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Abstract 13 

Making accurate decisions often involves the integration of current and past evidence. 14 

Here we examine the neural correlates of conflict and evidence integration during 15 

sequential decision making. Patients implanted with deep-brain stimulation (DBS) 16 

electrodes and age-matched healthy controls performed an expanded judgement task, 17 

in which they were free to choose how many cues to sample. Behaviourally, we found 18 

that while patients sampled numerically more cues, they were less able to integrate 19 

evidence and showed suboptimal performance. Using recordings of 20 

Magnetoencephalography (MEG) and local field potentials (LFP, in patients) in the 21 

subthalamic nucleus (STN), we found that beta oscillations signalled conflict between 22 

cues within a sequence. Following cues that differed from previous cues, beta power 23 

in the STN and cortex first decreased and then increased. Importantly, the conflict 24 

signal in the STN outlasted the cortical one, carrying over to the next cue in the 25 

sequence. Furthermore, after a conflict, there was an increase in coherence between 26 

the dorsal premotor cortex and subthalamic nucleus in the beta band. These results 27 

extend our understanding of cortico-subcortical dynamics of conflict processing, and 28 

do so in a context where evidence must be accumulated in discrete steps, much like 29 

in real life. Thus, the present work leads to a more nuanced picture of conflict 30 

monitoring systems in the brain and potential changes due to disease.  31 
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Introduction 32 

Whether it is deciding which method of transportation to take to get to work most 33 

efficiently or which horse to bet on to maximize monetary gain, humans are constantly 34 

integrating noisy evidence from their environment and past experience, in order to 35 

optimize their decisions. Often the information comes at intervals, thus necessitating 36 

a system that can track incoming signals over time and only commit to making a choice 37 

after sufficient evidence has been integrated (Ratcliff, 1978; Busemeyer and 38 

Townsend, 1993; Usher and McClelland, 2001), a process that has been proposed to 39 

rely on the cortico-basal-ganglia circuit (Bogacz et al., 2010). Research in human 40 

patients with implanted electrodes for clinical deep-brain stimulation (DBS) treatment 41 

has pointed to the role of the subthalamic nucleus (STN) of the basal ganglia as a 42 

decision gate-keeper. The STN is postulated to set the decision threshold in the face 43 

of conflicting information by  postponing action initiation until the conflict is resolved  44 

(Frank, 2006). As predicted by the model, STN activity is increased for high conflict 45 

trials and STN-DBS affects decision making in the face of conflicting evidence (Frank 46 

et al., 2007; Coulthard et al., 2012; Green et al., 2013). Furthermore, the decision 47 

threshold correlated specifically with changes in STN theta oscillatory power 48 

(Cavanagh et al., 2011; Herz et al., 2016). Thus, oscillatory activity, primarily in the 49 

theta and beta bands, in the basal ganglia, reflects immediate inhibition to motor output 50 

during situations involving conflict (Frank, 2006), whether it is the response, sensory 51 

or cognitive uncertainty (Bonnevie and Zaghloul, 2019).  52 

The majority of previous studies in the STN employed paradigms in which the putative 53 

processes of conflict detection and setting of decision threshold happened in close 54 

temporal proximity. For example, in previously used paradigms such as the flanker 55 

task (Zavala et al., 2015), go-no-go (Alegre et al., 2013; Benis et al., 2014), and Stroop 56 

task (Brittain et al., 2012) evidence was presented simultaneously. Although STN 57 

activity was also studied in random dot motion paradigm that required evidence 58 

accumulation over time (Herz et al., 2018), it was unknown exactly what sensory 59 

evidence was presented when, on individual trials, due to the noisy nature of stimuli. 60 

As a result, previous studies do not allow us to fully disentangle the neural correlates 61 

of ongoing evidence accumulation and conflict during decision making. In particular, it 62 

is not clear what kind of conflicting information during evidence accumulation the STN 63 

responds to: does it respond to a local conflict, when a new piece of information does 64 
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not match single previous piece in the sequence, or global conflict, when a new piece 65 

of information does not match overall evidence from the entire trial?  66 

An important role in shaping the STN activity is played by the interaction between the 67 

cortical circuits and the STN. However, the nature and cortical locus of this interaction 68 

has only been examined in a handful of studies. Resting-state coherence between the 69 

STN and ipsilateral frontal cortex has shown a peak in the beta band in human patients 70 

(Litvak, Jha, et al., 2011; West et al., 2020) as well as rodent models of Parkinson’s 71 

disease (Magill et al., 2004; West et al., 2018). Additionally, coherence in the theta 72 

band from frontal sites (as measured with electroencephalography) to the STN 73 

increased during a conflict detection task (Zavala et al., 2014, 2016).  74 

To precisely characterize how the neural activity in cortex and the STN changes during 75 

the process of evidence accumulation, we recorded STN local field potential (STN-76 

