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Abstract 

 

In humans and higher animals, a trade-off between sufficiently high erythrocyte concentrations to 

bind oxygen and sufficiently low blood viscosity to allow rapid blood flow has been achieved during 

evolution. Optimal hematocrit theory has been successful in predicting hematocrit values of about 

0.3 - 0.5, in very good agreement with the normal values observed for humans and many animal 

species. However, according to those calculations, the optimal value should be independent of the 

mechanical load of the body. This is in contradiction to the exertional increase in hematocrit 

observed in some animals called natural blood dopers and to the illegal practice of blood boosting in 

high-performance sports. In this study, we calculate the optimal hematocrit under two different 

constraints - under a constant driving pressure and under constant cardiac power – and show that 

the optimal hematocrit under constant cardiac power is higher than the normal value, ranging from 

0.5 to 0.7. We use this result to explain the tendency to better exertional performance at an 

increased hematocrit.  

 

 

 

Statement of Significance 

 

In humans and higher animals, erythrocytes comprise a volume fraction (hematocrit) of 30-50 % of 

the blood. Mathematical calculations based on the assumption of constant blood pressure show that 

the optimal hematocrit value is indeed in that range. However, this optimum should apply to both 

rest and physical exertion, which is in contradiction to the increase in hematocrit observed in some 

animals called natural blood dopers and to the illegal practice of blood boosting in sports. Here, we 

calculate the optimal value based on the alternative constraint of constant cardiac power. We show 

that this results in a higher optimal value, ranging from 50 to 70 %. In this way, we explain the better 

exertional performance at an increased hematocrit. 
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1. Introduction 

In the blood flow of humans and higher animals, a trade-off between sufficiently high erythrocyte 

concentration (known as hematocrit) to transport oxygen and sufficiently low blood viscosity to allow 

rapid flow has been achieved during evolution. Based on the trade-off between these two factors, 

authors from our group calculated the optimal hematocrit value maximizing oxygen supply to be 0.3-

0.5, which is in very good agreement with values observed in humans and many animal species (1, 2). 

The exact predicted value depends on the formula used to express viscosity in terms of hematocrit. 

Several other detailed theoretical modelling studies (3, 4) yield the optimal hematocrit value of 

about 0.4 as well. This shows that even a highly simplified model (1, 2) can lead to relevant results. 

An optimal resting hematocrit of about 0.4 was also found in an experiment with dogs in which the 

hematocrit was varied by blood exchange (5).   

However, according to the calculations (1-4), the optimal value should be independent of the level of 

exertion. This is in contradiction to the optimal hematocrit value of 0.5-0.6 found during a blood 

perfusion of isolated working muscle at a constant perfusion pressure (6). A lower sensitivity of blood 

flow to hematocrit in working muscle in comparison to resting muscle was also found in (7). Another 

contradiction comes from the observation in endurance runner animals like dogs or horses, which 

are called natural blood dopers (8) because they increase their hematocrit at exertion via expulsion 

of concentrated blood from the spleen. Finally, a counter-example is also the prohibited practice of 

blood boosting in high-performance sports. With the use of blood boosting, several outstanding 

records were set and many studies have demonstrated its positive performance effect (9-21). In 

other studies (22), however, no increase was observed in performance. Even placebo effects have 

been mentioned to solve this “hematocrit paradox” and the topic remains controversial (8). A 

drawback of the idea about a positive effect of increased hematocrit is the absence of a clear 

theoretical explanation: why should the increased hematocrit promote performance, when the 

theoretical models (1, 3, 4) predict the optimum to be at normal values even at exertion.  

Experimental studies using erythropoietin indicate that an increase in hematocrit leads to a weak 

increase both in the pressure difference and in cardiac power (8, Table 1). In this study, we perform a 

calculation of the optimal hematocrit under two different, simplifying constraints - under constant 

perfusion pressure and under constant cardiac power, to check which of these describes 

observations better. Blood pressure is a well-regulated quantity at rest. At exertion, however, the 

body switches to performance and takes the risk of increasing blood pressure. The constraint of 

constant cardiac power implies that at lower blood flow velocities (due to higher blood viscosity), the 

driving force of the heart increases, so that the product of both remains constant. We show that the 
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resulting optimal hematocrit is higher than the normal value. With this result, we explain the 

tendency to better exertional physical performance at an increased hematocrit, at least over shorter 

periods. 

