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Abstract 1 

Advanced age is strongly correlated with both increased cancer incidence and general immune 2 

decline. The immune tumor microenvironment (ITME) has been established as an important 3 

prognostic of both therapeutic efficacy and overall patient survival. Thus, age-related immune 4 

decline is an important consideration for the treatment of a large subset of cancer patients. 5 

Current studies of aging-related immune alterations are predominantly performed on non-6 

cancerous tissue, requiring additional study into the effects of age on tumor immune infiltration. 7 

We leverage large scale transcriptional data sets from The Cancer Genome Atlas and the 8 

Genotype-Tissue Expression project to distinguish normal age-related immune alterations from 9 

age-related changes in tumor immune infiltration. We demonstrate that while there is overlap 10 

between the normal immune aging phenotype and that of the ITME, there are several changes 11 

in immune cell abundance that are specific to the ITME, particularly in T cell, NK cell, and 12 

Macrophage populations. These results suggest that aged immune cells are more susceptible to 13 

tumor suppression of cytotoxic immune cell infiltration and activity than normal tissues, which 14 

creates an unfavorable ITME in older patients in excess of normal immune decline with age and 15 

may inform the application of existing and emerging immunotherapies for this large population 16 

of patients. We additionally identify that age-related increases in tumor mutational burden are 17 

associated with decreased DNA methylation and increased expression of the immune 18 

checkpoint genes PDL1, CD80, and LAG3 which may have implications for therapeutic 19 

application of immune checkpoint blockade in older patients. 20 

 21 

Introduction 22 

The association of cancer incidence with age is well established and the phenomenon of age-23 

related immune decline has been recognized for even longer (Gardner, 1980). Mutations and 24 

epigenetic alterations are believed to accumulate with age and drive carcinogenesis (Tomasetti 25 

et al., 2017), (Horvath, 2013). Recent research has highlighted the specific changes that 26 
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contribute to the general decline of the immune system that occurs as individuals age (Aw et al., 1 

2007). Understanding the effect such alterations have on the anti-tumor immune response is 2 

critical for the informed development and application of immunotherapies to elderly patients.  3 

 4 

Thus, systemic immune aging has received considerable attention in the context of its effect on 5 

cancer development and progression (Fulop et al., 2017). In particular, loss of T cell receptor 6 

(TCR) diversity (Britanova et al., 2014), decreased capacity of cytotoxic cells (Solana and 7 

Mariani, 2000), and increased inflammatory signaling (Franceschi et al., 2000) have been 8 

identified as age-related immune changes of potential relevance to cancer therapeutics and 9 

patient survival. Currently, these age-related changes in the immune system are identified 10 

predominantly in non-cancerous tissues. However, tumors actively alter immune cells and their 11 

immune microenvironment to promote disease progression and avoid targeting by the immune 12 

system, which has been identified as one of the major hallmarks of cancer (Hanahan and 13 

Weinberg, 2011). Therefore, additional aging-related shifts may occur in the immune tumor 14 

microenvironment (ITME) as a result of interactions between tumor immunosuppressive 15 

signaling and the immunosenescence phenotype.  16 

 17 

In the last decade, the composition of the ITME has become a subject of intense study due to its 18 

association with overall survival and therapeutic efficacy, particularly that of immune checkpoint 19 

blockade (ICB) (Frankel et al., 2017). However, any shifts in the composition of the ITME itself 20 

that may occur with age have not yet been generally characterized, with the exception of some 21 

T cell populations in melanoma (Kugel et al., 2018). Merging the disparate research on cancer 22 

and aging can further distinguish whether age-related changes in non-cancerous tissues are 23 

recapitulated within the ITME. At present, ICB immunotherapy is less often used to treat elderly 24 

patients, due to concerns about efficacy and toxicity, despite the fact that the limited clinical trial 25 

data that exists suggests that they experience no reduced benefit as compared to younger 26 
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patients (Kugel et al., 2018), (Elias et al., 2018), (Daste et al., 2017), (Jain et al., 2019). Age-1 

specific characterization of the ITME is essential to understand these results and move forward 2 

with efforts to bring immunotherapy to this large group of cancer patients. 3 

 4 

This study directly compares the impact of aging on immune response and infiltration in tumors 5 

to that of non-cancerous tissues using genomics data from large-scale consortium studies. We 6 

apply immune cell type deconvolution methods to bulk transcriptomics data from untreated 7 

tumors samples among patients of different ages from The Cancer Genome Atlas (TCGA) and  8 

to post-mortem non-cancer tissue samples from individuals of different ages from the Genotype-9 

Tissue Expression project (GTEx) in order to compare age-associated immune composition 10 

changes from within tumors and non-cancerous tissues. We identify decreases in overall T cell 11 

abundance in tumor samples that are not observed in systemic tissues, as well as an increase 12 

in macrophage abundance. Further, while NK abundance generally increases with age, this 13 

trend is not observed within the ITME. These cancer-specific changes are both poor prognostics 14 

based on TCGA overall survival data and the existing literature on the impact of these immune 15 

cell types in the ITME. These analyses suggest that not only do older cancer patients face the 16 

normal aspects of immune decline, but that there is a specific interaction between the senescent 17 

immune system and tumor signaling that produces a less favorable ITME for survival and 18 

therapeutic response. This represents an unappreciated interaction between tumor biology and 19 

the aging immune system that contributes to the worsening of clinical outcomes with increasing 20 

age and may suggest new treatment strategies for elderly patients. At the same time, we 21 

observe that increasing tumor mutational burden with age appears to lead to an epigenetically 22 

regulated increase in tumor expression of immune checkpoint receptors such as PDL1, CD80, 23 

and LAG3, which may make ICB an unexpectedly attractive therapeutic option for many older 24 

patients. 25 

 26 
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Results 1 

Deconvolution of immune cell abundance in tumor samples from TCGA reveals an age-related 2 

decrease in T cell abundance and increase in macrophage abundance that is associated with 3 

decreased survival  4 

The large number of primary tumor transcriptional profiles across disease subtypes available 5 

from TCGA provides a unique cohort to characterize the impact of age on the ITME. We apply 6 

the MIXTURE immune cell type deconvolution algorithm (Fernandez et al., 2019) to infer the 7 

absolute proportions of immune cell types from RNA-sequencing data derived from pan-cancer 8 

TCGA samples. We then fit a linear model with age, including cancer type (based on the 33 9 

TCGA cancer-type projects included in the study) and patient sex as covariates, for each 10 

immune cell type (listed in Supplemental Table 1) to assess changes in immune cell infiltration 11 

as patients age. We find that overall T cell abundance significantly decreases with age in the 12 

ITME (q-value = 0.00175) (Figure 1A) while macrophages significantly increase in abundance (q 13 

= 4.45 x 10-4) (Figure 1B). Detectable changes in the infiltration of NK cells, Dendritic cells, B 14 

cells, and other myeloid populations do not occur with age pan-cancer (Figure 1C, Table 1). 15 

 16 

We additionally investigate age-related changes in the TCGA cohort at a finer cellular resolution 17 

of 22 immune cell subtypes from MIXTURE (listed in Supplemental Table 1) (Supplemental 18 

Figure 1). Naive B cells are found to significantly decrease in abundance with increasing age in 19 

the ITME (q-value = 0.0305). Although many known systemic immune changes occur with age 20 

in healthy tissues, this reduction in Naive B cells is the only statistically significant shift among 21 

immune cell subtypes in the ITME. Consistent with our previous analysis of the higher order cell 22 

types, the three macrophage subsets (M0, M1, and M2) are among the top four cell types that 23 

trend towards increasing abundance in age. Likewise, all T cell subsets (CD8, CD4, Follicular 24 

helper, and regulatory T cells) trend towards a decrease in abundance with age with the 25 

exception of gamma delta T cells.   26 
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 1 

