC

= exp{−ks(1− e−β(tf−t0)+c(tf ))}, (23)

which for c(t) =
∫ tf
t0
c(s)ds < tf−t0 determines VCS < VSC .

Similarly, one can derive the sequencing for the Logistic
and von Bertalanffy models by replacing Equation 16 with
the corresponding equations in TableI-B. In order to evaluate
the sequencing capabilities of CHIMERA with respect to
traditional biologically parametrized models (we only present
Gompertz in Table III, analog results for Logistic, von Berta-
lanffy), we consider the dataset of breast cancer (MCF7 cell
line) from [30] described in our Experimental setup. We use
the derivations in Equations 6 and 3 and fill in with the
decoded values from the learnt tumor growth (Figure 2) and
learnt pharmacokinetics (Figures 4 and 5). Without paying the
price of extensive parametrization and biological dependency,
CHIMERA uses learnt tumor growth and pharmacokinetics to
infer the most appropriate sequence of therapy, consistent with
its mechanistic counterparts, as shown in Table III.

IV. CONCLUSION

As ever, there will be no ”one-size-fits-all” treatment for
breast cancer and the focus should be on optimising pa-
tient characterization. This can be achieved through a data-
driven approach in which individual patient data describ-
ing tumor growth (e.g. histology, imaging) and chemotoxic
drug effect (i.e. pharmacokinetics, drug interactions) are used
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Evaluation of sequencing capabilities

Model Log-kill hypothesis Norton-Simon hypothesis Biological Parameters

Gompertz VCS < VSC VCS < VSC if c(t) =
∫ tf
t0
c(s)ds < tf − t0 β,K, υ and Eq.s 7, 8

CHIMERA VCS < VSC VCS > VSC none

TABLE III
EVALUATION OF THE CHEMOTHERAPY-SURGERY SEQUENCING PREDICTION.

in combination to extract the optimal sequence of therapy.
CHIMERA is an initial effort to offer a personalized solution
in chemotherapy-surgery sequencing that can handle biological
variability of tumors, the limited size of patient data, and the
variability in chemotoxic drug response, in a data-driven way.
We demonstrated and evaluated CHIMERA’s capabilities in a
series of experiments that emphasize the need for combining
data-driven and mechanistic modelling in oncology.

REFERENCES

[1] W. H. Organization, “International agency for cancer research, can-
cer statistics in germany 2018,” https://gco.iarc.fr/today/data/factsheets/
populations/276-germany-fact-sheets.pdf, accessed: 2020-05-25.

[2] V. de Wiel et al., “Neoadjuvant systemic therapy in breast cancer: Chal-
lenges and uncertainties,” European Journal of Obstetrics & Gynecology
and Reproductive Biology, vol. 210, pp. 144–156, 2017.

[3] D. Mauri, N. Pavlidis, and J. P. Ioannidis, “Neoadjuvant versus adjuvant
systemic treatment in breast cancer: a meta-analysis,” Journal of the
National Cancer Institute, vol. 97, no. 3, pp. 188–194, 2005.

[4] L. Pusztai, J. Foldi, A. Dhawan, M. P. DiGiovanna, and E. P. Mamounas,
“Changing frameworks in treatment sequencing of triple-negative and
her2-positive, early-stage breast cancers,” The Lancet Oncology, vol. 20,
no. 7, pp. e390–e396, 2019.

[5] A. Afghahi et al., “Tumor brca1 reversion mutation arising during neoad-
juvant platinum-based chemotherapy in triple-negative breast cancer is
associated with therapy resistance,” Clinical Cancer Research, vol. 23,
no. 13, pp. 3365–3370, 2017.

[6] B. K. Killelea, V. Q. Yang, S. Mougalian, N. R. Horowitz, L. Pusztai,
A. B. Chagpar, and D. R. Lannin, “Neoadjuvant chemotherapy for breast
cancer increases the rate of breast conservation: results from the national
cancer database,” Journal of the American College of Surgeons, vol. 220,
no. 6, pp. 1063–1069, 2015.

[7] S. Reid-Lawrence, A. R. Tan, and I. A. Mayer, “Optimizing adjuvant and
neoadjuvant chemotherapy for triple-negative breast cancer,” in Triple-
Negative Breast Cancer. Springer, 2018, pp. 83–94.

[8] J. West and P. K. Newton, “Chemotherapeutic dose scheduling based
on tumor growth rates provides a case for low-dose metronomic high-
entropy therapies,” Cancer research, vol. 77, no. 23, 2017.

[9] S. N. Gardner, “A mechanistic, predictive model of dose-response curves
for cell cycle phase-specific and-nonspecific drugs,” Cancer research,
vol. 60, no. 5, pp. 1417–1425, 2000.

[10] R. Simon and L. Norton, “The norton–simon hypothesis: designing more
effective and less toxic chemotherapeutic regimens,” Nature Clinical
Practice Oncology, vol. 3, no. 8, pp. 406–407, 2006.

[11] D. J. Kerr, D. Haller, and J. Verweij, “Principles of chemotherapy,”
Oxford Textbook of Cancer Biology, p. 413, 2019.

[12] M. Kohandel, S. Sivaloganathan, and A. Oza, “Mathematical modeling
of ovarian cancer treatments: sequencing of surgery and chemotherapy,”
Journal of theoretical biology, vol. 242, no. 1, pp. 62–68, 2006.

[13] P. Gerlee, “The model muddle: in search of tumor growth laws,” Cancer
research, vol. 73, no. 8, pp. 2407–2411, 2013.