 

2. Methods and Results 

 

2.1. Basic equations 

According to the Hagen-Poiseuille law (23) the flow Q through a tube of length 𝑙 and radius 𝑟 under 

the pressure difference ∆𝑝 (alternatively called perfusion pressure or driving pressure) is given by 

 
Q =

𝜋𝑟4∆𝑝

8𝑙𝜂(𝜑)
 (2.1.1) 

where 𝜂(𝜑) denotes the fluid viscosity, which is, in the case of blood, a function of the hematocrit 𝜑. 

For our calculations, it is only relevant that the flow is proportional to ∆𝑝 and inversely proportional 

to the viscosity . This also holds for an ideal flow in a vessel with elliptical or rectangular cross-

section (24) or the flow through porous media (25). Thus, Eq. 2.1.1 can be rewritten as  

Q = 𝐾
∆𝑝

𝜂(𝜑)
 (2.1.2) 

with some constant 𝐾 dependent only on the tube geometry. This relationship can be generalized for 

the whole circulation or segments of circulation (26, 27), with Q being the total flow through the 

circulation (i.e. cardiac output) and ∆𝑝 the pressure difference between both ends of the circulation 

(i.e. the difference between the mean arterial pressure and the pressure in the right atrium of the 

heart). 

In the following sections, we use several relationships between the hematocrit and blood viscosity 

that are summarized in Table 1. Some of these relationships are illustrated in Figure 1. 𝜂0 denotes the 

viscosity of the particle-free liquid, which is blood plasma in our case. The hematocrit 𝜑 represents 

the volume fraction of erythrocytes in the blood, 𝜑m is the maximum possible volume fraction of 

erythrocytes (maximal packing density). In case of stiff spherical particles, for example, 𝜑m equals 

74 %. The formulas are discussed in Stark & Schuster (1, 2). 

Author Formula   

Einstein (28, 29) 𝜂 = 𝜂0(1 + 2.5𝜑) (2.1.3) 

Gillespie (30) 𝜂 = 𝜂0

1 + 𝜑 2⁄

(1 − 𝜑)2
 (2.1.4) 
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Krieger and Dougherty (31) 𝜂 =
𝜂0

(1 − 𝜑 𝜑𝑚⁄ )2.5𝜑𝑚
 (2.1.5) 

Arrhenius (32) 𝜂 = 𝜂0𝑒2.5𝜑 (2.1.6) 

Saitô (33) 𝜂 = 𝜂0 (1 + 2.5
𝜑

1 − 𝜑
) (2.1.7) 

Quemada (34) 𝜂 =
𝜂0

(1 − 𝜑 𝜑𝑚⁄ )2
 (2.1.8) 

Mooney (35) 𝜂 = 𝜂0𝑒
2.5𝜑

1−𝜑 𝜑𝑚⁄  (2.1.9) 

  

TABLE 1 Relationships between blood viscosity 𝜂 and the hematocrit 𝜑. 𝜂0 is the viscosity 

of blood plasma, 𝜑m is the maximum possible volume fraction of erythrocytes. 

 

Specially for blood, a semi-empirical, more precise formula  

 
𝜂(𝐷, 𝜑) = 𝜂0 (1 +

(2.2 − 2.44𝑒−0.06𝐷0,645
+ 220𝑒−1.3𝐷)[−1 + (1 − 𝜑)𝑤+(𝑤−1)(0.8+𝑒−0.075𝐷)]

0.55𝑤+(𝑤−1)(0.8+𝑒−0.075𝐷) − 1
) (2.1.10) 

was developed by Pries (36), where D represents the tube diameter (in m) and the factor 𝑤 =

1 (1 + 𝐷12 1011⁄ )⁄ . In case of a rapid flow in a small vessel, the erythrocytes, as very large ´particles´, 

are concentrated in the middle of the vessel, which decreases the effective blood viscosity (known as 

Fåhraeus-Lindqvist effect (1, 2)). Therefore, the effective viscosity depends not only on the 

hematocrit 𝜑, but also on the vessel diameter D. The Pries formula takes account of this behavior 

and can be regarded as most reliable. In small vessels, viscosity is less sensitive to hematocrit, which 

is reflected in the curve for small vessel diameters (50 m) in Fig. 1, lying below that for large 

diameters. 
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FIGURE 1 Dependencies of the (relative) viscosity 𝜂 on the hematocrit 𝜑 according to 

several selected formulas from Table 1. 