To investigate the association of these age-related immune infiltration changes with patient 2 

survival, we fit a Cox proportional hazards model between overall survival and all immune cell 3 

types (both subtypes and higher order cell types), adjusting for patient age, sex, cancer type, 4 

and years of smoking (Supplemental Figure 2, Table 2). We observe that higher risk is 5 

significantly associated with lower T cell abundance (q = 5.38 x 10-4) and NK cell abundance (q 6 

= 0.0263), as well as for higher macrophage abundance (q = 0.00162). Naive B cells were not 7 

significantly associated with survival (q = 1.00).  8 

 9 

We note that both the composition of the ITME and average patient age varies by cancer type. 10 

Therefore, to determine the variance in age-related effects that occur within different cancer 11 

types, we then evaluate the association between age and immune composition for each cancer 12 

type with at least 100 samples that could be successfully deconvolved by the MIXTURE 13 

algorithm (Supplemental Figure 3). We identify considerable heterogeneity in the effect of age 14 

on immune cell type abundance across cancer types, though macrophages generally increase 15 

in abundance, while T cells generally decrease (Figure 2A), consistent with the results of our 16 

pan-cancer analysis. Breast carcinomas have the most significant decrease in T cell abundance 17 

and the most significant increase in macrophage abundance with age overall.  18 

 19 

To further distinguish the relative role of age and cellular composition of the ITME with patient 20 

outcomes, we then fit a Cox proportional hazards model for the effects of variation in each 21 

immune cell type across cancer types, including diagnosis age as a covariate (Figure 2B). 22 

Macrophages and other myeloid-derived cells are generally poor prognostics across cancer 23 

types, while T and NK cells are generally good prognostics. Head and neck squamous cell 24 

carcinomas (HNSC) have the most significant survival association with both macrophages and 25 

T cells. If HNSC cases are subdivided into HPV-negative and HPV-positive patients, this 26 
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association only recapitulates among the HPV-negative cohort, emphasizing the importance of 1 

ITME composition for HPV-negative HNSC cases.  2 

 3 

Age-related immune changes in non-cancerous tissues differ from the observed shifts in the 4 

aging ITME among T cells, macrophages, B cells, and NK cells 5 

To compare the effect of aging in the ITME to that on the immune cell compositions of normal 6 

tissues, we applied MIXTURE to GTEx consortium RNA-sequencing data of post-mortem 7 

samples from individuals without cancer (GTEx Consortium et al., 2017) to infer cell type 8 

abundance across tissues. These results provide a non-cancer baseline for immune changes 9 

that occur across many individuals of varying ages to compare with our observations from 10 

TCGA tumor data. Similar to the TCGA analysis, we fit a linear model to each cell type in order 11 

to determine associations between cell type abundance and age both across and within normal 12 

tissues.  13 

 14 

In contrast to our findings in the pan-cancer ITME, in pan-tissue analyses we observe no 15 

significant change in overall T cell abundance with age (q = 0.565) (Figure 3A, Supplemental 16 

Table 2). We further fail to find significant changes in macrophage levels (q = 0.565) with age 17 

(Figure 3B). However, we do observe decreases in overall B cell (q = 3.51 x 10-4) (Figure 3C) 18 

proportion and increases in NK cell proportion (q = 1.07 x 10-14) (Figure 3D). This result 19 

demonstrates that there are considerable differences between the effects of aging on the 20 

abundance of immune cells in non-cancer tissues and the ITME.  21 

 22 

Across the 22 immune cell subtypes from MIXTURE, we find that naive B cell abundance is 23 

significantly decreased in GTEx samples with increasing age, consistent with our findings in the 24 

ITME (q-value of 9.07 x 10-16 and 0.0305, respectively). However, among GTEx data, we also 25 

observe significant decreases in memory CD4 T cells (q = 3.30 x 10-7), naive CD4 T cells (q = 26 
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0.00604), M2 macrophages (q = 3.59 x 10-5), memory B cells (q = 0.0315), and resting dendritic 1 

cells (q = 0.0427), as well as significant increases in abundance of resting NK cells (q = 5.33 x 2 

10-11) and CD8 T cells (q = 0.0157) (Figure 3E). These findings represent clear departures from 3 

what we observe within the ITME, suggesting that tumors interact with the aging immune 4 

system to selectively prevent or increase infiltration of certain immune cell types that exist 5 

systemically, in a way that differs from the tumor immunosuppression that occurs in younger 6 

patients. 7 

 8 

To directly compare normal age-related immune changes in a particular tissue to those that 9 

occur in tumors within the same tissue, we individually assay the immune associations with age 10 

for colon, lung, and breast tumors in TCGA with those found for all normal colon, lung, and 11 

breast samples from GTEx (Figure 3F, Supplemental Figure 4). Consistent with what we find 12 

pan-cancer and pan-tissues, we observe an increase in macrophage infiltration and a decrease 13 

in T cell infiltration among colorectal adenocarcinoma patients, while there is no significant 14 

change observed for colon samples from GTEx, and the non-significant trend that we do 15 

observe is reversed for both cell types. Similar immune cell type differences are found between 16 

cancerous and non-cancerous tissues in lung and breast samples. These results demonstrate 17 

that systemic age-related immune changes cannot be assumed to translate to the ITME. 18 

Particularly, they suggest that an interaction occurs between the phenotype of aging immune 19 

cells and the immunosuppressive signaling of cancers that generally increases the infiltration of 20 

macrophages and decreases the infiltration of T cells and NK cells in older patients. 21 

 22 

Systemic age-related increases in M1/M2 macrophage ratio and decreases in CD8/CD4 T cell 23 

ratio in non-cancerous tissues do not recapitulate in the ITME 24 

We hypothesize that the tumor-specific changes to the ITME with age are associated with the 25 

modifications that cause tumors to evade immune attack. A higher ratio of M1/M2 macrophages 26 
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has been previously found to be a positive survival prognostic (Chanmee et al., 2014), which we 1 

evaluate using a Cox proportional hazards model for overall survival in TCGA. We find that an 2 

increased M1/M2 ratio is a generally good prognostic pan-cancer, including age and cancer 3 

type as covariates (q = 0.0165). As the trends displayed in Figure 3E would suggest, the M1/M2 4 

macrophage ratio significantly increases (q = 4.12 x 10-4) with age within normal tissues from 5 

GTEx data (Supplemental Figure 5A). By contrast, the M1/M2 tumor infiltration ratio does not 6 

change with age pan-cancer in tumor tissues in TCGA data (q = 0.314) (Supplemental Figure 7 

5B), consistent with a signature of decreased immune activation relative to the rest of the body. 8 

Likewise, greater T cell killing would be expected to be associated with better prognosis. In 9 

TCGA, CD8/CD4 ratio has a minor favorable association with patient survival which falls short of 10 

0.05 statistical significance (q = 0.0977). We observe an increase in the CD8/CD4 T cell ratio 11 

with age in GTEx samples (q = 2.87 x 10-15) (Supplemental Figure 5C) that does not recapitulate 12 

within the ITME (q = 0.314) (Supplemental Figure 5D). 13 

 14 

T cell receptor clonality decreases with age within the ITME while the number of tumor 15 

mutations increases 16 

The overall decline in the total number of unique T cell receptor (TCR) clones with age (Yager et 17 

al., 2008), (Britanova et al., 2014), (Egorov et al., 2018) is well established in the literature. The 18 

process of thymic involution (the loss of thymus tissue with age) eventually ends the production 19 

of naive T cells and is the major driver of normal age-related decreases in T cell clonality 20 