[14] P.-F. Verhulst, “Notice sur la loi que la population suit dans son
accroissement,” Corresp. Math. Phys., vol. 10, pp. 113–126, 1838.

[15] L. Von Bertalanffy, “Quantitative laws in metabolism and growth,” The
quarterly review of biology, vol. 32, no. 3, pp. 217–231, 1957.

[16] B. Gompertz, “On the nature of the function expressive of the law of
human mortality, and on a new mode of determining the value of life
contingencies. in a letter to francis baily, esq. frs &c,” Philosophical
transactions of the Royal Society of London, no. 115, 1825.

[17] H.-J. Kuh et al., “Computational model of intracellular pharmacokinetics
of paclitaxel,” Journal of Pharmacology and Experimental Therapeutics,
vol. 293, no. 3, 2000.

[18] C. L. Roland, S. P. Dineen, K. D. Lynn, L. A. Sullivan, M. T. Dellinger,
L. Sadegh, J. P. Sullivan, D. S. Shames, and R. A. Brekken, “Inhibition
of vascular endothelial growth factor reduces angiogenesis and modu-
lates immune cell infiltration of orthotopic breast cancer xenografts,”
Molecular Cancer Therapeutics, vol. 8, no. 7, pp. 1761–1771, 2009.

[19] L. D. Volk, M. J. Flister, D. Chihade, N. Desai, V. Trieu, and S. Ran,
“Synergy of nab-paclitaxel and bevacizumab in eradicating large or-
thotopic breast tumors and preexisting metastases,” Neoplasia, vol. 13,
no. 4, pp. 327–IN14, 2011.

[20] T. D. Gaddy, Q. Wu, A. D. Arnheim, and S. D. Finley, “Mechanistic
modeling quantifies the influence of tumor growth kinetics on the
response to anti-angiogenic treatment,” PLoS computational biology,
vol. 13, no. 12, 2017.

[21] A. Rodallec, S. Giacometti, J. Ciccolini, and R. Fanciullino,
“Tumor growth kinetics of human MDA-MB-231 cells transfected
with dTomato lentivirus,” Dec. 2019. [Online]. Available: https:
//doi.org/10.5281/zenodo.3593919

[22] S. Benzekry, C. Lamont, J. Weremowicz, A. Beheshti, L. Hlatky, and
P. Hahnfeldt, “Tumor growth kinetics of subcutaneously implanted
Lewis Lung carcinoma cells,” Dec. 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.3572401

[23] C. Hull, “Pharmacokinetics and pharmacodynamics,” British Journal of
Anaesthesia, vol. 51, no. 7, pp. 579–594, 1979.

[24] M. Zaheed, N. Wilcken, M. L. Willson, D. L. O’Connell, and A. Good-
win, “Sequencing of anthracyclines and taxanes in neoadjuvant and ad-
juvant therapy for early breast cancer,” Cochrane Database of Systematic
Reviews, no. 2, 2019.

[25] T. B. Stage, T. K. Bergmann, and D. L. Kroetz, “Clinical pharmacoki-
netics of paclitaxel monotherapy: an updated literature review,” Clinical
pharmacokinetics, vol. 57, no. 1, pp. 7–19, 2018.

[26] N. Chen, Y. Li, Y. Ye, M. Palmisano, R. Chopra, and S. Zhou,
“Pharmacokinetics and pharmacodynamics of nab-paclitaxel in patients
with solid tumors: Disposition kinetics and pharmacology distinct
from solvent-based paclitaxel,” The Journal of Clinical Pharmacology,
vol. 54, no. 10, pp. 1097–1107, 2014.

[27] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[28] Z. Chen, S. Haykin, J. J. Eggermont, and S. Becker, Correlative
learning: a basis for brain and adaptive systems. John Wiley & Sons,
2008.

[29] E. Comen, T. A. Gilewski, and L. Norton, “Tumor growth kinetics,”
Holland-Frei Cancer Medicine, pp. 1–11, 2016.

[30] G. e. a. Tan, “Combination therapy of oncolytic herpes simplex virus
hf10 and bevacizumab against experimental model of human breast
carcinoma xenograft,” International Journal of Cancer, vol. 136, no. 7,
pp. 1718–1730, 2015.

[31] M. Mastri, A. Tracz, and J. M. Ebos, “Tumor growth kinetics of
human LM2-4LUC+ triple negative breast carcinoma cells,” Dec. 2019.
[Online]. Available: https://doi.org/10.5281/zenodo.3574531

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2020. ; https://doi.org/10.1101/2020.06.08.140756doi: bioRxiv preprint 

https://gco.iarc.fr/today/data/factsheets/populations/276-germany-fact-sheets.pdf
https://gco.iarc.fr/today/data/factsheets/populations/276-germany-fact-sheets.pdf
https://doi.org/10.5281/zenodo.3593919
https://doi.org/10.5281/zenodo.3593919
https://doi.org/10.5281/zenodo.3572401
https://doi.org/10.5281/zenodo.3574531
https://doi.org/10.1101/2020.06.08.140756
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Background
	Formalizing therapy sequencing
	Models of tumor growth
	Models of chemotherapy pharmacokinetics
	Objectives of the study

	Materials and methods
	Introducing CHIMERA
	Datasets
	Procedures

	Results
	Learning the tumor growth function f(V)
	Learning the pharmacokinetics P(t,V)
	Cellular concentration
	Extracellular concentration

	Chemotherapy-Surgery Sequencing

	Conclusion
	References