LFP) simultaneously with whole-head magnetoencephalography (MEG) while 77 

Parkinson’s disease patients performed an expanded judgement task (Leimbach et 78 

al., 2018). Here, cues are presented at discrete intervals, and evidence for the correct 79 

answer develops as the participant samples and integrates multiple cues over the 80 

course of the trial (Figure 1). This paradigm allowed us to investigate how behavioural 81 

and neural responses depend on the continual unfolding of evidence extended in time, 82 

determine what kind of conflicting information the STN responds to, and test 83 

predictions of computational models. 84 

 85 

 86 

 87 

 88 

 89 

Figure 1: Expanded Judgement Task. Participants performed a version of an 90 

evidence integration task, with two key elements: 1. the cues were presented 91 

sequentially within the trial rather than simultaneously, which allowed us to examine 92 

evidence accumulation over time, and 2. the trial duration, i.e. number of cues 93 

sampled, was up to the participants, who responded when they felt they had received 94 
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enough information to make a decision. Participants were required to guess the likely 95 

direction (left or right) the mouse ‘would run’ in. Each cue was 70% valid, i.e. they 96 

represented the correct direction 70% of the time if they were to be treated in isolation. 97 

 98 

Materials and Methods 99 

Participants 100 

We tested 15 patients with a clinical diagnosis of Parkinson’s disease (14 male, mean 101 

age: 59, range 47-71, two left-handers), following electrode implantation for DBS 102 

treatment, before full closure of the scalp, thus allowing for intracranial recordings of 103 

the STN (all bilateral recordings, except 1 patient right unilateral and 1 patient with 3 104 

contacts in the left STN and only 2 on the right, this patient was also subsequently 105 

diagnosed with Multiple Systems Atrophy). Among tested patients, 11 had Medtronic 106 

3389 electrodes, while 4 had Boston VerciseTM directional leads. The surgical 107 

procedures are described in detail in (Foltynie et al., 2011). All patients were assessed 108 

on medication (mean Levodopa Equivalent Dosage 1272mg, range: 500-1727.5mg). 109 

Unified Parkinson's Disease Rating Scale (UPDRS) part 3 scores were 39.6±14 110 

(mean±standard deviation, range: 18-61) when OFF medication, and 15.4±6.5 (range: 111 

7-30) when ON medication. None of the patients had cognitive impairment (Mini–112 

Mental State Examination (MMSE) scores: mean 28.8, range: 26-30, one patient score 113 

missing), clinical depression, or apathy. Two patients were excluded from the analysis 114 

due to poor performance of the task (see Task below). We recruited 13 age and gender 115 

matched controls (12 male, mean age: 57, range 44-70, two left-handers). The patient 116 

study was approved by the UK National Research Ethics Service Committee for South 117 

Central Oxford and the control study was covered by University College London Ethics 118 

Committee approval for minimum risk magnetoencephalography studies of healthy 119 

human cognition. All participants gave written informed consent. Patients did not 120 

receive financial compensation and the controls were compensated for their time 121 

according to our centre’s standard hourly rate. 122 

Surgical Procedure 123 

Bilateral DBS implantation was performed under general anaesthesia using a 124 

stereotactic (Leksell frame G, Elekta) MRI-guided and MRI-verified approach without 125 
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microelectrode recording as detailed in previous publications (Holl et al., 2010; 126 

Foltynie et al., 2011). Two stereotactic, preimplantation scans were acquired, as part 127 

of the surgical procedure, to guide lead implantation; a T2-weighted axial scan 128 

(partial brain coverage around the STN) with voxel size of 1.0×1.0 mm2 (slice 129 

thickness=2 mm) and a T1-weighted 3D-MPRAGE scan with a (1.5 mm)3 voxel size 130 

on a 1.5T Siemens Espree interventional MRI scanner. Three dimensional distortion 131 

correction was carried out using the scanner’s built-in module. Target for the deepest 132 

contact was selected at the level of maximal rubral diameter (~5 mm below the AC-133 

PC line). To maximise DBS trace within the STN, the target was often chosen 1.5 - 2 134 

mm posterolateral to that described by Bejjani (Bejjani et al., 2000). Stereotactic 135 

imaging was repeated following lead implantation to confirm placement. 136 

Task 137 

To investigate the neural basis of evidence accumulation over time, we used the 138 

expanded judgement task (Figure 1, similar to the task previously used by Leimbach 139 

et al, 2018). Participants were shown a series of images of a mouse facing either left 140 

or right. Cues were presented for 200ms, with an inter-stimulus interval (ISI) of 600ms, 141 

so there was 800ms interval from one onset to another, to which we refer as Stimulus 142 