The oxygen content in one liter of fully saturated blood, 𝐶𝑜𝑥, is proportional to the hematocrit 𝜑, 

with the proportionality constant 𝑘 

 𝐶𝑜𝑥 = 𝑘𝜑 (2.1.11) 

The whole organism oxygen supply, further denoted as Jox, can be expressed as 

 Jox = 𝐶𝑜𝑥𝑄 = 𝑘𝜑𝑄 (2.1.12) 

 

In the following sections, two constrained optimization models of oxygen supply will be described – a 

model with a constraint of constant driving pressure and a model with a constraint of constant 

cardiac power. 

 

2.2. Optimization of oxygen supply under constant driving pressure 

Optimization with constant driving pressure is similar to the optimization performed by our group 

formerly (1, 2). Only the main ideas of that work will be summarized in this section.  

With the substitution for Q from Eq. 2.1.2 to Eq. 2.1.12 we obtain Jox as a function of ∆𝑝 and 𝜑  

 
Jox = 𝑘𝐾𝜑

∆𝑝

𝜂(𝜑)
= 𝐾′∆𝑝

𝜑

𝜂(𝜑)
 (2.2.1) 

The product 𝑘𝐾 was replaced with a new constant 𝐾′. 

Arrhenius

Saitô

Pries D 50 m

Pries D 1000 m

0.2 0.4 0.6 0.8 1.0
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For a given driving pressure ∆𝑝, Jox achieves maximum at  

 
0 =

𝜕Jox

𝜕𝜑
|

Δ𝑝

=
𝐾′∆𝑝

𝜂2(𝜑)
(𝜂(𝜑) − 𝜑𝜂′(𝜑)) (2.2.2) 

which results in a condition for the optimal hematocrit 𝜑𝑚𝑎𝑥
∆𝑝

 

 
𝜑𝑚𝑎𝑥

∆𝑝
=

𝜂(𝜑𝑚𝑎𝑥
∆𝑝

)

𝜂′(𝜑𝑚𝑎𝑥
∆𝑝

)
 (2.2.3) 

That this leads to a maximum can be confirmed with the negative value of the second derivative. 

The different optimal values 𝜑𝑚𝑎𝑥
∆𝑝

 following from various formulas for 𝜂(𝜑) are given in Table 2 (left 

column), ranging mostly from 0.3 to 0.4. Selected plots of Jox as a function of 𝜑 under constant 

driving pressure are shown in Fig. 2. Fig. 3 illustrates the influence of the vessel diameter, based on 

the Pries formula. For small vessels, the lower effective viscosity results in a higher optimal 

hematocrit, reaching the optimal value of more than 0.5 for vessel diameters below 50 m. For large 

diameters the Pries formula provides approximately the same optimal value of 0.39 as Saitô´s 

formula. It is worth noting that the optimization in the model of Farutin et al. (3) was also performed 

under constant driving pressure and yields a similar optimal hematocrit value of about 0.4.  

 

2.3. Optimization of oxygen supply under constant cardiac power 

Now we modify the circulation model so that the physical power of the heart P rather than the 

driving pressure Δ𝑝 remains constant. 

The physical power P of the heart is defined as the work performed by the heart in a unit time. Thus,  

 
𝑃 =

𝑑𝑊

𝑑𝑡
=

𝑑𝑉Δ𝑝

𝑑𝑡
= 𝑄Δ𝑝 (2.3.1) 

where W is the work of the heart and V the ejected blood volume. 

