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Abstract 

The biological mechanisms that allow the brain to balance flexibility and integration 

remain poorly understood. A potential solution to this mystery may lie in a unique 

aspect of neurobiology, which is that numerous brain systems contain diffuse 

synaptic connectivity. In this manuscript, we demonstrate that increasing diffuse 

cortical coupling within a validated biophysical corticothalamic model traverses the 

system through a quasi-critical regime in which spatial heterogeneities in input noise 

support transient critical dynamics in distributed sub-regions. We then demonstrate 

that the presence of quasi-critical states coincides with known signatures of complex, 

adaptive brain network dynamics. Finally, we demonstrate the presence of similar 

dynamic signatures in empirical whole brain human neuroimaging data. Together, 

our results establish that modulating the balance between local and diffuse synaptic 

coupling in a thalamocortical model subtends the emergence of quasi-critical brain 

states that act to flexibly transition the brain between unique modes of information 

processing.
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Introduction 

The brain is a complex, adaptive system that is organized across multiple spatial and 

temporal scales. Systems arranged in this way must solve a number of competing 

challenges. First, they must balance segregation – the need to retain precise, 

specialist functional capacities – and integration – in which information from 

segregated sub-regions is recombined at larger spatiotemporal scales (Shine et al., 

2019a; Sporns et al., 2000). Second, the brain must remain flexible enough to retain 

sufficient sensitivity to fluctuations in evolving fitness landscapes (Kehagia et al., 

2010). Finally, the systems must coordinate these capacities in ways that are 

energetically frugal (Bullmore and Sporns, 2012), which favours systems with 

relatively low-dimensional architectures (Cunningham and Yu, 2014). How the brain 

is arranged to achieve these distinct constraints, and what physical mechanisms 

underpin them, remains poorly understood. 

 

A solution to this challenge may be found in a somewhat over-looked principle of 

neuroanatomy. A number of circuits in the brain, such as the ascending 

neuromodulatory system (Edlow et al., 2012) and the non-specific, ‘matrix’ cells of 

the thalamus (Jones, 2002), project their axons in a relatively diffuse pattern that 

targets multiple distinct neural regions. These circuits are incompatible with the 

traditional notion of ‘message passing’ between individual neurons that is typically 

ascribed to targeted, feed-forward projections between neurons (Aertsen et al., 1996). 

So why might these highly conserved, diffuse connections exist as such a prominent 

feature of neuroanatomy? 

 

A potential benefit of balancing targeted and diffuse coupling is that systems 

structured in this way may be able to support multiple distinct modes of processing. 

For instance, targeted connections between neural sub-regions will influence local 

neighbours in a relatively segregated mode, whereas diffuse connections may force 

distant regions into novel regimes that are impacted more strongly by the global 

brain state. Crucially, by modulating the amount of global, diffuse connectivity, the 

system could control its information processing capacity . 

 

Systems that support multiple distinct modes often exhibit optimal functional 

properties at the transition point (or critical point), such as maximizing information 

transmission, the dynamic range, and the number of metastable states (Deco and 

Jirsa, 2012; Muñoz, 2018). Rather than balancing precisely at a specific critical point, 

there is now robust evidence to suggest that complex systems such as the brain may 
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display an enlarged/stretched critical point. This stretched critical regime (quasi-

critical) allows the system to more readily utilise the optimal functional properties 

bestowed at criticality (Cocchi et al., 2017; Tagliazucchi et al., 2012; Williams-García 

et al., 2014; Wilting and Priesemann, 2018). Near this quasi-critical region of state 

space, heterogeneity within the brain should allow sub-regions to experience 

transient excursions into the quasi-critical regime (Moretti and Muñoz, 2013; Vojta, 

2006). This would allow the system to harness the benefits of criticality (e.g., 

divergence of correlation length), without the associated risk of transitioning en 

masse into a pathological state of global synchronization (Breakspear et al., 2006; 

Müller et al., 2017).  

 

In this manuscript, we propose that this mechanism could be exploited in the brain 

by modulating the balance between local and diffuse synaptic coupling in the 

thalamocortical system. This in turn would imbue the system with the capacity to 

support the complex, adaptive system dynamics that support higher brain function. 

 

Results 

To test the hypothesis that diffuse coupling promotes a diversity of quasi-critical 

neural states, a network of biophysically-plausible corticothalamic neural mass 

models was used to simulate large-scale human brain activity (Fig. 1). Neural mass 

models, which are a spatially discretised class of a neural field model, provide a 

tractable framework for the analysis of large-scale neuronal dynamics by averaging 

microscopic structure and activity (Jirsa and Haken, 1996; Nunez, 1974; Robinson et 

al., 1997, 1998; Wilson and Cowan, 1973; Wright and Liley, 1996). These models are 

flexible, physiologically realistic and inherently non-linear, (Deco et al., 2008; Rennie 

et al., 1999; Robinson et al., 1997, 1998, 2001, 2002, 2005; Wilson and Cowan, 1973; 

Wright and Liley, 1996), and have successfully accounted for many characteristic 

states of brain activity (Bojak and Liley, 2005; Breakspear et al., 2006; Deco et al., 

2008; Jirsa and Haken, 1996; Roberts and Robinson, 2008; Robinson et al., 2002; 

Steyn-Ross et al., 2004; Wilson and Cowan, 1973). Importantly, this work extends an 

existing and validated biophysical model, which itself has been extensively 

constrained by human electrophysiology data (Abeysuriya et al., 2015). This feature 

ensures that we have oriented the system to a plausible region of state space, and 

further implies that our results will lead to testable empirical predictions related to 

the impact of diffuse inputs. 
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The specific neural mass model used in our study contained four distinct neural 

populations: an excitatory pyramidal cell, e, and an inhibitory interneuron, i, 

population in the cortex; and an excitatory specific relay nuclei, s, and inhibitory 

thalamic reticular nuclei, r, population in the thalamus. The parameters from the 

model were fit to a region of state-space defined by the awake, human brain using 

field potentials from human scalp EEG data (Abeysuriya et al., 2015; Robinson et al., 

2004). We simulated a 12x12 network of corticothalamic neural masses (Fig. 1a) 

using the neural field simulation software, nftSim (Sanz-Leon et al., 2018). The 

parameters for each neural mass were identically set to “eyes-closed” estimates 

(Abeysuriya et al., 2015), which results in simulated activity with a characteristic 1/� 

spectrum and a peak in the alpha frequency band (8 � 13 Hz). 