(Aspinall and Andrew, 2000). To quantify aging-related changes in TCR clonality in the ITME, 21 

we leveraged results previously generated with the miTCR algorithm (Bolotin et al., 2013) by 22 

(Thorsson et al., 2018) to determine the association between TCR clonality and age. We define 23 

our metric of clonal diversity as the Shannon entropy multiplied by the number of unique clones 24 

divided by the total number of TCR sequencing reads (this correction is important because we 25 

have already established that T cell abundance decreases with age and we wish to correct this 26 
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metric for the expected lower number of T cells to be sequenced among the samples from older 1 

patients). We determine that this TCR clonality measure significantly decreases with age for 2 

pan-cancer TCGA samples, including cancer type as a covariate (p = 1.48 x 10-8) (Table 3, 3 

Supplemental Figure 6A). We then fit a Cox proportional hazards model with age and cancer 4 

type as covariates and determine that decreased TCR clonality is a significant negative 5 

prognostic for overall survival (p = 3.34 x 10-5) (Table 3). This result suggests that the reduced 6 

ability to recognize antigens in older individuals leads to reduced T cell killing of tumor cells and 7 

hence worse outcomes. 8 

 9 

However, a related consideration is the increasing accumulation of mutations known to occur 10 

with age (Tomasetti et al., 2017) and the potential accompanying increase in immunogenic 11 

mutations. Higher tumor mutational burden has been shown to correlate with improved 12 

outcomes in ICB immunotherapy (Yarchoan et al., 2017), (Goodman et al., 2017), which 13 

suggests the possibility that the increasing number of mutations accumulated with age may in 14 

some cancers offset the loss of TCR diversity. As has been previously reported (Chalmers et 15 

al., 2017), (Qing et al., 2020), we find that tumor mutational burden significantly increases with 16 

age (p < 1x10-16) (Supplemental Figure 6B) pan-cancer in TCGA, including cancer type as a 17 

covariate (Table 3). This trend recapitulates within most cancer types, though lung 18 

adenocarcinomas and uterine carcinomas are notable exceptions (Supplemental Figure 6C). 19 

High mutational burden among younger patients with lung cancer is likely due to the highly 20 

mutagenic effects of cigarette smoking, while the highly mutated uterine tumors are likely the 21 

result of a hypermutated subset previously discovered among the TCGA-UCEC cohort (Cancer 22 

Genome Atlas Research Network et al., 2013). A higher tumor mutational burden is a positive 23 

survival prognostic pan-TCGA, as determined by a Cox proportional hazards model, including 24 

age and cancer type as covariates (p = 0.011) (Table 3). Thus, while the ability to recognize 25 

antigens may decrease with age, the space of tumor antigens for a given TCR to match with will 26 
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likely increase, presumably at least partially offsetting the decreased T cell capacity to recognize 1 

tumors caused by loss of TCR diversity. 2 

 3 

Age-related increases in tumor mutational burden associates with promoter demethylation and 4 

increased expression of immune checkpoint genes in tumor samples 5 

The ability of TCR sequences to recognize tumor antigens is of particular clinical relevance in 6 

the context of ICB immunotherapy. Another important factor for the efficacy of ICB 7 

immunotherapy is the expression of target genes and their complementary receptors such as 8 

PD1, PDL1, CTLA4, CD80, and CD86 (Taube, 2014). We therefore performed differential 9 

expression analysis for these genes with age in both TCGA tumor samples and normal GTEx 10 

tissue samples, including cancer type and tissue type as respective covariates. Among TCGA 11 

samples, CD80 and PDL1 expression increases with age (q-values 0.0116 and 0.0299), while 12 

no detectable expression changes occur with age for CTLA4, PD1, and CD86 (q-values of 13 

0.779, 0.693, and 0.0834) (Table 4), suggesting that older patients display increased tumor cell 14 

expression of these immune checkpoint genes. Another possibility is that this change occurs 15 

due to the increased number of infiltrating macrophages we have shown accumulate with age, 16 

as PDL1 and CD80 can be expressed on macrophages as well (Hartley et al., 2018). We further 17 

investigate age-related changes in expression of these genes within each cancer type 18 

(Supplemental Figure 7). There is considerable heterogeneity in the effect of age on the 19 

expression of these genes, though PDL1, CD80, and CD86 are more likely to increase in 20 

expression with age, while PD1 and CTLA4 expression is more variable, suggesting that tumor 21 

expression of immune checkpoint genes is more affected by age than tumor infiltrating T cell 22 

expression of immune checkpoint genes.  23 

 24 

Among the non-cancerous samples from GTEx, PD1 and PDL1 expression significantly 25 

increases with age (q-values of 2.93 x 10-7 and 0.00166), CD86 expression does not 26 
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significantly change (q = 0.891), and there was no data available for CTLA4 or CD80 1 

(Supplemental Data). The increase in PD1 expression is possibly due to the increased presence 2 

of exhausted CD8 T cells, which have been previously reported to accumulate with age and 3 

express both PD1 and TIM3 (Lee et al., 2016), the latter of which is also expressed at increased 4 

levels with advanced age in GTEx data (q = 2.157 x 10-5). The increased inflammation observed 5 

in older individuals (Fulop et al., 2017), (Kovtonyuk et al., 2016) may explain the increased 6 

expression of PDL1 in older individuals from GTEx. Among the inflammatory pathways up with 7 

age, we particularly note that the GO term for response to interferon gamma significantly 8 

increases in GTEx (q = 0.00297), which has been reported to stimulate PDL1 expression (Flies 9 

and Chen, 2007). 10 

 11 

Tumor mutational burden is an important clinical predictor of response to immunotherapy that 12 

increases with patient age. To determine if these age-related changes in immune checkpoint 13 

gene expression are associated with the increase in tumor mutational burden that we described 14 

previously (Supplementary Figure 6B), we included it as a covariate and repeated the 15 

differential expression analysis. PDL1 expression no longer appeared significantly associated 16 

with age (q = 0.207), while CD80 expression became borderline (q = 0.0502) (Supplemental 17 

Data). These data indicate that increased expression of PDL1 with age most directly associates 18 

with age-related increases in tumor mutational burden.  19 

 20 

Due to previous work suggesting that DNA methylation regulates tumor expression of PDL1 21 

(Asgarova et al., 2018), (Micevic et al., 2019), we hypothesize that the observed expression 22 

increases of immune checkpoint genes are largely driven by epigenetic changes. We leverage 23 

merged 450k and 27k methylation array data from TCGA (Thorsson et al., 2018) and find that 24 

methylation of CpGs annotated to the PDL1 promoter region significantly decreases with age 25 

pan-cancer (q = 3.27 x 10-10), including cancer type as a covariate. Methylation of CTLA4 and 26 
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CD80 annotated CpGs also decrease with age (q values of 4.33 x 10-4 and 6.01 x 10-5) (Table 1 

4). These results suggest that DNA methylation changes lead to the observed expression 2 

increases in PDL1 and CD80 with increasing age and that age-related increases in tumor 3 

mutational burden promote selective pressure for epigenetically mediated up-regulation of 4 