With a substitution from Eq. 2.1.2 we obtain  

 
𝑃 = 𝑄Δ𝑝 = 𝐾

(Δ𝑝)2

𝜂(𝜑)
 (2.3.2) 

Substituting Δ𝑝 in Eq. 2.1.2 we obtain 𝑄 as a function of 𝑃 and 𝜑 

𝑄 = 𝐾
∆𝑝

𝜂(𝜑)
= √𝐾

√𝑃

√𝜂(𝜑)
   (2.3.3) 

For a given cardiac power P the blood flow depends on the inverse square root of viscosity, contrary 

to just inverse linear dependence in case of constant driving pressure, as follows from Eq. 2.1.2. This 

makes the blood flow less dependent on viscosity. A lower sensitivity of blood flow to hematocrit at 

exertion was indeed found in experiment (7). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2020. ; https://doi.org/10.1101/2020.06.09.141374doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.141374
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

For Jox , it follows 

    Jox = 𝑘𝜑𝑄 = 𝐾′√𝑃
𝜑

√𝜂(𝜑)
  

  

 (2.3.4) 

where the constant terms were replaced with a new constant 𝐾′. 

For a given cardiac power P, the Jox achieves maximum at  

 
0 =

𝜕Jox

𝜕𝜑
|

𝑃

=
𝐾′′√𝑃

𝜂(𝜑)
(√𝜂(𝜑) − 𝜑

𝜂′(𝜑)

2√𝜂(𝜑)
) (2.3.5) 

which results in a condition for 𝜑𝑚𝑎𝑥
𝑃  

 
𝜑𝑚𝑎𝑥

𝑃 =
2𝜂(𝜑𝑚𝑎𝑥

𝑃 )

𝜂′(𝜑𝑚𝑎𝑥
𝑃 )

 (2.3.6) 

Hence, the 𝜑𝑚𝑎𝑥
𝑃  represents the hematocrit that maximizes the oxygen supply under a given cardiac 

power. Again, this can be confirmed with the negative value of the second derivative. 

As in the previous subsection, various formulas for 𝜂(𝜑) provide different optimal hematocrit values 

𝜑𝑚𝑎𝑥
𝑃 , given in Table 2 (right column), ranging mostly from 0.5 to 0.7. Selected plots of Jox as a 

function of 𝜑 at a given cardiac power are shown in Fig. 2. Fig. 3 illustrates the influence of vessel 

diameter, based on the Pries formula. For small vessels the optimal hematocrit increases up to 0.7, 

for big vessels we obtain an optimal value of around 0.6, just as from Saitô´s formula.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 2 Comparison of optimal values of the hematocrit, optimized under constant driving 

pressure (left column) and constant cardiac power (right column) 

 

 

Viscosity formula         𝜑𝑚𝑎𝑥
∆𝑝

 𝜑𝑚𝑎𝑥
𝑃  

Mooney 0.234 0.344 

Quemada 0.333 0.505 

Krieger-Dougherty 0.286 0.491 

Gillespie 0.302 0.474 

Saitô 0.387 0.603 

Arrhenius 0.400 0.800 

Pries D = 10 m 0.608 0.731 

Pries D = 1000 m 0.393 0.627 
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FIGURE 2 Dependence of Jox on 𝜑 for several selected formulas for 𝜂(𝜑). Gray curves - 

calculation under constant driving pressure (_dp), black curves – calculation under 

constant cardiac power (_P). Jox is plotted as a fraction of maximal Jox of the 

respective curve. 

 

 

 

 

FIGURE 3 Dependence of the optimal hematocrit 𝜑𝑚𝑎𝑥 on the vessel diameter D, based on 

the Pries formula for the optimization under constant driving pressure (dashed 

curve) and constant cardiac power (full curve). 
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2.4. Relationship between 𝝋𝒎𝒂𝒙
𝑷  and 𝝋𝒎𝒂𝒙

∆𝒑
 

As seen in Table 2, the optimal hematocrit under constant cardiac power is always higher than the 

optimal hematocrit under constant driving pressure, that is  

𝜑𝑚𝑎𝑥
𝑃 > 𝜑𝑚𝑎𝑥

∆𝑝
 (2.4.1) 

This can be proved in a general way. The implicit Eqs. 2.2.3 and 2.3.6 can be rearranged to  

 
𝜂′(𝜑𝑚𝑎𝑥

∆𝑝
) =

𝜂(𝜑𝑚𝑎𝑥
∆𝑝

)

𝜑𝑚𝑎𝑥
∆𝑝

 (2.4.2) 

 
𝜂′(𝜑𝑚𝑎𝑥

𝑃 ) = 2
𝜂(𝜑𝑚𝑎𝑥

𝑃 )

𝜑𝑚𝑎𝑥
𝑃  (2.4.3) 

 

These equations have the following geometric interpretation (Fig. 4). The tangent to the function 

𝜂(𝜑) in the point 𝜑𝑚𝑎𝑥
∆𝑝

 (dash-dotted line) intersects the abscissa in the origin of coordinates. The 

tangent in the point 𝜑𝑚𝑎𝑥
𝑃  (dashed line) intersects the x-axis in the point 𝜑𝑚𝑎𝑥

𝑃 2⁄ . As the function 

𝜂(𝜑) is positive, monotonic increasing and strictly convex, inequality 2.4.1 must always hold. 