 

 

 
 

Figure 1 – Model schema. (a) Corticothalamic neural mass model implemented at each node of the 

network: each mass was comprised of four distinct cellular populations: an excitatory cortical 

pyramidal cell (‘e'), an inhibitory cortical interneuron (‘i'), an excitatory, specific thalamic relay 

nucleus (‘s’), and an inhibitory thalamic reticular nucleus (‘r’), with intra-node corticothalamic neural 

mass coupling defined according to known anatomical connectivity; (b) Connectivity schematic – 

local and diffuse coupling with periodic boundary conditions (toroidal topology); (c) Distribution of 
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nodal firing rates across the network - an increase in diffuse coupling subsequently increases the 

standard deviation of firing rates, with the tails of this distribution having greater above (and below) 

average values. (d) Qualitative effect of increasing diffuse coupling in the presence of heterogeneity 

on the attractor landscape: increased diffuse coupling shifts all nodes towards their local saddle-node 

bifurcation point. In the middle of this continuum, the heterogeneous inputs allow a particular subset 

of nodes (shaded orange) to cross this point and the activity of these nodes begins to move towards 

the high firing attractor.  

 

In addition to the identical intra-node coupling, our model contained two classes of 

connectivity: local coupling, which was defined as a connection between an 

excitatory population in the cortex and its immediate neighbours (with diagonal 

nodes additionally scaled by a spatial decay factor of 1 √2⁄ ); and diffuse coupling, 

which connected the pyramidal e populations’ activity to all other nodes in the 

network (Fig. 1b). The diffuse coupling term, which is defined as 
, was swept 

through a range and was the only parameter changed in this work. Periodic 

boundary conditions (i.e., a toroidal topological structure) were applied so that each 

node had an equal number of local afferent connections. 

 

The presence of structural heterogeneities in neural network models, such as the 

human connectome and neural networks in the Caenorhabditis elegans, have been 

shown to extend an idealized critical point into a region of state space that is known 

in statistical mechanics as a ‘Griffiths phase’ (Moretti and Muñoz, 2013; Vojta, 2006). 

This form of quasi-criticality is analogous to the inherent balance present between 

the liquid and gaseous phases of water at room temperature (Fig. 1c), during which 

time the vast majority of the water molecules are in their liquid phase. As the 

temperature rises towards water’s boiling point, a subset of these molecules may, for 

a short time, collide with other energetic molecules in their immediate surroundings. 

From the vantage point of this subset, it would appear as though the temperature of 

the entire fluid had risen. Those regions with slightly more energy than others 

would be able to cross their own locally-defined bifurcation (or critical boundary) – 

i.e., ‘transition’ into water vapour – while leaving the rest of the water molecules in 

their liquid phase. This phenomenon will occur more often as the temperature 

approaches the boiling point.  

 

The brain may exploit a similar physical mechanism, whereby subregions cross 

locally-defined critical boundaries while the bulk of the global brain state remains 

subcritical. We hypothesized that the prevalence of these critical regions should be 

modulated by diffuse inputs, in a manner analogous to increasing temperature in 
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the fluid to gas transition. In other words, increasing diffuse coupling in the brain 

could drive the system such that a subset of nodes can cross their locally-defined 

critical boundaries (e.g., orange nodes in Fig. 1d), while ensuring that the rest of the 

network remains in a sub-critical state (e.g., blue nodes in Fig. 1d). It is important to 

note that this phenomenon only occurs when there are heterogeneities within the 

system. In the model used here, only the simplest form of spatial heterogeneity was 

included: namely, an independent white noise drive (uniquely sampled from an 

identical Gaussian distribution) to each neural mass in the network. Based on these 

factors, we hypothesized that the combination of heterogeneity and elevated diffuse 

coupling, 
, would be sufficient to transition a subset of nodes over their locally-

defined bifurcation, which in turn should alter the information processing dynamics 

of the brain. In order to test this hypothesis, we needed to identify a way to track 

transient, super-critical excursions at the nodal level in our model. 

 

Quantifying regional dynamics through distance to local bifurcation 

In dynamical systems, such as the brain, activity is often defined by the systems’ 

“attractors”, which are idealized states that a system evolves towards under a wide 

variety of starting conditions (Miller, 2016). Multi-stable systems are those with 

more than one attractor present for a single set of parameters: each attractor has 

unique stability properties and can be explored by the system given appropriate 

inputs and/or initial conditions. The biophysical model utilized in this study 

describes a multi-stable system near a Hopf and a saddle-node bifurcation, both of 

which occur when a smooth incremental change in a control parameter (in our case, 

diffuse coupling) causes a qualitatively abrupt changes in the systems behaviour. 

 

Knowledge of a nodes attractors is important for understanding the nodes 

behaviour, however it can be challenging to extrapolate patterns from local nodes to 

the activity of the whole network. This makes it difficult to define the presence (or 

absence) of quasi-critical brain state dynamics in large-scale network models. To 

solve this problem, we note that the bifurcation point for each corticothalamic neural 

mass can be identified as a function of a constant postsynaptic potential induced by 

incident activity from other nodes. Time independent solutions can then be 

produced by sweeping over this induced potential change in order to find the neural 

mass’ bifurcation point (i.e., the point where the two low-firing attractors meet and 

annihilate each other, leaving only a stable high firing attractor). Furthermore, the 

time-independent solutions can be used to determine the linear response gains 

between each population within the neural mass (Fig. S2). 
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As 
 is increased, individual nodes become increasingly sensitive to their own 

inputs – that is, they have heightened ‘response gain’ (David Servan-Schreiber, 1990; 

Shine, 2019; Shine et al., 2018). This effect is characterized by a sigmoidal function 

that maps population average membrane potential to firing rate (Wilson and Cowan, 

1973), as well as the slope (first derivative) of this function (Fig. S1). All of the 

simulated data in our experiment lies on the left-hand side of the peak in the gain 

curve (subpanel in Fig. S1), such that incremental increases in response gain have 

large effects on the nodes’ activity (i.e., the slope of the function is positive; orange in 

the right side of Fig. S1), and hence, cause the region to cross its locally-defined 

bifurcation (Fig. 1d). 