PDL1.   5 

 6 

Corresponding shifts in DNA methylation and expression in TCGA samples suggest profound 7 

changes in the aging tumor microenvironment 8 

In order to further investigate the role of age-related methylation changes on the ITME, we 9 

identified all genes annotated to have some immune role by InnateDB (Breuer et al., 2013) 10 

within TCGA expression and methylation data. In order to find immune genes that are regulated 11 

by age-related methylation changes at promoters of these genes, we then selected the following 12 

two sets of differentially expressed genes: those that had significant increases in expression 13 

and significant decreases in methylation with age, and those with significant decreases in 14 

expression and significant increases in methylation with age. We note that increased 15 

methylation of annotated promoter CpGs was much more likely to indicate that the 16 

corresponding gene would decrease in expression (218 anti-correlated vs 66 correlated with 17 

age) than decreased methylation was to indicate that a gene’s expression would increase (113 18 

correlated vs 94 anti-correlated with age) (Supplemental Table 3).  19 

 20 

Among the genes with increased expression and decreased methylation in TCGA, we find the 21 

GO immune regulation term (q = 5.90 x 10-25),  the regulation of T cell activation term (q = 2.93 x 22 

10-5), and innate immune response term (q = 1.74 x 10-11) significantly enriched (Figure 4A) (the 23 

full list of GO enrichments is available in Supplemental Data). Of particular note is the 24 

connected group of T cell regulatory genes PDL1, CD80, LAG3, HAVRC2, and IL10. LAG3 has 25 

been shown to be of importance in immune infiltration and overall survival in renal cell 26 
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carcinoma (Klümper et al., 2020), acts as an important player in intratumoral T cell exhaustion in 1 

lymphoma (Yang et al., 2017), and has been suggested as a potential therapeutic target for new 2 

ICB strategies (Long et al., 2018). HAVRC2 (also known as TIM3) has been shown to be an 3 

important inhibitory T cell receptor, as well as a defining characteristic of exhausted T cells in 4 

concert with PD1 (Lee et al., 2016), (Wolf et al., 2020). IL10 has been shown to be a direct 5 

inhibitor of CD8 T cell function (Smith et al., 2018). We thus observe a set of methylation-6 

associated expression changes with increasing age that are expected to have a considerable 7 

detrimental effect on T cell tumor killing. 8 

 9 

Next, we investigated if these methylation and expression changes are related to the age-10 

associated TMB changes, like we observed for PDL1 and CD80. We performed the same 11 

analysis of immune-related genes in InnateDB, adjusting for tumor mutational burden for both 12 

differential expression and methylation, and only IL10 retains significantly increased expression 13 

and decreased methylation of the aforementioned five genes (Figure 4B). Therefore, the effect 14 

of age on T cell activation in our model seems to be largely explained by age-related changes in 15 

tumor mutational burden, while other age-related factors have a larger impact on the increased 16 

expression of a number of genes related predominantly to innate immunity.  For example, 17 

another 9 genes annotated to the innate immune response GO term are significant for the TMB 18 

corrected analysis (25 vs 34 total). 19 

  20 

The genes with increased CpG methylation and decreased expression with age in TCGA 21 

samples are significantly enriched for a number of GO terms, notably including cell adhesion (q 22 

= 9.38 x 10-44), cell differentiation (q = 5.83 x 10-31), locomotion (q = 1.84 x 10-21), and 23 

extracellular matrix organization (q = 6.18 x 10-21) (Figure 4C) (full list provided in Supplemental 24 

Data). This gene set also includes several growth factors and receptors with major known roles 25 

in tumor biology, such as EGFR (Normanno et al., 2006), FGF2 (Soufla et al., 2005), PDGFRA 26 
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(Velghe et al., 2014), and IGF1R (Pandini et al., 1999). All of these terms and genes remain 1 

significant after correcting for tumor mutational burden (Figure 4D), though major transcription 2 

factors such as SOX4 and FOXO1 drop out, as do the growth factors TGFB2 and NGF, 3 

indicating that high mutational burden may play a role in age-related gene methylation for a 4 

subset of these genes. However, most of these gene expression and methylation changes 5 

appear to be mediated through other age-related effects. Epigenetic silencing of these pathways 6 

and genes would be expected to have a considerable effect on the tumor microenvironment, as 7 

they play major roles in critical tumor processes such as growth, metastasis, dedifferentiation, 8 

and angiogenesis. 9 

 10 

GO gene set enrichment differences between TCGA and GTEx data with age suggest 11 

interactions of tumor signaling and aging biology produce substantial changes in tumor cellular 12 

processes and microenvironment 13 

To further investigate possible causes for the observed differences in immune infiltration 14 

between aged tumors and healthy aged tissues, we compare GO term enrichment based on 15 

gene expression changes with age from TCGA and GTEx samples. We primarily investigate 16 

four sets of GO terms: those up in both TCGA and GTEx with age, those up in TCGA and down 17 

in GTEx, those up in GTEx and down in TCGA, and those down in both TCGA and GTEx 18 

(Supplemental Figure 8) (full list of GO terms provided in Supplemental Data). The pathways up 19 

in both are highly immune related, indicating an increase in inflammation with age that has 20 

previously been termed inflammaging (Fulop et al., 2017), (Franceschi et al., 2000). The 21 

increases in antigen binding, MHC complex, and Interferon gamma signaling terms are of 22 

relevance to T cell recognition and activity. Of particular note may be the increase in Interferon 23 

gamma signaling, which is known have a role upregulating PDL1 expression (Flies and Chen, 24 

2007), and thus may be involved in the expression increase of PDL1 with age, along with the 25 

previously noted relation to tumor mutational burden. Among those pathways up in TCGA and 26 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.08.140764doi: bioRxiv preprint 

http://sciwheel.com/work/citation?ids=3028143&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=8903318&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5675888&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1216707&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=8894677&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=8894677&pre=&suf=&sa=0
https://doi.org/10.1101/2020.06.08.140764
http://creativecommons.org/licenses/by-nc/4.0/


15 
 

down in GTEx, the Mitochondrion term seems the most potentially relevant, as energetics is a 1 

major factor in tumor biology, and mitochondria additionally play a considerable role in 2 

regulating cell death pathways as well as immune regulation (Weinberg et al., 2015), (Breda et 3 

al., 2019). Regulation of proliferation, positive regulation of development, locomotion, and 4 

biological adhesion are up in GTEx and down in TCGA, with potential relevance for tumor 5 

growth and metastasis. These terms match closely with the terms found to be silenced by DNA 6 

methylation with age in the previous section, indicating that these are cancer specific age-7 

related effects as well. There thus appears to be another interaction of aging biology and tumor 8 

signaling that may alter the development of several major hallmarks of cancer in older patients. 9 

Finally, cell cycle terms are down in both cohorts with increasing age. In the context of the 10 

altered age-related immune infiltration in tumors compared to normals, these data demonstrate 11 

that there are inflammation increases with age in both tumor and healthy aged tissues. Thus, 12 

the observed changes in immune cell abundance between the tumors of old patients and the 13 

tissues of old individuals are likely the result of an interaction between tumor 14 

immunosuppressive signaling and the altered phenotype of aged immune cells.  15 

 16 

Discussion 17 

We demonstrate that patient age associates with several changes in ITME composition that do 18 

not occur in non-cancerous tissues. This result indicates that tumor signaling interacts with the 19 

aging immune system and/or environment to modulate immune infiltration and produce a more 20 

immunosuppressive microenvironment in older patients than would be predicted by normal 21 

immune aging in isolation. We further investigate the complex interplay of age-related shifts in 22 