   

 

 

 

FIGURE 4 Geometric interpretation of 𝜑𝑚𝑎𝑥
∆𝑝

 (full arrow) and 𝜑𝑚𝑎𝑥
𝑃  (empty arrow). Full 

curve –function 𝜂(𝜑), dash-dotted line - tangent in the point 𝜑𝑚𝑎𝑥
∆𝑝

, dashed line - tangent 

in the point 𝜑𝑚𝑎𝑥
𝑃 . For further explanations, see text. 
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Intuitively, the higher optimal value can be explained with a weaker dependence of blood flow on 

the viscosity at given cardiac power – a dependence on the inverse square root of viscosity contrary 

to the inverse proportionality, as noted above.   

 

3. Discussion 

We have presented two models of global oxygen supply, which differ in their constraints – notably 

constant driving pressure and constant cardiac power. We have shown that the oxygen supply in the 

latter case achieves maximum at higher hematocrit. Particularly, the optimal hematocrit under the 

constraint of constant driving pressure ranges from 0.3 to 0.5 and under constant cardiac power 

from 0.5 to 0.7. The increase in viscosity due to higher hematocrit is partly compensated by an 

increase in the driving pressure. 

It is worth mentioning that there exist problems equivalent to the optimization problems under 

study, which lead to the same optimal hematocrit values but have a more intuitive physical 

interpretation. The equivalence can easily be shown by rearrangement of the equations or by the 

method of Lagrange multipliers. First, maximizing oxygen supply under constant driving pressure is 

equivalent to minimizing the driving pressure under constant oxygen supply. Second, maximizing 

oxygen supply under constant cardiac power is equivalent to minimizing cardiac power under 

constant oxygen supply.     

We now discuss the physiological relevance of the calculated results and their relation to other 

studies. The first model with the constant driving pressure yields optimal hematocrit values near the 

normal values of many animals, such as cat, pig, orangutan, chimpanzee and killer whale (1). Guyton 

et al. (5) changed, in experiment, the hematocrit in dogs at rest with the use of blood transfusion 

without any change in blood volume. The blood pressure remained almost unchanged during the 

experiment. The highest oxygen supply was found at the hematocrit of 0.4. Thus, the first model 

provides a good explanation of the resting value of the optimal hematocrit.  

Different from the situation at rest are the circulatory conditions at an extreme exercise, e.g. during 

high-performance sport. It was shown that the heart achieves its maximum power in that case and is 

a limiting factor for the cardiac output (37). Under the plausible assumption that a maximal cardiac 

power implies that it remains constant over a certain period, the optimization corresponds to our 

second model. Our model then predicts the optimal hematocrit to range from 0.5 to 0.7, which is in a 

good agreement with 0.58 in the study of Schuler (21) or 0.6 of hunted horses as an example of 

animals called natural blood dopers (8).  
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Thus, the second model could provide the missing theoretical explanation why the optimal 

hematocrit should be increased at an extreme exertion, although the normal hematocrit is optimal at 

rest. At an extreme exertion, but not at rest, the energy output of the heart, which equals the energy 

loss in the circulation, is the limiting factor for the performance. To minimize energy loss, the 

hematocrit must be higher than normal, as follows from the equivalent problem of minimizing 

cardiac power under constant oxygen supply mentioned above. Most of the energy is lost on the 

level of small arterioles with a diameter of 50-100 m. For this diameter the calculation based on the 

Pries formula provides the optimal value of 0.65, which is very close to the experimental values of 

0.58 or 0.6 mentioned above. 