 

Increasing diffuse coupling promotes quasi-critical states 

Armed with this approach, at each simulation time point, inputs to a given node can 

be translated into an instantaneous distance to the receiving nodes’ bifurcation 

point. In this way, the strength of each nodes’ attractor can be quantified, and the 

duration of excursions across the point where the attractor is no longer present 

during simulation can be accurately quantified. Here, the percentage of nodes that 

have crossed their local bifurcation is defined as ��. As predicted by our hypothesis, 

increasing the amount of diffuse network coupling caused a non-linear increase in ��  

(Fig. 2). Based on the network-level activity patterns across 
, we defined three 

‘working zones’: a stable, subcritical zone (
 < 1.20x10-4 mV·s; blue in Fig. 2), where 

��  0; a quasi-critical zone (1.20< 
 < 1.27x10-4  mV·s; green in Fig. 2), where 

0 �  �� � 100; and a saturated zone (
  > 1.27 x10-4 mV·s; red in Fig. 2), where 

��  100 in the second half of the simulation. 
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Figure 2 – Promoting quasi-critical states. (a) The time averaged percentage of nodes that have 

crossed their bifurcation, ��, as a function of diffuse coupling, �. We identified three qualitative zones: 

a low variability subcritical zone (blue), where no nodes crossed their bifurcation point for the full 

duration of the simulation, a highly variable, quasi-critical zone (green) where at least one node was 

below its bifurcation during the second half of the simulation , and a saturated, oscillatory zone (red). 

The insets show steady state firing rates for each population within the neural mass model is 

represented via colour intensity. 

Another benefit of neural mass models over more abstract approaches (such as the 

Kuramoto or Fitzhugh-Nagumo model; (Breakspear, 2017) is their superior physical 

interpretability. Each parameter within the neural mass is, in principal, a measurable 

biophysical quantity. We leveraged this feature to identify the relative firing rate of 

each neural population in our model. The three zones in our model were associated 

with qualitatively distinct steady state firing rate attractors for each population 

within the corticothalamic neural mass (inset of Fig. 2). Of note, the subcritical zone 

was associated with a higher firing rate in the r thalamic population relative to the s 

population (i.e., relative thalamic inhibition), whereas this relationship is inverted in 

the saturation zone (i.e., relative thalamic excitation). By construction, the quasi-

critical zone necessarily supports a mix of these two states, with the balance dictated 

non-linearly by the value of �� (Fig. 2). These results suggest that increasing diffuse 

coupling to the cortex had the effect of releasing a subset of excitatory thalamic s 

neurons from inhibition, which in turn was reflected by the crossing of their local 

bifurcation point (Fig. S3). 

 

We also observed qualitatively distinct effects at the whole-network level. The 

average regional correlations within each zone are displayed as a force-directed 

graph in Fig. 3a. The subcritical zone is dominated by local coupling and the 

saturation zone by diffuse coupling. Notably, the quasi-critical zone shows a mix of 

both these integrated and segregated topological states, and their coincidence is 

predicated on heterogeneity within the network. Somewhat trivially, if this 

heterogeneity is removed and diffuse coupling is increased, the entire network will 

cross the bifurcation point together with ��  either 0% or 100, which is equivalent to 

an isolated neural mass receiving increasing drive. In other words, confirming our 

hypothesis, the presence of the quasi-critical regime was due entirely to the presence 

of spatial heterogeneity and increasing the diffuse coupling term, 
. 
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Figure 3 – Properties of quasi-critical states. (a) Average regional correlations within each zone 

shown as a force-directed graph; (b) For a given �, each node was stimulated with an excitatory 

rectangular pulse (amplitude = 1mV; width = 10ms) at t = 10s. The target nodes activity was then 

compared to simulated activity in the absence of the pulse using the same noise sequence in order to 

quantify the perturbation induced. The pulse results are sorted based on their mean distance to 

bifurcation in the preceding 8 time points. For visualization purposes we then average the activity 

within the closest, middle, and farthest thirds based on this sorted distance, and low-pass filter with a 

passband frequency of 0.001Hz. (i) � � 1.15 � 10��  (ii) � � 1.21 � 10��  (iii) � � 1.25 � 10�� (iv) 

� � 1.3 � 10�� mV.s; Note the vertical axis on (iv) differs from (i) - (iii); (c) Qualitative effect of 

increasing diffuse coupling on the attractor landscape: in the sub-critical zone, the system was 

enslaved to the lower attractor; increasing � into the quasi-critical zone had the effect of flattening the 

attractor landscape, allowing noise-driven excursions to transition nodes across their local bifurcation 

point; at high values of �, the system became enslaved to the higher attractor. 

 

Based on previous literature (Fontenele et al., 2018; Moretti and Muñoz, 2013; 

Williams-García et al., 2014), we hypothesized that the quasi-critical regime should 

augment the network’s sensitivity to incoming stimuli. To test this hypothesis, a 

series of network simulations were run wherein an excitatory pulse stimulus was 

applied separately to each node across several diffuse coupling values (see Fig. 3b: 

panels i-iv). For visualization purposes, the nodes were grouped based on their 

average distance to bifurcation in a brief window (40 ms) preceding stimulus. In line 

with other critical phenomenon, the response duration and sensitivity of the 

network increases with diffuse coupling as the system as a whole becomes more 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2020. ; https://doi.org/10.1101/2020.06.09.141416doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.141416
http://creativecommons.org/licenses/by/4.0/


   11

critical. This is equivalent to the lower attractor ‘flattening’, which in turn allows a 

greater proportion of individual nodes to transition onto the higher attractor (Fig. 

3c). 

 

In addition to the increased network sensitivity, flexibility is increased within the 

quasi-critical zone, with a greater spread of stimulus response durations observed 

(contrast Figs. 3b (i) and (ii)). This highlights the fact that within the quasi-critical 

zone, the dynamic repertoire is extended (Kinouchi and Copelli, 2006) and could 

provide a mechanistic description of the hierarchy of timescales inferred empirically 

(Cocchi et al., 2016; Honey et al., 2012). Together, these results demonstrate that 

increasing diffuse coupling transitions the network into a sensitive and complex 

state, which would likely be further enriched by the known spatial heterogeneity 

imbued by the white-matter of the structural connectome (Bullmore and Sporns, 

2012). 