TCR clonality, tumor mutational burden, and T cell exhaustion that appear to modulate the 23 

demethylation and increased expression of immune checkpoint genes in the tumors of older 24 

patients.   25 

 26 
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In contrast to our analysis of ITME cell type composition shifts with age, there is an existing 1 

literature on normal age-related immune changes, which allows for validation of the results of 2 

the MIXTURE method in this work with an established base of knowledge. The observed 3 

decreases in overall T cell abundance within tumors did not recapitulate in normals from GTEx 4 

and have not been reported to occur systemically. While this may seem a strange phenomenon 5 

given the process of thymic involution, it has been previously found that it is mostly naive T cells 6 

that decrease in abundance with age, while the population of memory T cells proportionally 7 

increases (with accumulation of exhausted, less functional effector T cells as individuals reach 8 

very advanced age) (Hulstaert et al., 1994), (Alpert et al., 2019). Thus, overall T cell abundance 9 

remains relatively constant, as we observe in our analysis of GTEx data. This ITME specific 10 

departure may have implications for T cell based immunotherapies in elderly patients, 11 

suggesting the possibility of targeting the as of yet unknown mechanism repressing infiltration to 12 

potentially improve therapeutic efficacy in older patients.  13 

 14 

We observe increased infiltration of macrophages in tumor samples, without a particular bias in 15 

M1/M2 polarization, while in normal GTEx data we identify no change in macrophage 16 

abundance overall, but find that the M1/M2 ratio increases. Previous studies have suggested 17 

that old age alters macrophage polarization such that the same signals that would produce 18 

polarization in younger individuals do not produce differentiated macrophages with all the 19 

characteristics generally ascribed to M1 and M2 subtypes (Mahbub et al., 2012). Thus, these 20 

results must be interpreted carefully, but an increase in tumor infiltrating macrophages still 21 

appears to be a poor survival prognostic in older individuals, which suggests that therapeutics 22 

being developed to target the generally negative effects of tumor-associated macrophages 23 

(Chanmee et al., 2014), (Poh and Ernst, 2018), (Lee et al., 2019) may be of particular impact in 24 

patients of advanced age. 25 

 26 
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A further observation of note is that we find a significant increase in NK cell abundance in GTEx, 1 

which we do not identify in TCGA tumor data. It has been previously shown that overall NK cell 2 

abundance increases with age, though their cytotoxicity was diminished relative to younger 3 

controls (Gounder et al., 2018). It therefore seems that NK cell tumor infiltration is inhibited with 4 

increasing patient age because this general increase in abundance is not reflected in the ITME. 5 

The role of NK cells in cancer immunity is gaining increasing appreciation (Freeman et al., 6 

2019), (Chiossone et al., 2018), with some evidence to suggest an important role in emerging 7 

immunotherapies as well (Shimasaki et al., 2020).  8 

 9 

Systemic loss of TCR clonality with age (Britanova et al., 2014) is reflected in the ITME, which, 10 

along with the decreased T cell infiltration we identify, raises questions about the efficacy of 11 

immunotherapies in patients of advanced age due to the value of TCR diversity as a biomarker 12 

to identify patients who will benefit from ICB immunotherapy (McNeel, 2016). The possibility of 13 

reduced efficacy has been partially addressed by previous studies. There are somewhat mixed 14 

results as to the benefit of ICB for patients of advanced age, though most studies and meta-15 

analyses of available clinical trial data suggest patients experience no reduced benefit (Kugel et 16 

al., 2018), (Elias et al., 2018), (Daste et al., 2017), (Jain et al., 2019). The observed increases in 17 

tumor mutational burden with age may explain these results at least partially, as these additional 18 

mutations provide a larger space of antigens for the reduced number of unique TCRs to 19 

recognize. We further find that the tumor mutational burden increases with age appear to 20 

mediate a decrease in methylation and increase in expression of PDL1, though we cannot rule 21 

out that age-related increases in Interferon gamma signaling play a role as well. From these 22 

results, we hypothesize the causal model outlined in Supplemental Figure 10, whereby TCR 23 

Diversity, Tumor mutational burden, and T cell infiltration changes with age together mediate the 24 

cytotoxic capacity of T cells on tumors and thus the selective pressure for the expression of 25 

immune checkpoint genes. Given the results of the aforementioned meta-analyses, this model 26 
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suggests that increased tumor mutational burden (and the corresponding increase in PDL1 1 

expression) is largely able to compensate for the loss of T cell infiltration and TCR diversity such 2 

that older patients end up doing roughly as well on ICB immunotherapy as their younger 3 

counterparts despite several characteristics that are generally disadvantageous, though 4 

unaccounted factors may be at play as well. Currently, ICB is still used less often among elderly 5 

patients (Jain et al., 2019), (Hurez et al., 2018) due to concerns about efficacy and safety. Our 6 

results indicate that older individuals express increased levels of PDL1, which likely allows for 7 

the equal level of response to that of younger patients. This suggests that ICB use for the 8 

elderly should be further investigated and likely expanded. Additionally, our model suggests that 9 

if T cell infiltration into the tumors of older patients can be increased, they might respond even 10 

better to ICB immunotherapy than young patients do.  11 

 12 

We identify a set of genes that are hypermethylated and lower-expressed with increasing age. 13 

These genes are significantly associated with growth, metastasis, and angiogenesis, which are 14 

considered to be some of the hallmarks of cancer (Hanahan and Weinberg, 2011). We further 15 

find that these terms are not enriched among GTEx samples with age, demonstrating another 16 

interaction between aging biology and tumor biology that produces an age-related tumor 17 

phenotype that is distinct from the age-related phenotype in normal tissues. Within this set of 18 

genes we observe what appears to be DNA methylation-mediated silencing of genes associated 19 

with cell differentiation, which previous studies (Widschwendter et al., 2007), (Easwaran et al., 20 

2012), (Ohm and Baylin, 2007), (Schlesinger et al., 2007) indicate represents a tumor-specific 21 

hypermethylation of genes that locks the constituent cells into a malignant stem-like state. 22 

These changes appear to be more common in the tumors of elderly patients, suggesting 23 

epigenetic therapies may be of particular value in this population. 24 

 25 
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Given the age-related differences in immune infiltration observed, we identified both the 1 

differences and similarities in GO term enrichment with age for TCGA and GTEx samples. 2 

Inflammation and immune terms are up in both, including interferon gamma signaling, which 3 

likely has some impact on the observed increase in PDL1 expression (Flies and Chen, 2007). 4 

The differences in enrichment, however, are largely not directly immune related and do not 5 

ostensibly explain the observed differences in immune infiltration. However, some of these 6 

pathway differences, such as increased mitochondrial activity in tumors with age and decreased 7 

activity in normal aged tissues, may merit future investigation due to the potential role these 8 

changes may play on cellular energetics and survival.  9 

 10 

To determine if age-related tumor mutational burden increases mediate the immune infiltration 11 

changes we observe with age, we included it as a covariate in analyses of immune infiltration 12 

derived from MIXTURE. We determined none of our observations changed substantially 13 

(Supplemental Data), demonstrating that the observed differences are mediated through other 14 

age-related factors. Thus, we conclude the T cell infiltration decreases, macrophage infiltration 15 

increases, and NK infiltration stability despite an increasing abundance in the body overall is 16 

most likely attributable to the hypothesis that exhausted or senescent phenotypes develop in 17 

immune cells as individuals age and make the immune cells of older patients more sensitive to 18 

the immunosuppressive signaling that is produced by most tumors (Lu et al., 2019). Another 19 

possibility is that some other aspect of aging biology extrinsic to immune cells interacts with the 20 

dysregulated signaling from tumors to prevent immune infiltration of certain cell types. However, 21 

these investigations do not provide any particular evidence of what that actor might be and 22 

therefore the former hypothesis should be favored by virtue of parsimony. Additional 23 

investigation is needed to determine whether either of these proposed mechanisms drives our 24 

observations, but they suggest the possibility of therapeutics targeting the immune senescence 25 
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phenotype or the interaction of said phenotype and tumor immunosuppressive signaling to 1 

improve outcomes for older cancer patients.    2 

 3 

It is important to note the limitations of bulk expression data for the analysis of tumor-infiltrating 4 

immune cells. Possibly most importantly is the consideration of immune cell function and quality 5 