There are, however, several drawbacks of the presented explanation. Firstly, the cardiac power, i.e. 

the mechanical energy output from the heart, is not necessarily the most relevant constraint at 

exertion. Another limiting factor, which reaches maximum at exertion, could be the energy (or 

oxygen) consumption of the heart, which is mainly determined by the coronary perfusion and heart 

metabolism. If the heart work efficiency, i.e. the percentage of energy consumption converted to 

mechanical work, was constant, both cardiac energy output and energy consumption would be 

equivalent constraints in our second model. It was shown, however, that the heart work efficiency 

markedly declines with rising arterial blood pressure (38) and that cardiac power slightly increases as 

hematocrit is increased (8). Thus, our second model describes an idealized, extreme case. The true 

optimal value is likely to be situated between both extreme models. An interesting analogy is a 

bicycle with gear shift. When using a high gear, the pedals need be moved with low velocity only, yet 

with high force. There is an upper bound on the force generated by the leg muscles and also by the 

heart. It is then easier to switch to a lower gear, and so it is to pump the blood at a lower hematocrit. 

The danger of extreme high blood pressure upon blood doping can be documented by the death of 

18 Dutch and Belgian cyclists from 1987-1990 (39).  

Secondly, Gaehtgens (6) studied the dependence of oxygen supply on hematocrit in an isolated 

working skeletal muscle of a dog that was artificially perfused with constant perfusion pressure. He 

found optimal hematocrit values of 0.5-0.6. The optimal value for a resting skeletal muscle was found 

to be 0.3-0.4. Contrary to our models, both the resting and exertional optimal values were 

determined under the constraint of constant perfusion pressure. The authors explain the lower 

resting optimal hematocrit with a possibility of compensatory vasodilation upon increase in 

hematocrit at rest (see Fig. 5), but not during exercise, because the arterioles of intensely working 

muscle are already fully dilated at normal hematocrit. This explanation is, however, questionable 

because a compensatory vasodilation would make the blood flow-hematocrit curve flatter at rest, at 

least for hematocrit higher than normal.  
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In Fig. 5 we compare experimental data – the dependence of relative blood flow on hematocrit - 

taken from Fig. 6 of Gaehtgens‘ study (6) with predictions of our first model under the constraint of 

constant perfusion pressure. For the calculations, we used the Pries formula for small (50 m) and 

large (1000 m) vessels. That formula includes the influence of the vessel diameter on the effective 

blood viscosity (i.e. the Fåhraeus-Lindqvist effect). As seen from Fig. 5, our predictions for small 

vessels are in a very good agreement with experimental data for working skeletal muscle in a broad 

range of hematocrit. In this case, arterioles are supposed to be fully dilated in the whole range of 

hematocrit, which eliminates any compensatory changes of vascular resistance, just as in our model. 

Thus, we can explain most of the results of the study of Gaehtgens with our first model, without any 

consideration of changing vasodilation. Similarly, Fig. 6 shows a very good agreement between the 

normalized experimental data – the dependence of relative oxygen supply on hematocrit - for the 

working muscle (black points) taken from Fig. 7 of (6) and our prediction using the Pries formula for 

small vessel diameter. Both the model and experiment provide the same optimal hematocrit value of 

0.5. 

The agreement of experimental data under resting conditions (gray points in Fig. 6) with our 

prediction is very good as well (Fig. 5 and Fig. 6). Just the prediction for very low or very high 

hematocrit values agrees with experimental data less exactly, which could be explained by 

compensatory vasodilation at extreme values of hematocrit, not considered in our model. The 

experimental optimal hematocrit value of 0.4 matches with the predicted one accurately (Fig. 6). It is 

questionable why this agreement applies to a vessel diameter markedly larger than the diameter of 

arterioles. As shown by Guyton (40), the resistance to venous return rather than arteriolar resistance 

determines the resting cardiac output, apart from the mean systemic filling pressure. Considering the 

relatively large diameter of small venules and veins, the coincidence between experimental data and 

the prediction for big vessel diameters is not surprising. 