 

Network signatures of quasi-criticality 

When analysing empirical neuroimaging data, it is not possible to obtain direct 

evidence of a nodes’ gain, nor it’s distance from its’ own bifurcation. Instead the 

putative signatures of complex, adaptive system dynamics must be estimated 

indirectly from empirical neuroimaging data (McIntosh and Jirsa, 2019). Here, we 

demonstrate that a number of these analytic measures show qualitative changes as a 

function of  
, and thus together provide empirically accessible signatures of 

complex, adaptive dynamics (Fig. 4). For instance, the mean participation coefficient, 

which quantifies the extent of cross-community integration across the brain network 

(Shine et al., 2016), was low, yet regionally variable, in the sub-critical zone, rose 

sharply in the quasi-critical zone, and reached a ceiling in the saturated zone (Fig. 

4a). This pattern is consistent with previous neuroimaging work that showed an 

increase in integration as function of cognitive task performance (Cohen and 

D’Esposito, 2016; Hearne et al., 2017; Shine et al., 2016). 

 

Time-series variability (Fig. 4b; black) showed a similar monotonic increase with 
, 

though with a more protracted course than network integration. In contrast, regional 

diversity (Fig. 4b; orange) initially increased before dropping and wavering in the 

quasi-critical zone, and ultimately increasing to its highest value in the saturated 

zone. Interestingly, an increase of time-series variability within the quasi-critical 

zone was preceded by two peaks in regional diversity, which was defined as the 

variance in the upper triangle of the region-wise functional connectivity matrix. In 
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other words, a promotion of unique functional architectures across the network 

occurs within the quasi-critical zone and these appear distinct from an increase in 

sustained local variability.  

 

 

Figure 4 – Network topology and dimensionality. (a) Mean participation – which quantifies the 

extent to which a region functionally connects across multiple modules (these were calculated using a 

weighted version of the Louvain algorithm across all simulations); (b: left) Average time-series 

variability; (b: right) Regional diversity – defined as the variance in the upper triangle of the region-

wise functional connectivity matrix; (c) PC1,2 explained variance. κ demarcates corresponding points 

in all panels. 

 

In previous work, we analysed human fMRI data to show that the brain reconfigures 

into a low-dimensional brain state across a diverse array of cognitive tasks (Shine et 

al., 2019). Similar patterns were observed here in the simulated data (Fig. 4c). 

Specifically, the percentage of variance explained by the first two principal 

components of the firing rate time series peaked in the quasi-critical zone, with the 

second principal component rising in explanatory power at a higher level of 
 (Fig. 

4c). Interestingly, the peak in the variance explained by the second principal 

component coincided with the peak in integration (corresponding to κ in Fig. 4), and 

the peak in variance explained by the first principal component coincided with the 

first peak in regional diversity. Together, these results suggest that the quasi-critical 

zone is associated with an integrated, flexible and relatively low dimensional 

network architecture, which is consistent with recent empirical whole-brain imaging 

results (Shine et al., 2019a) and has implications for the information processing 

capacities of both artificial and biological networks. 

 

Orienting task and rest states from human fMRI data 

We were next interested in whether the complex, adaptive network signatures 

identified in our neural mass model would translate into differences in empirical, 

whole brain neuroimaging data. Based on previous work (Shine et al., 2016, 2019a) 

and the results of our biophysical model, we hypothesized that the network-wide 
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effects of distinct cognitive states would be dissociable based on the measures that 

were found to be have unique signatures in the quasi-critical zone. Specifically, we 

predicted that task performance should be associated with increased diffuse network 

coupling, reflective of increased ascending arousal neuromodulation (Shine et al., 

2018) and increased thalamic engagement (Shine et al., 2019b), thus allowing 

information from functionally specialized regions, optimally formed in the 

segregated state, to be integrated across broad spatiotemporal scales. 

 

To test this hypothesis, we analysed whole-brain fMRI data from 100 unrelated 

subjects from the Human Connectome Project while they performed a cognitively-

challenging two-back task (Barch et al., 2013). Regional BOLD fMRI data were 

analysed using the same techniques that were applied to the simulated data (i.e., 

those in Fig. 4), and then independent-samples t-tests were used to contrast between 

cognitive task engagement and relatively quiescent rest periods. The results of our 

analysis demonstrated that, when compared to the resting state, task performance 

was associated with an increase in integration (t = 83.8; p = 1.02 x 10-93; Fig. 5a), a 

drop in regional diversity (t = 29.1; p = 2.37 x 10-50; Fig. 5b), increased time-series 

variability (t = -31.1; p = 6.83 x 10-53; Fig. 5c), and less variance explained by the first 

two principal components (PC1: t = 5.21; p = 1.04 x 10-6; PC2: t = 9.06; p = 1.23 x 10-14; 

Fig. 5d).  

 

 
Figure 5 – Signatures of quasi-criticality across task and rest. fMRI data from 100 unrelated subjects 

during a two-back task from the Human Connectome Project was analysed to determine whether the 

task and rest states were associated with unique signatures of complex, adaptive brain dynamics. (a) 
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Mean Participation was elevated during task performance (t = 83.8; p = 1.02 x 10-93); (b) Regional 

diversity, defined as the variance in the upper triangle of the region-wise functional connectivity 

matrix, was lower during task performance than rest (t = 29.1; p = 2.37 x 10-50); (c) fMRI timeseries 

variability (t = -31.1; p = 6.83 x 10-53); (d) Variance explained by first principal component (t = 5.21; p = 

1.04 x 10-6); (d - inset) Variance explained by second principal component (t = 9.06; p = 1.23 x 10-14); (e) 

Task and rest signatures were applied to a novel stochastic data-fitting algorithm to orient the brain 

states at different levels of �: rest was associated with a lower diffuse coupling (�rest~1.22�0.1 mV.s) 

than task states (�task~1.26 �0.1 mV.s); (f) surface projection of Δ� for each region (Schaefer et al., 

2018), generated by independently removing each region of the data, recalculating the signatures, and 

refitting to generate a Δ�. 

 

To orient regional fMRI data onto the corticothalamic model outputs, we created a 

novel data-fitting approach. Briefly, a cost-function was defined as the difference 

between the task and rest values for each of the complex network signatures used to 

analyse systems-wide time series dynamics (Fig. 5a-d). The algorithm then searches 

for an interval of diffuse coupling, Δ
, that minimizes this cost function – that is it 

finds the �
�, 
�� that best explains the change in all complex network signatures 

across task and rest states. Finally, a uniform random walk is performed on the 

weightings of each metrics gradient to scale its contribution to the overall cost 

function, effectively mitigating against bias for any one measure in the fitting 

algorithm. In this way, we were able to estimate the dynamical fingerprint of the 

underlying state in a manner that was robust to differences in the baseline statistics 

of each measure. 