(e.g. the question of whether T cells are exhausted or non-functioning is difficult to address from 6 

bulk data). Further, immune cell type deconvolution of bulk data does not lend itself to as 7 

thorough an exploration of immune subtypes as at single-cell resolution. Therefore, future 8 

single-cell pan-cancer characterization from projects such as the Human Tumor Atlas Network 9 

(Rozenblatt-Rosen et al., 2020) and normal tissue through the Human Cell Atlas are critical to 10 

further delineate the role that aging-related changes to immune cell function play in cancer. 11 

Nonetheless, characterization of the impact aging has on the ITME from bulk data can be a 12 

significant aid in the informed treatment of elderly patients. 13 

 14 

Overall, these results suggest that patients of advanced age may benefit from immune 15 

modulation that promotes infiltration of immune cells that are already present in their body to 16 

produce a more favorable environment for therapeutic response and survival. Additionally, our 17 

results, along with previous meta-analyses of clinical trials, suggest that ICB use in elderly 18 

patients merits further study and expansion. Finally, these findings indicate that to fully 19 

appreciate the tumor biology and treatment needs of older patients, specific study into the 20 

effects of age in cancer is necessary, as we cannot necessarily rely on studies of aging in 21 

general to accurately describe the effects of age in tumors. 22 

 23 

Methods 24 

RNA-Sequencing Data 25 
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TCGA RNA-sequencing data processed and normalized according to 1 

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/ was 2 

downloaded from the GDC Data Portal on August 8th, 2019, filtering for all TCGA samples with 3 

patients above 30 years of age. Patients under 30 were excluded to focus on ITME changes in 4 

adult populations, which are more likely to generalize to the majority of cancer patients.  5 

 6 

GTEx RNA-sequencing counts version 8 were downloaded from the GTEx Portal on November 7 

12th, 2019. Only individuals over 30 were included in the final analysis, to be comparable with 8 

filtering of TCGA. Characteristics of these cohorts are listed in Supplemental Table 4.  9 

 10 

Immune Cell Type Deconvolution from Bulk RNA-Sequencing Data 11 

The MIXTURE algorithm (Fernandez et al., 2019) builds on the nu-Support Vector Regression 12 

framework used by CIBERSORT (Newman et al., 2015) for particular use with noisy tumor 13 

samples. MIXTURE applies Recursive Feature Selection to make the cell type deconvolution 14 

more robust to noise and collinearity, and was thus designed to improve performance on tumor 15 

data.  16 

 17 

We run MIXTURE using a population-based null distribution and the nu-SVM Robust RFE 18 

method on the preprocessed RNA-sequencing data from both TCGA and GTEx. A signature 19 

expression matrix (LM22 from Newman et al) (Newman et al., 2015) is used to determine the 20 

proportion of 22 immune cell types in each sample. MIXTURE returns both relative and absolute 21 

proportions of immune cells. Absolute proportions were used for all analyses of TCGA and 22 

GTEx datasets. MIXTURE provides a p-value for the cell type deconvolution performed. Only 23 

samples with a deconvolution p-value less than 0.05 were used in the final analyses, leaving 24 

3576 patient samples remaining in TCGA and 1689 in GTEx. A further 29 TCGA patients had 25 

received treatment prior to sample collection, and were removed to avoid biasing of results. 26 
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 1 

Modeling the Association of Immune Cell Type with Age and Survival 2 

Linear models are fit to investigate the association between the absolute proportion of each 3 

immune cell type and the initial diagnosis age in TCGA. The models are fit separately for each 4 

cancer type as well as jointly with cancer type and patient sex as covariates. Significance is 5 

assessed using Benjamini-Hochberg FDR correction for multiple testing across all cell types 6 

tested. 7 

 8 

Higher order cell types are defined by adding together individual substituent cell type values and 9 

dividing by the sum of all cell types, the result of which is used as the predictor variable in the 10 

linear model (which immune subtypes correspond to which higher order cell types is shown in 11 

Supplemental Table 1).  12 

 13 

In addition to the linear models, we made box and violin plots of the immune cell type absolute 14 

proportion by age group without additional covariate adjustment to visualize immune changes 15 

with age.  16 

 17 

The relationships between overall survival and immune cell types are assessed using a Cox 18 

proportional hazards model fit with the survival R package Version 3.1-8. The model uses 19 

months of overall survival as the outcome and includes diagnosis age and sex as covariates. It 20 

is further stratified by cancer type.  21 

 22 

GTEx data only provides the age group of each individual rather than the particular year of age  23 

at the time of sample collection, so an ANOVA is performed between absolute immune cell 24 

proportion and age group, including age and tissue type as covariates. 25 

 26 
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Modeling the Age Associations of Normalized TCR Clonality and Number of Tumor Mutations 1 

TCR clonality is assessed using miTCR (Bolotin et al., 2013) results previously published by 2 

Thorsson et al., 2018 (Thorsson et al., 2018). Our previous results demonstrated decreased 3 

infiltration of T cells with increasing age, so to avoid biasing our results, the Shannon Entropy is 4 

multiplied by the number of unique TCR clones divided by the total number of TCR reads.  We 5 

then fit a linear model for the association of age with this TCR clonality measure, including 6 

patient sex and cancer type as covariates. We again use a Cox Proportional hazards model to 7 

assess if normalized TCR clonality is a relevant survival prognostic, using the same survival 8 

function and covariates as described above. 9 

 10 

To find the association of age and number of tumor mutations we downloaded the mutation 11 

count provided for each sample from the GDC data portal. We log transformed the data due to 12 

the skewed distribution of tumor mutation counts and fit the values to a linear model and Cox 13 

proportional hazards model, using the same covariates as above. 14 

 15 

Differential Expression Analysis with Age 16 

Differential expression analyses from both TCGA and GTEx data were performed on all 17 

samples from individuals of at least 30 years of age. The edgeR package Version 3.26.8 was 18 

used for normalization and identifying differentially expressed genes with age. Diagnosis age 19 

was modeled as a continuous variable, including cancer type as a covariate for the TCGA 20 

analysis and tissue type as a covariate for the GTEx analysis. Genes were considered 21 

differentially expressed below an FDR adjusted p-value of 0.05. A further differential expression 22 

analysis was performed on TCGA data, including mutation count as an additional covariate. 23 

Finally, a differential expression analysis for diagnosis age was performed on each cancer type 24 

separately that had at least 100 samples.  25 

 26 
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Differential Methylation Analysis with Age 1 

Merged 450k and 27k DNA methylation array data preprocessed by (Thorsson et al., 2018) was 2 

downloaded from GDC at https://gdc.cancer.gov/about-data/publications/panimmune. A linear 3 

model for diagnosis age was fit to data from each CpG, including cancer type as a covariate. 4 

CpG methylation was considered significantly different with age if the FDR adjusted p-value for 5 

the diagnosis age term was less than 0.05. Annotations of CpG sites to gene promoters were 6 

retrieved from the IlluminaHumanMethylation27k.db R package Version 1.4.8. The same 7 

analysis was repeated, additionally including mutation count as a covariate in the model. 8 

 9 

Finding Epigenetically Regulated Immune Genes 10 

Genes annotated to have an association with immune function were downloaded from InnateDB 11 