Onset Asynchrony (SOA). Participants were required to judge in which direction the 143 

mouse will ‘run’, based on the probabilities extracted from a series of sequential cue 144 

images, and then respond accordingly. The validity of the cues was 70%, such that 145 

each cue (left or right mouse) represented the correct choice 70% of the time. The two 146 

directions were equally likely across trials, thus the chance level in the task was 50%. 147 

If the participants responded based on one of the cues only, without accumulating 148 

information over time, then their expected success rate would be 70%. Responses 149 

were made by pressing a button with the thumb of the congruent hand after a self-150 

chosen number of cues, when the participant felt they had enough evidence to make 151 

a decision. Prior to the recording, the participants underwent a short training session 152 

where they were first asked to respond only after seeing a set number of stimuli 153 

(between two and ten) and then told that for the main experiment they will decide 154 

themselves how many stimuli to observe. This was to ensure that participants chose 155 

to respond based on accumulating evidence from a sequence of images rather than 156 

just the first stimulus. Participants performed up to 200 trials (Patients: 168±11; 157 

Controls: 200 each, except one control who completed 150 trials). Two patients were 158 
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excluded from the analysis due to poor performance of the task (accuracy at chance 159 

level). 160 

Recording and Analysis 161 

Participants performed the task while seated in a whole-head MEG system (CTF-VSM 162 

275-channel scanner, Coquitlam, Canada). For patients, STN-LFP, 163 

electrooculography (EOG) and electromyography (EMG) recordings were also 164 

obtained using a battery-powered and optically isolated EEG amplifier (BrainAmp MR, 165 

Brain Products GmbH, Gilching, Germany). STN-LFP signals were recorded 166 

referenced to a common cephalic reference (right mastoid). 167 

All preprocessing was performed in SPM12 (v. 7771, http://www.fil.ion.ucl.ac.uk/spm/, 168 

(Litvak et al., 2011b)), and spectral analysis and statistical tests were performed in 169 

Fieldtrip (http://www.ru.nl/neuroimaging/fieldtrip/ (Oostenveld et al., 2011)) using the 170 

version included in SPM12.  171 

STN-LFP recordings were converted offline to a bipolar montage between adjacent 172 

contacts (three bipolar channels per hemisphere; 01, 12, and 23) to limit the effects of 173 

volume conduction from distant sources (for more details see Litvak et al., 2010 and 174 

Oswal et al., 2016b). Four of the patients had segmented DBS leads (VerciseTM DBS 175 

directional lead, Boston Scientific, Marlborough, USA). In these cases, we averaged 176 

offline the signals from the 3 segments of each ring and treated them as a single ring 177 

contact. Thus, for each participant, we had a total of 3 STN EEG channels in each 178 

hemisphere (except for 2 participants: one with right side electrodes only, thus 3 179 

channels, and one with 1 contact on the right excluded due to extensive noise, thus 5 180 

channels). The LFP data were downsampled to 300Hz and high-pass filtered at 1Hz 181 

(Butterworth 5th order, zero phase filter). 182 

A possibly problematic but unavoidable feature of our task was that the stimuli were 183 

presented at relatively short SOA not allowing for the power to return to baseline 184 

before the next stimulus was presented. Furthermore, the SOA was fixed making 185 

entrainment and anticipation possible. These were deliberate design choices to 186 

make the task easier for this very difficult patient population prone to attentional 187 

difficulties, and to be able to collect a large number of trials for model-based 188 

analyses. Any jittering of the SOAs (which would have to go in the direction of 189 

increasing their duration) would have led to far fewer trials being collected. The total 190 
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duration of the recording had to be kept short as the patients were unable to tolerate 191 

extended periods of testing. Furthermore, having a very long SOA would make it 192 

more likely that the participants would resort to explicit counting, which was 193 

something we aimed to avoid. 194 

 195 

To account for these design issues, we developed an unconventional way of 196 

performing time-frequency analysis on these data in the absence of a baseline. We 197 

first ran time frequency analysis on continuous LFP data (multitaper method 198 

(Thomson, 1982) 400ms sliding window, in steps of 50ms) on a priori defined beta 199 

power (13-30 Hz average = 21.5Hz; note that when looking at individual participant 200 

beta power around the response period, we found a similar band as defined a priori: 201 

individual mean range: 16.6-28.4Hz; overall min: 11Hz, max: 31Hz). Separately we 202 

also estimated the power in the theta band (2-8Hz average = 5Hz, e.g. Herz et al., 203 

2016). The resulting power time series were log-transformed and high-pass filtered at 204 