 

This approach confirmed that quasi-critical signatures orient rest states to lower 

levels of diffuse coupling (
rest~1.22 � 0.1 � 10-4 mV·s) than those of cognitive task 

states (
task~1.26 � 0.1 � 10-4 mV·s; Fig. 5e). The 
 fit results in a probability 

distribution (Fig. 5e) since an estimate is made for each new combination of 

weightings generated per iteration of the algorithm (10
). The maximum likelihood 

of the task estimates was found to be coincident with the second peak in regional 

diversity and proximal to peak integration, suggesting that the brain is balancing 

flexibility, in the form of high functional diversity, with increased large-scale 

communication, in the form of network integration. 

 

To aid neuroscientific interpretation, a variation of the group-level model fitting 

approach was used to provide an estimate of Δ
 at the regional-level. To this end, we 

performed a virtual lesioning of the network (albeit without the benefit of the 

dimensionality measures, which are calculated across the whole system), in which 

each of the measures was recalculated following the removal of each node (in turn).  
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The algorithm then fits the resultant Δ
 which best captured their respective 

changes, with the notable difference that the upper bound of this range was set to 

the maximum likelihood of 
task, so as to ensure each nodes effect was compared to 

a common baseline (i.e., it finds �
�, 
task��. The Δ
 fits were diversely distributed 

across predominantly frontal and sensory cortex (Fig. 4f), suggesting that diffuse 

coupling allowed for integration across multiple distinct specialist sub-networks in 

order to complete the cognitive task. Together, these results confirm the hypothesis 

that brain activity during task is associated with greater quasi-critical brain 

dynamics than during rest, and further extend this concept by suggesting a plausible 

biological mechanism – namely increased diffuse coupling – for these differences. 

 

Discussion 
 

Here, we used a network of biophysical corticothalamic neural masses, previously fit 

to human EEG data (Abeysuriya et al., 2015; Robinson et al., 2004), to demonstrate 

that quasi-critical brain states can be facilitated by the combination of spatially 

heterogeneous inputs and diffuse network coupling. Gradually increasing diffuse 

connectivity shifted each region closer to their individually-defined bifurcation, 

which maximized flexibility (Fig. 2) while also increasing the sensitivity of the 

network to inputs (Fig. 3b) and system-wide topological integration (Fig. 4a). This 

constellation of complex network signatures dissociated different cognitive 

processing modes in empirical brain imaging data (Fig. 5). Together, these results 

establish a plausible neurobiological implementation of criticality in the brain that is 

driven by a known neuroanatomical principal. Crucially, the modulation of this 

physical mechanism (diffuse coupling) is demonstrated to augment flexibility in 

segregated and integrated operational modes, which in turn are reflected as changes 

in several key measures of complex adaptive network dynamics. 

 

In previous work, it has been shown that cognitive task performance leads to a more 

integrated (Shine et al., 2016) and low-dimensional (Shine et al., 2019a) brain state. 

Here, we demonstrate a simple neuroanatomical principle that may underpin these 

patterns. Specifically, we showed that, in the presence of the simplest form of spatial 

heterogeneity (independent noise to each region), increasing diffuse coupling across 

the network led to the exploitation of multi-stable system dynamics, broadened the 

systems dynamic repertoire, supported a hierarchy of input response sensitivity and 

timescales, and maximised temporal flexibility. Indeed, the quasi-critical states that 

we identified can facilitate functional integration across large spatial and temporal 

scales through a diverging correlational length, while also retaining the stability of 
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the whole system. As such, these mechanisms provide a robust starting point for 

understanding the evolutionary mechanisms through which the brain learned to 

augment its functional repertoire across a wide range of scales. 

 

The quasi-critical brain states represented here extend previous ideas on the critical 

brain hypothesis (Beggs, 2003; Tagliazucchi et al., 2012; Williams-García et al., 2014; 

Wilting & Priesemann, 2018), but cast them in a novel, large-scale biophysical brain 

model. Conceptually, the quasi-critical zone identified in this work represents a state 

of the system where the dynamic repertoire and flexibility are both maximised. 

Here, we show that this state can be engaged and disengaged by modulating the 

impact of diffuse network connectivity. Importantly, this modelling work includes 

spatial heterogeneities in a minimal form (namely, noise inputs), which permit 

quasi-critical states while retaining physiologically plausible neural activity. It is also 

important to note that the quasi-critical state is not a single point but a well-defined 

region in state space, and thus numerous parameter combinations could be 

employed by the neurobiology in order to explore this physical niche, which agrees 

with the extended critical region observed in both human and Caenorhabditis elegans 

neural networks (Moretti and Muñoz, 2013). 

 

A strength of the approach utilized here is that it relates directly to known 

characteristics of neuroanatomy. Indeed, there are at least two major systems in the 

human brain – the ascending arousal system (Samuels and Szabadi, 2008) and the 

diffuse thalamocortical ‘Matrix’ projections (Jones, 2001) – that could readily 

instantiate the diffuse brain signal modelled in our study in a relatively flexible 

manner. Each of these highly inter-connected (Edlow et al., 2012; Varela, 2014) 

systems is characterised by relatively diffuse patterns of axonal connectivity that 

innervate the entire cortical mantle, along with a range of other subcortical, 

cerebellar and brainstem structures (Jones, 2001; Samuels and Szabadi, 2008). These 

two systems are also characterized by highly dynamic expression (Aston-Jones and 

Cohen, 2005; Halassa and Kastner, 2017), suggesting that the relative amount of 

diffuse coupling may be controlled and shaped as a function of systemic 

requirements. Despite their relatively broad projection patterns, there is also 

evidence for more targeted connectivity (Clascá et al., 2012) and segregated 

processing modes (Totah et al., 2018) within these two systems, which in turn might 

confer even more precise control over the highly dynamic, distributed neural 

coalitions that define our waking brain state (Varela et al., 2001). In short, realistic 

heterogeneity within these systems, such as synaptic, receptor, and cell densities, 
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will support the formation of quasi-critical states, and hence the brain may have 

evolved a way of using quasi-criticality to support distinct operational modes. This 

would allow low dimensional control over the modes in an energy efficient manner, 

i.e., functionally partition regions, allocate these to unique features of a task, and 

then reintegrate their outputs at a later time (Shine et al., 2019a). 