(Breuer et al., 2013), (Lynn et al., 2008). Differentially expressed genes were subset to those 12 

overlapping with the set annotated as immune-related. These sets were then further subset to 13 

those that were up-expressed with age and down-methylated, as well as those down-expressed 14 

with age and up-methylated, in accordance with the canonical understanding of the effects of 15 

DNA methylation on gene expression.  16 

 17 

These sets were produced for both the analysis including and not including mutation count as a 18 

covariate. The resulting gene sets were visualized using the STRING database (Szklarczyk et 19 

al., 2019), which shows the known or predicted interactions that the corresponding proteins 20 

would be expected to have.  21 

 22 

Gene Set Enrichment Analysis 23 

The fgsea R package version 1.10.1 (Sergushichev, 2016) was used to perform gene set 24 

enrichment analysis from differential expression results with age from TCGA and GTEx, 25 

produced as described above. GO terms were downloaded from MsigDB (Liberzon et al., 2011) 26 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2020. ; https://doi.org/10.1101/2020.06.08.140764doi: bioRxiv preprint 

http://sciwheel.com/work/citation?ids=5048820&pre=&suf=&sa=0
https://gdc.cancer.gov/about-data/publications/panimmune
http://sciwheel.com/work/citation?ids=917712&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=916956&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6618626&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6618626&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=3880002&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=171548&pre=&suf=&sa=0
https://doi.org/10.1101/2020.06.08.140764
http://creativecommons.org/licenses/by-nc/4.0/


25 
 

using the msigdbr R package Version 7.0.1. GO enrichment was compared between the data 1 

sets, identifying those terms significantly up in both, up in one and down in the other, and down 2 

in both with age.  3 
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Code Availability 

All analysis code is available on GitHub at: https://github.com/rossinerbe/ImmuneAgingAnalysis 
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Figures 

Figure 1 - Macrophages increase and T cells decrease with age in the ITME 
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A Boxplots representing the pan-cancer change in T cell absolute proportion across different 

age groups from TCGA. A significant downward trend is observed based on a covariate-

adjusted linear model B Boxplots representing the change in macrophage absolute proportion 

across age groups in TCGA. A significant upward trend is observed based on a covariate-

adjusted linear model C Barplot of the t-statistics for the diagnosis age term of the linear models 

fit to each immune cell type from TCGA, including sex and cancer type as covariates.  ** 

indicates an adjusted p-value less than 0.01 and *** indicates less than 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 - Immune infiltration shifts with age and prognostics 
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Age and survival association of immune cell types within cancer types. A Heatmap of the T-

statistics from the covariate-adjusted linear model fit for the association of each immune cell 

type to age. Each square represents the significance of the diagnosis age term within a linear 

model for the labeled immune cell type, plotted for each cancer type in TCGA with at least 100 

patients after filtering for significant immune deconvolution results. We observe that 

macrophages generally increase in abundance with age, while T cells and B cells generally 

decrease in abundance. B Heatmap of the covariate-adjusted Cox proportional hazards where 

each square represents the z-statistic for the survival prognostic of each immune cell type within 

each cancer type in TCGA with at least 100 patients after filtering. We observe that 

macrophages and other Myeloid cells are generally poor prognostics and that T cells are 

generally good prognostics. 
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Figure 3 - Immune changes with age in healthy tissues 

 

GTEx immune cell changes with age. A-D Immune abundance with age in GTEx tissues for T 

cells, Macrophages, B cells, and NK cells, respectively. E Age associations of 22 immune 

subtypes in GTEx tissues. Plotted by the F statistic for an ANOVA across age groups. F 
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Comparison of F statistics for ANOVA across age groups for TCGA Colon Adenocarcinomas 

(COAD) against GTEx Colon samples. Opposite trends with age are observed for macrophages 

and T cells in this tissue. * indicates a p-value less than 0.05 and ** 0.01. 

 

Figure 4 - Corresponding methylation and expression changes with age 

 

STRING Database queries for all genes with significantly A increased expression and 

decreased methylation with age, where genes that have previously been strongly associated 

with decreased T cell cytotoxicity have a purple halo B increased expression and decreased 

methylation with age, adjusting for tumor mutation count, where genes that have previously 

been strongly associated with decreased T cell cytotoxicity have a purple halo C decreased 

expression and increased methylation with age, D decreased expression and increased 

methylation with age, adjusting for tumor mutation count. 
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Table 1 

 Estimate Standard 
Error 

t-value p-value q-value 

T cells -0.0006 0.000175 -3.44233 0.000585 0.001754 

Macrophages 0.001075 0.000271 3.967909 7.42E-05 0.000445 

B cells -0.00028 0.000149 -1.87737 0.060566 0.121131 

NK cells 3.82E-06 6.89E-05 0.055398 0.955826 0.955826 

Dendritic 
cells 

-0.00015 9.77E-05 -1.49017 0.136286 0.204429 

Misc. Myeloid -4.97E-05 9.92E-05 -0.50055 0.616722 0.740066 

 

Coefficients, statistics, p, and q-values for the diagnosis age term in the linear model fit for each 

immune cell type. Cancer type and sex were included as covariates for each of these models.  

 

Table 2 

 Coefficient exp(Coef.) z-statistic p-value q-value 

T cells -1.25217 0.285882 -3.9169 8.97E-05 0.000538 

Macrophages 0.694023 2.001752 3.460928 0.000538 0.001615 

B cells -0.52134 0.593723 -1.43318 0.151808 0.227711 

NK cells -1.99242 0.136365 -2.48022 0.01313 0.026261 

Dendritic 
cells 

0.18663 1.205181 0.368952 0.712164 0.712164 

Misc. Myeloid 0.516746 1.676563 0.99876 0.317911 0.381493 

 

Coefficients, statistics, p, and q-values for each immune cell term in a Cox proportional hazards 

model fit to predict overall patient survival, including diagnosis age, sex, cancer type, and 

number of years smoked as covariates. 
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Table 3 

  Coefficient Statistic p-value 

TCR Clonality Diagnosis Age -0.00509 -5.6694 1.48E-08 

 Cox Hazards -0.08812 -4.14902 3.34E-05 

Log Tumor 
Mutational 
Murden 

Diagnosis Age 0.0102449 13.454 6.88E-41 

 Cox Hazards -0.053340 -2.542 0.011 

 

Coefficients, statistics, and p-values for the age term of the linear model for both TCR clonality 

and number of tumor mutations in TCGA data, with cancer type included as a covariate. These 

values are also listed for the TCR clonality term and the log number of tumor mutations term 

from a Cox proportional hazards model fit to overall survival with diagnosis age and cancer type 

included as covariates. 
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Table 4 

 Gene LogFC t-statistic p-value q-value 

 
 
 

Age + 
Cancer Type 

Adjusted 

CD80 0.00361 3.002352 0.002686 0.011553 

CD274 0.003053 2.612337 0.009007 0.029899 

CD86 0.002146 2.130932 0.03312 0.083376 

CTLA4 -0.00084 -0.5747 0.56551 0.69286 

PDCD1 -0.00062 -0.42127 0.67357 0.778683 

 
 

+  
Mutational 

Burden 
Adjusted 

CD80 0.002983 -0.90527 2.38488 0.017105 

CD86 0.002127 2.9119 2.035515 0.041828 

CD274 0.00198 2.124811 1.618133 0.105669 

CTLA4 -0.00204 0.12074 -1.34813 0.177652 

PDCD1 -0.002 0.334003 -1.30557 0.191731 

 

Differential expression results for immune checkpoint genes involved in currently available ICB 

immunotherapies. The results are shown for the association with age, both including tumor 

mutational burden as a covariate and without. 
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Supplemental Figures 

Supplemental Figure 1 

 

T statistics for the linear association of 22 immune cell subtypes with age pan-cancer within 

TCGA data. Naive B cells statistically significantly decrease with age. * indicates q-value less 

than 0.05. 
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Supplemental Figure 2 

 

A Z-statistics for the survival associations of immune cell types pan-cancer as evaluated by a 

Cox proportional hazards model, including age, sex, cancer type, and smoking years as 

covariates. B Z-statistics for the survival associations of 22 immune cell subtypes as evaluated 

by a Cox proportional hazards model for overall patient survival pan-cancer including age, sex, 

cancer type, and smoking years as covariates.  * indicates a p-value less than 0.05, ** 0.01, and 

*** 0.001. 
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Supplemental Figure 3 

 

Boxplot of the age demographic for each of the cancer types with at least 100 observations that 

were successfully deconvolved by immune cell type. The number of patients with each cancer is 

plotted above. 