The agreement of our predictions (based on the Pries formula) for narrow and wide vessels with 

experimental data at exertion and rest is surprising because arterioles are supposed to be dilated at 

exertion. We explain this with a mechanical effect of muscle contractions that may compress 

arterioles and propel blood through the microcirculation and mitigate in this way the influence of 

hematocrit on viscosity (7). In a similar way, the Fåhraeus-Lindqvist effect mitigates the influence of 

hematocrit in very small vessels. Note that it is justified to compare experimental data taken from 

isolated muscle and our prediction for the whole circulation, because of comparable relative changes 

in cardiac output and blood flow in isolated muscles in dependence on hematocrit (41).  
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FIGURE 5 Comparison of experimental data from the study by Gaehtgens (6) with our 

model predictions under the constraint of constant perfusion pressure – 

dependence of relative blood flow on hematocrit. Blood flow of 100 % 

corresponds to a hematocrit of 0.4 for all curves. Dashed black line – model 

prediction using the Pries formula for a diameter of 1000 m, dot-dashed black 

line - model prediction using the Pries formula for a diameter of 50 m, dashed 

gray line – experimental data for resting skeletal muscle (fitted in (6) by the linear 

function Q = 206 - 256 𝜑), full gray line – experimental data for working skeletal 

muscle (Q = 164 - 157 𝜑).  
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FIGURE 6 Comparison of normalized experimental data from the studies by 

Gaehtgens (6) and Guyton (5) with our model predictions under the constraint 

of constant driving pressure – dependence of oxygen supply on hematocrit. 

Full black line – model prediction using the Pries formula for diameter of 50 

m, dashed gray line - model prediction using the Pries formula for diameter of 

150 m, black points – experimental data for working skeletal muscle (taken 

from Fig. 7 of (6)), gray points – experimental data in resting situation (taken 

from Fig. 3 of (5)).  

In spite of the very good agreement of the predictions at constant pressure, we maintain that, from a 

physiological perspective, the constraint of constant perfusion pressure does not correspond well 

with the heart as a limiting factor at extreme exertion, as described above. Therefore, we consider 

the second model under constant cardiac power as a valid explanation of the positive effect of the 

increased hematocrit at exertion, at least as a tendency. The real optimal value is likely to be 

between both extreme theoretical values. 

Experimental data suggest that under normal (resting) conditions, oxygen uptake by the muscles is 

smaller than the amount delivered by circulation (43). This is not in contradiction to our first 

optimality criterion because the muscle cannot take up, anyway, 100 % of the oxygen delivered. 

Moreover, tissues should not take up all the oxygen because of their arrangement in series; part of 

the oxygen should be left for subsequent cells. Maximizing oxygen delivery per time is in any case 

favourable, especially in tissues only involving a low density of capillaries, even if other tissues are 

exposed to an excess of oxygen. Alternatively, we can explain the relevance of the optimality 

criterion by its equivalent problem of minimizing the pressure difference (which alleviates the effort 

by the heart) at constant oxygen supply.   

It is worth mentioning that even a simple model, which does not consider the many complex effects 

such as non-Newtonian behavior, deformation and aggregation of erythrocytes, vasodilation, oxygen 

consumption of the heart etc., can describe the observations fairly well. In future studies, it is of 

interest, to extend the model by including such effects.  

An interesting question is: why did evolution set the hematocrit to the optimal value at rest and not 

to that at exertion? Probably the long-term risks of the increased hematocrit (e.g. increased blood 

pressure with a consequent chronic heart failure or increased risk of a thrombosis) may have 

outweighed the short-term advantages during an extreme exertion. As mentioned above, some 

animal species, such as dogs and horses, called natural blood dopers, make use of the high 

hematocrit during exertion, without facing a long-term risk. It is worth noting that both dogs and 
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horses are companions of man used for hunting for a long time and could be selected for blood 

doping. This is in line with the observation that the top aerobic speed (speed of endurance running) 

of both animals is about 40 km/h-1 and, thus, maximum among mammals (44).  

 

4. Conclusions 

Our calculations predict optimal hematocrit values of 0.5-0.7 for intense exertion, which is in good 

agreement with experimental observations for natural blood dopers such as horses (7).  

The above calculations can be promising for future applications in personalized medicine. For 

example, for the therapy of patients with limited cardiac power, as in the cardiogenic shock (45, 46), 

calculating the optimal hematocrit value could be helpful. The treatment goal for such patients 

would be to supply a given amount of oxygen, but to minimize necessary cardiac power. A special 

application may concern the treatment of heart diseases in highlanders of different populations (47).   
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