 

The modelling methodology used in this work is distinct from inversion methods, 

wherein a generative model is fit to data and the resulting parameter estimates are 

used to elucidate a mechanistic understanding of a phenomenon. Whilst this 

approach is often informative, it can also result in the over-fitting of parameters. As 

such, insights from these approaches are difficult to generalize to broader brain 

states. A complimentary strategy often employed in statistical physics is to define a 

model according to first principles. While abstract, this strategy affords much greater 

control over the models’ degrees of freedom, and in turn makes any identified 

results more robust to parameter changes. These two modelling approaches 

compliment one and other and represent distinct modes of questioning a 

phenomenon: data-driven (why is the system changing in this way?) vs. hypothesis-

driven (i.e., how will the system change if I modify it in this way?). In this work, we 

utilised a hybrid strategy: we exploited previous data fitting results (Abeysuriya et 

al., 2015; Robinson et al., 2004) to orient the model in a plausible region of state-space 

(eyes-closed wakefulness) and then gradually introduced a new feature (diffuse 

cortical input) while keeping all other parameters constant. The model is thus a 

predictive framework, in which all of the signatures we identified (Figs. 3 and 4) can 

be directly attributed to the modulation of diffuse coupling. In addition, by orienting 

our model in a previously defined state, our outputs can be directly compared with 

data, though we predict that direct matches to data will require a more realistic 

structural connectome (Moretti and Muñoz, 2013).  

 

Conclusion 

In summary, we have demonstrated a plausible benefit for the presence of an often-

overlooked quirk of neuroanatomy: namely, that increases in diffuse coupling can 

orient the brain in a quasi-critical state that maximizes flexibility, low-dimensionality 

and a balance between integration and segregation, and that these can explain 

numerous features of human imaging data. Future work can utilize this model to 

learn how the balance between targeted and diffuse coupling is disrupted across 

neurodevelopmental and neurodegenerative disorders. It will also be of major 

interest to determine how the mechanisms highlighted here interact with the 
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complex, heterogeneous patterns of connectivity defined by the white-matter 

structure of the human connectome, which would likely assign meaningful 

functional specialization to specific brain regions.
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Materials and Methods 

 

Corticothalamic neural mass 

The corticothalamic neural mass model used in this work contains four distinct 

populations: an excitatory pyramidal cell, e, and an inhibitory interneuron, i, 

population in the cortex; and an excitatory specific relay nuclei, s, and inhibitory 

thalamic reticular nuclei, r, population in the thalamus. The dynamical processes 

that occur within and between populations in a neural field model are defined as 

follows: 

 

For each population, the mean soma potential results from incoming postsynaptic 

potentials (PSPs): 

 �����   � ������
�

 (1) 

where ������ is the result of a postsynaptic potential of type � onto a neuron of type 

� and �, � � � , !, ", #$ . The postsynaptic potential response in the dendrite is given 

by 

 %��������   &��'���� � (��� (2) 

where the influence of incoming spikes to population � from population � is 

weighted by a connection strength parameter &��   )��#�� , with the mean number 

of connections between the two populations )��  and #��  is the mean strength of 

response in neuron � to a single spike from neuron �. (�� is the average axonal delay 

for the transmission of signals, and '�� is the mean axonal pulse rate from � to �. 

 

The operator %�� describes the time evolution of ���  in response to synaptic input, 

 %��   1*+ ,�

,�� -  .1* -  1+/ ,,� - 1 
(3) 

where + and * are the overall rise and decay response rates to the synaptodendritic 

and soma dynamics. 

 

The mean firing rate of a neural population 0���� can be approximately related to its 

mean membrane potential, �����, by 
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 0����   1�������� 
  0�

ax

1 - exp�������� �  5�$/67� 
(4) 

which define a sigmoidal mapping function 1�  with a maximal firing rate 0�ax, a 

mean firing threshold 5� , and a standard deviation of this threshold 6�8/√3. 

 

The mean axonal pulse rate is related to the mean firing rate by, 

 %����'����   0���� (5) 

 %����   19��
:�

:�� - 29�
::� - 1 

(6) 

Here, 9�   ;�/"� represents the damping rate, where ;�  is the propagation velocity 

in axons, and "� is the characteristic axonal length for the population. 

 

Following the approach of previous neural field models, excitatory and inhibitory 

synapses in the cortex are assumed proportional to the number of neurons 

(Robinson et al., 2001; Wright and Liley, 1996). This random connectivity 

approximation results in &��   &��, and &��   &��  which implies ��   ��  and 0�   0�. 

Inhibitory population variables can then be expressed in terms of excitatory 

quantities and are thus not neglected. 

 

The fixed-point attractors, or steady states, of the corticothalamic neural mass are 

found by setting all time derivatives in the above equations to zero.  The steady-state 

values '�
���

 of '�  is then given by solutions of 

 1��<'�
��= � �&�� -  &���'�

���  

  &��1 >&��'�
��� -  &��1 ?&��'�

��� - ���
���

>1��<'�
��= � �&�� -  &���'�

���@ A -
 &��'�

���@, 

 

(7) 

where '�
���

 is the steady state component of the input stimulus (Braitenberg and 

Schuz, 2013; Wright and Liley, 1996). Roots of Eq. (7) are found using the fzero() 

function from MATLAB. 
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The connection gains between populations, which represent the additional activity 

generated in postsynaptic nuclei per additional unit input activity from presynaptic 

nuclei, can be calculated by linearizing Eq. (4) which gives 

 B��   C�&�� (8) 

where 

  C�   D,0�,�� E
��
�	


  '�
���

67 F1 � '�
���

0�maxG 
(9) 

It is an important goal of this work to extend the ideas and phenomena already 

present in an existing biophysical model, which has been compared to human data, 

instead of a specific model of the phenomena with no bridge towards showing its 

implementation in the biology.  