 

Supplemental Figure 4 

 

 

Association of immune cell type and age. The F statistic for the diagnosis age term of an 

ANOVA for each immune cell type (including age and sex as covariates) is used to compare A 

lung cancers to healthy lung tissue samples and B breast cancers to healthy breast tissue 

samples.  * indicates a p-value less than 0.05. 
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Supplemental Figure 5 

 

Comparing immune cell ratios of potential functional importance between TCGA and GTEx. A-B 

The proportion of M1 to M2 Macrophages in GTEx across tissues and TCGA pan-cancer, 

respectively. There is a significant increase in M1/M2 ratio in GTEx tissues with age, while there 

is no significant shift in TCGA. C-D Proportion of CD8 T cells to CD4 T cells with age in GTEx 

across tissues and TCGA pan-cancer, respectively. There is a significant increase in CD8/CD4 

ratio in GTEx tissues with age, while there is no significant shift in TCGA. 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 6 
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A Read normalized Shannon entropy of T cell receptor sequences plotted against age. The line 

fit to the data is a linear model of TCR clonality predicted by age, adjusted for sex and cancer 

type. B The log-normalized number of mutations found in each tumor sample is plotted against 

diagnosis age. The line fit to the data is a linear model of log-normalized number of mutations 

predicted by age, adjusted for sex and cancer type. C The T-statistic for the diagnosis age term 

of the linear model predicting the log normalized number of mutations for each cancer type. 

 

Supplemental Figure 7

 

The association of immune checkpoint blockade genes with age across all cancer types with at 

least 100 samples in TCGA as determined by the t-statistic from limma-voom differential 

expression analysis. 
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Supplemental Figure 8 

 

Dot plots representing genese set enrichment analysis for genes differentially expressed with 

age for both TCGA and GTEx. A Pathways significantly up in both TCGA and GTEx with age B 

Pathways significantly up in TCGA and down in GTEx with age C Pathways significantly up in 

GTEx and down in TCGA with age D Pathways significantly down in both TCGA and GTEx with 

age. 
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Supplemental Figure 9 

 

The association of TCR clonality and age is plotted for each cancer type in TCGA using the t-

statistic from the diagnosis age term of a linear model fit to the TCR clonality of each cancer 

type, adjusting for sex as a covariate. 
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Supplemental Figure 10 

 

Hypothesized model for how the age-related effects we have observed affect T cell anti-tumor 
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activity and expression of PDL1.  

 

Supplemental Table 1 

 

Immune Cell Types Immune Subtypes 

T cells CD8 T cells, Naive CD4 T cells, Resting Memory Cd4 T cells, 
Activated Memory CD4 T cells, Follicular Helper T cells, 
Regulatory T cells, Gamma Delta T cells 

Macrophages M0 Macrophages, M1 Macrophages, M2 Macrophages 

B cells Naive B cells, Memory B cells, Plasma Cells 

NK cells Resting NK cells, Activated NK cells 

Dendritic cells Resting Dendritic cells, Activated Dendritic cells 

Misc. Myeloid cells Monocytes, Resting Mast cells, Activated Mast cells, Eosinophils, 
Neutrophils 

Immune cell types that were evaluated in relation to age for both TCGA tumor samples and 

GTEx normal samples. 

 

Supplemental Table 2 

 F-statistic p-value q-value 

T cells 0.887307 0.470706 0.564847 

Macrophages 0.981287 0.416576 0.564847 

B cells 5.835976 0.000117 0.00035 

NK cells 19.34786 1.54E-15 9.27E-15 

Dendritic cells 2.265888 0.060047 0.120095 

Misc. Myeloid 0.647328 0.628807 0.628807 

 

F-statistic, p, and q-values for each immune cell term in an ANOVA for the effect of age on the 

abundance of each immune cell type. Tissue and sex were included in the model as covariates. 
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Supplemental Table 3 

  Up Expressed Down Expressed 

Age, Cancer Type 
Adjusted 

Up Methylated 66 218 

Down Methylated 113 94 

Mutational Burden 
Adjusted 

Up Methylated 62 135 

Down Methylated 129 86 

 

Number of genes differentially methylated and differentially expressed among immune 

related genes from TCGA samples. The genes with a canonical relationship between 

methylation and expression are in bold. The comparison is made both including and not 

including mutational burden as a covariate. 

 

 

Supplemental Table 4 

 TCGA GTEx 

Subjects 8984 980 

Males 4367 653 

Females 4617 327 

Age 20-29* N/A 84 

Age 30-39 667 78 

Age 40-49 1226 153 

Age 50-59 2106 315 

Age 60-69 2453 317 

Age 70-79 1693 33 

Age 80-90 504 0 
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Basic demographic information used as covariates in the analyses conducted in this 

study comparing the TCGA and GTEx cohorts. 

*Age 20-29 was excluded from the TCGA patients collected (See Materials and 

Methods) and for comparison these individuals were excluded from the final analysis of 

GTEx data as well 

 

Supplemental Table 5 

 

Tissue Number 

of 

Samples 

Adipose 

Tissue 

1204 

Adrenal 

Gland 

258 

Bladder 21 

Blood 929 

Blood 

Vessel 

1335 

Brain 2642 

Breast 459 

Cervix 

Uteri 

19 

Colon 779 

Esophagus 1445 
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Fallopian 

Tube 

9 

Heart 861 

Kidney 89 

Liver 226 

Lung 578 

Muscle 803 

Nerve 619 

Ovary 180 

Pancreas 328 

Pituitary 283 

Prostate 245 

Salivary 

Gland 

162 

Skin 1809 

Small 

Intestine 

187 

Spleen 241 

Stomach 359 
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Testis 361 

Thyroid 653 

Uterus 142 

Vagina 156 

Number of RNA-seq samples from each tissue in GTEx data used. 

 

Supplemental Table 6 

 

TCGA 

Cancer 

Type 

Acronym 

Number 

of 

Samples 

ACC 64 

BLCA 405 

BRCA 1056 

CESC 270 

CHOL 35 

COAD 272 

DLBC 45 

ESCA 180 

GBM 148 
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HNSC 507 

KICH 61 

KIRC 508 

KIRP 276 

LAML 158 

LGG 433 

LIHC 347 

LUAD 479 

LUSC 474 

MESO 86 

OV 292 

PAAD 177 

PCPG 157 

PRAD 480 

READ 88 

SARC 244 

SKCM 411 
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STAD 403 

TGCT 74 

THCA 433 

THYM 116 

UCEC 169 

UCS 57 

UVM 79 

Number of RNA-seq samples from each TCGA study in the TCGA data used in this work. 
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