 

Parameter Description Value Unit 
�� Cortical damping rate 116 s-1 

Qmax Maximum firing rate 340 s-1 

� Firing threshold 12.9 mV 

�� Threshold spread 3.8 mV 

�� Input noise amplitude spectral 

density 

1 �  10��  s-1 

� Decay rate of cell-body potential 83 s-1 

� Rise rate of cell-body potential 769 s-1 

    

 Intra-node coupling strengths   

���  1.5 mV s 

���  -3 mV s 

���  0.57 mV s 

���  3.4 mV s 

���  -1.5 mV s 

���  3.6 mV s 

���  0.17 mV s 

���  0.05 mV s 

    

	�� 
 	�� Corticothalamic loop delay 85 ms 

    

���
local Local network coupling strength 1.8 �  10�
  mV s 

� Diffuse network coupling strength �1.15 � 1.35� �  10�
 mV s 
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Table 1 – Corticothalamic neural mass parameters. Adapted from (Abeysuriya et al., 2015). 

 

Numerical simulations 

A 12x12 network of corticothalamic neural masses were simulated using the neural 

field simulation software, nftSim (Sanz-Leon et al., 2018). The parameters for each 

neural mass were identically set to “eyes-closed” estimates given in Table 1 

(Abeysuriya et al., 2015), which results in simulated activity with a 1/f spectrum and 

a peak in the alpha frequency band (8-13 Hz) under moderate network coupling. 

Each simulation was run for a total of 32s with 10s of initial transients removed 

using an integration timestep of Δ�  2���s. 

 

Network connectivity and heterogeneity 

The noise terms are individually generated for a node from an identical white noise 

Gaussian distribution with a mean of 1 (s��) and an amplitude spectral density of 

10��(arb. units). This serves as the only spatial heterogeneity in the network. The 

local coupling to each node is a nearest neighbour with diagonal nodes additionally 

scaled by 1/√2. A sweep of the amplitude of these local connections was first 

performed to determine the location of the ensemble bifurcation (phase transition) 

point, and then a slightly smaller value was used to ensure the system was proximal 

to this point but far enough away as to be stable under perturbations from the noise 

terms. An additional level of network connectivity, called diffuse coupling and 

represented by the symbol χ, prescribes a given nodes connection to the entire 

network. This is the only coupling parameter that changes in this work. 

 

Distance to bifurcation 

The network activity incident to each node at a given time point is purely excitatory 

and as such can be considered as a constant positive post-synaptic potential. In line 

with this, a constant potential is added to the cortical excitatory population and the 

steady states of the neural mass are solved numerically. A sweep of this potential 

change elucidates a saddle-node bifurcation which represents the necessary input, as 

a first order approximation, required to drive a node to its locally defined critical 

boundary. The bifurcation point can then be used as a reference for interpreting 

simulation activity post hoc. That is, at each time point the incident network activity 

to each node is translated into a distance to bifurcation time series for that target 

node, which enables parallel analysis of local activity and network induced effects. 
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Using this information, we defined three ‘working zones’: a stable, subcritical zone 

(
 < 1.20 mV·s; blue in Fig. 2), where ��  0; a quasi-critical zone (1.20 < 
 < 1.27 

mV·s; green in Fig. 2), where 0 �  �� � 100; and a saturated zone (
  > 1.27 mV·s; red 

in Fig. 2), where ��  100 in the second half of the simulation. The average 

population-level firing rate and gain within each zone was used to create an ‘ideal’ 

corticothalamic population (Fig. 2). The Pearson’s correlation matrix within each 

zone was then thresholded (r > 0), binarized and used to create a force-directed 

embedding (Fig. 3). 

 

Response to pulse stimulus 

A simulation was first run with no applied pulse stimuli for comparison with 

stimulus results. Then, N=144 trails were run where a pulse stimulus (amplitude = 

1mV; width = 10ms) was applied to a single node at t = 10s. The cortical activity from 

the no-stimuli simulation is subtracted from all pulse trails. Since the noise sequence 

generated is the same for each trial, this allows a clear mapping of stimuli-induced 

response. The trials are sorted based on the target nodes average distance to 

bifurcation within the 8 timepoints pre-stimulus. For visualization purposes, the 

stimulus-induced response of the targeted node in each trial is averaged across 

upper, middle, and lower thirds of the sorted distance to bifurcation vector, and the 

time series is low-pass filtered with a passband frequency of 0.001 Hz. As expected, 

nodes closest to their bifurcation had the strongest response, and the longest 

timescale for decaying back to pre-stimulus levels of activity.  

 

Network signatures of criticality 

The time series of the cortical ‘e’ population was used to create a weighted, un-

thresholded connectivity matrix. A weighted- and signed- version of the Louvain 

modularity algorithm from the Brain Connectivity Toolbox (Rubinov and Sporns, 

2010) was used to iteratively maximizes the modularity statistic, Q, for different 

community assignments until the maximum possible score of Q has been obtained 

(Equation 4). The modularity estimate for a given network is, therefore, a 

quantification of the extent to which the network may be subdivided into 

communities with stronger within-module than between-module connections. 

 

  0�  �
��

∑ LM� 
! �  � !NO"�"� � �

��!��
∑ LM� 

� �  � �NO"�"�             (10) 

 

where v is the total weight of the network (sum of all negative and positive 

connections), wij is the weighted and signed connection between regions i and j, eij is 
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the strength of a connection divided by the total weight of the network, and δMiMj is 

set to 1 when regions are in the same community and 0 otherwise. ‘+’ and ‘–‘ 

superscripts denote all positive and negative connections, respectively. In our 

experiment, the γ parameter was set to 1.1 (tested within a range of 0.5–2.0 for 

consistency across 100 iterations). Given that the community structure of the system 

changed substantially as a function of 
, a consensus partition was created across the 

whole range using the ‘consensus_und.m’ script from the Brain Connectivity Toolbox. 

 

The participation coefficient quantifies the extent to which a region connects across 

all modules. This measure has previously been used to characterize diversely 

connected hub regions within cortical brain networks (e.g., see Power 2013). Here, 

the Participation Coefficient (B) was calculated for each of the 400 cortical parcels for 

each subject, where κisT is the strength of the positive connections of region i to 

regions in module s, and κiT is the sum of strengths of all positive connections of 

region i. The participation coefficient of a region is therefore close to 1 if its 

connections are uniformly distributed among all the modules and 0 if all of its links 

are within its own module: 

 

     P  1 � ∑ <#���
#��

=���
�$�                (11) 

 

Brain state variability was calculated by taking the standard deviation of the upper 

triangle of the correlation matrix at each level of 
. Time series variability was 

estimated using the regional mean of the standard deviation of the cortical ‘e’ 

population over time. The percentage of explained variance for the top two principal 

components was calculated by subjecting demeaned cortical ‘e’ population time-

series at each level of 
 to separate principal component analyses. 

 

Whole-brain fMRI analysis 

Minimally pre-processed fMRI data were obtained from 100 unrelated participants 

(mean age 29.5 years, 55% female) from the HCP database. For each participant, 

BOLD data from the left-right encoding session from the N-back task were acquired 

using multiband gradient echo planar imaging, amounting to 4 min 51 sec of data 

(405 individual TRs) per subject. Pre-processed (Shine et al., 2016, 2019a) but 

temporally unfiltered data was extracted from 333 cortical parcels (Gordon et al., 

2016). The time points associated with each cognitively-challenging task-blocks and 

the interspersed rest blocks were convolved with a canonical haemodynamic 

response function (using the spm_hrf.m function from SPM12). 
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To estimate functional connectivity between the 333 cortical ROIs, we used the 

Multiplication of Temporal Derivatives (M) technique (Shine et al., 2015). M is 

computed by calculating the point-wise product of temporal derivative of pairwise 

time series (Equation 1). The resultant score is then averaged over a temporal 

window, w, in order to reduce the contamination of high-frequency noise in the 

time-resolved connectivity data. A window length of 20 TRs was used in this study, 

though results were consistent across a range of w values (10-50 TRs). To ensure 

relatively smooth transitions between each task, connectivity analyses were 

performed on each individual task separately, and were subsequently concatenated. 

In addition, all analyses involving connectivity (or the resultant topological 

estimates) incorporated the junction between each task as a nuisance regressor. 

 

    Q� %  �
& ∑ '%���(%��)

*+���(+��,
%!&
%                (12) 

 

Where for each time point, t, the M for the pairwise interaction between region i and 

j is defined according to equation 1, where t’ is the first temporal derivative (t+1 – t) 

of the ith or jth time series at time t, σ is the standard deviation of the temporal 

derivative time series for region i or j and w is the window length of the simple 

moving average. This equation can then be calculated over the course of a time series 

to obtain an estimate of time-resolved connectivity between pairs of regions. Time-

resolved values of BT are then calculated on each weighted, signed connectivity 

matrix. Values of each measure were compared statistically using a series of non-

parametric permutation tests (Nichols and Holmes, 2003) in which the group 

identity (i.e., rest vs. task) was randomly shuffled in order to populate a null 

distribution (5,000 iterations). 

 

Gradient fitting the model to whole-brain fMRI data 

Firstly, participation, regional diversity, time-series variability and variance 

explained by the first two principal components are calculated on the whole-brain 

imaging data and the model outputs for each value of diffuse coupling. Since the 

absolute values of these measures do not form a fair point of comparison with 

outputs from our simplified corticothalamic model, we focus on their relative 

differences across task and rest (i.e., what interval of diffuse coupling makes the 

most sense of the metric changes). Thus, for each measure the difference between 

rest and task is calculated to form 5 gradients that are fit to the corresponding 
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gradients of the model outputs across levels of diffuse coupling. This is done by 

subsampling the model outputs (Figs 4 (a), (b), and (c)) at progressively coarser steps 

sizes, calculating the gradient numerically using diff() function from MATLAB, and 

then finding the x value (which is a subsample interval) that minimizes the cost 

function. The final estimate is the average across all subsampling scales. Finally, in 

order to mitigate against bias for any one metric in the fit, a uniform random walk is 

performed on the 0-1 weightings of each gradient metric to scale its contribution to 

the cost function. 

 

Two distinct approaches are used for the whole-brain and regional estimates, 

respectively. For the whole-brain estimates, the algorithm is free to change the upper 

and lower bounds of the diffuse coupling interval 
�, 
�. For the regional estimates, 

we use the maximum likelihood from the task estimate of diffuse coupling 
task~1.26 

± 0.1 × 10 − 4 mV∙s as the upper bound for the search, and thus only the lower bound 

is free to change �
� , 
task�. A virtual lesioning approach is then used, where each 

node is removed from the data (only a single node is ever removed at a time) and the 

algorithm is run to estimate the new diffuse value (relative to the task estimate). The 

result is an estimate of the change in diffuse coupling facilitated by each node in the 

network. 
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Supplementary material 

 

 
Figure S1 –Population firing rate gain. (left: black) sigmoidal mapping of firing rate to soma 

potential; (right: orange) first derivative of the sigmoid function. The inset shows the range of 

postsynaptic potentials significant for the steady-state population firing rates as a function of induced 

postsynaptic potential. Network coupling in this model is facilitated by connecting cortical excitatory 

populations between each node. This means that as diffuse coupling increases, the network-induced 

positive postsynaptic potential generated increases in the receiving nodes cortical population. The 

effect of this increase can be seen in Fig. S1a where a sweep of constant postsynaptic potential shows 

the deformation of steady state firing rate attractors. At ~0.12 mV, the low attractor is lost through a 

saddle-node bifurcation leaving only the high firing attractor. Notably, the relative difference of the 

thalamic reticular nuclei (TRN) and specific relay nuclei (SRN) firing rate attractors is inverted either 

side of the bifurcation. The simulated time series of cortical firing rates, given in Fig. S1 (b), can then 

be understood as a ‘smearing’ of the results in Fig. S1a. 
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Figure S2– Corticothalamic firing rate attractors across the critical point. (a) Steady-state population 

firing rates as a function of induced postsynaptic potential. (Qe – cortical excitatory nuclei, Qs – 

thalamic specific relay nuclei, Qr – thalamic reticular nucleus). (b) Simulated mean cortical firing rate 

for each node as a function of diffuse coupling. 
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Figure S3 – Corticothalamic steady state gains across the critical point. (a) Excitatory cortical input 

gains from the excitatory (G_ee), and inhibitory (G_ei) cortex, and the SRN (G_es). (b) SRN thalamic 

input gains from the cortex (G_se), TRN (G_sr), and external stimuli (G_sn). (c) TRN thalamic input 

gains from the cortex (G_re), and SRN (G_rs). (d) Cortico-thalamo-cortical loop gains as a function of 

induced postsynaptic potential. The intra-node corticothalamic gains are given in Fig. S2. As the 

system crosses the bifurcation point, both the TRN and SRN show a strengthened response to all 

inputs. In addition, the cortico-SRN-cortical loop gain, which resonates to given the characteristic 

alpha (~10 Hz) oscillation in wake, remains dominant. 
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