0.5 Hz (Butterworth 5th order, zero phase filter) to remove fluctuations in power that 205 

were slower than our SOA. Afterwards, the power time series were epoched around 206 

the presentation of each cue stimulus (-500 to 800ms). We averaged power across 207 

contacts within each hemisphere, resulting in 1 left and 1 right STN channel, and we 208 

also calculated the mean STN signal by combining hemispheres. We used a 209 

permutation cluster-based non-parametric test to correct for multiple comparisons 210 

across time (the duration of the whole cue epoch (0-800ms) and report effects that 211 

survive correction only (p<0.05 family-wise error (FWE) corrected at the cluster level). 212 

Similarly to LFP, MEG data were downsampled to 300Hz, and high-pass filtered at 213 

1Hz (Butterworth 5th order, zero phase filter). For sensor-level analysis, we used 214 

only the control group data, as in the patients the sensor signals were contaminated 215 

by ferromagnetic wire artefacts (Litvak et al., 2010). 216 

For the MEG sensor-level time-frequency analysis, we used all channels and a 217 

frequency range of 1-45Hz. All other analyses were identical to the LFP pipeline 218 

reported above. However, we corrected for multiple comparisons across all MEG 219 

channels, timepoints (0-800ms) and frequencies (1-45Hz), and only report effects that 220 

survived that correction (p<0.05 FWE corrected at the cluster level). 221 
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For source-level analysis, the continuous MEG data were projected to source space 222 

with Linearly Constrained Maximum Variance (LCMV) beamformer (Veen et al., 1997) 223 

using a 10-fold reduced version of  the SPM canonical cortical mesh (Mattout et al., 224 

2007) as the source space (resulting in 818 vertices and the same number of source 225 

channels). The source orientation was set in the direction of maximum power.  See 226 

Litvak et al., (2012) for details on beamforming and Litvak et al. (2010) for details on 227 

issues regarding beamformer use for removing artefacts from simultaneous MEG and 228 

intracranial recordings. Next, time-frequency analysis was performed on continuous 229 

source data the same way as for STN-LFP except the frequencies of interest were 230 

informed by the sensor-level analysis. This biased the statistical test for discovery of 231 

an effect (cf. double dipping, Kriegeskorte, Simmons, Bellgowan, & Baker, 2009) but 232 

our aim in this analysis was post-hoc interrogation of the effects established at the 233 

sensor level in terms of their location in the cortex rather than hypothesis testing 234 

(Gross et al., 2012). To limit our search space for the coherence analysis (below), we 235 

only investigated sources that survived p<0.05 FWE correction.  236 

Time-resolved coherence was then computed between the identified cortical sources 237 

and STN contacts by going back to raw source time series. The data were epoched  238 

(-1000 to 1000ms to increase the window for analysis), and time-frequency analysis 239 

was performed as described above with coherence between the sources and the left 240 

and right STN also computed from the cross-spectrum. Non-parametric permutation 241 

testing between conditions was corrected for multiple comparisons across channels 242 

(source vertices), time (0-1600ms to cover both cue ‘i’ and cue ‘i+1’) and frequencies 243 

(1-30Hz), and we only report effects that survive correction (p<0.05 FWE corrected at 244 

the cluster level).  245 

Reconstruction of electrode locations 246 

We used the Lead-DBS toolbox (http://www.lead-dbs.org/ (Horn and Kühn, 2015)) to 247 

reconstruct the contact locations. Post-operative T2 and T1 images were co-registered 248 

to pre-operative T1 scan using linear registration in SPM12 (Friston et al., 2007). Pre- 249 

(and post-) operative acquisitions were spatially normalized into 250 

MNI_ICBM_2009b_NLIN_ASYM space based on preoperative T1 using the Unified 251 

Segmentation Approach as implemented in SPM12 (Ashburner and Friston, 2005). 252 

DBS electrode localizations were corrected for brain shift in postoperative acquisitions 253 
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by applying a refined affine transform calculated between pre- and post-operative 254 

acquisitions that was restricted to a subcortical area of interest as implemented in the 255 

brain shift correction module of Lead-DBS software. The electrodes were then 256 

manually localized based on post-operative acquisitions using a tool in Lead-DBS 257 

specifically designed for this task. The resulting locations were verified by an expert 258 

neurosurgeon. 259 

Choice Strategy  260 

In order to analyse the strategy used by the participants during choice, we investigated 261 

which factors influence commitment to a choice on a given trial. We considered two 262 

factors: The first of them is the evidence integrated for the chosen option. Such 263 

accumulated evidence was computed from Equation 1 that continuously updates the 264 

evidence (decision variable, DV) for a choice at time t based on the existing DV from 265 

the previous stimuli and the new incoming stimulus 𝑆", where 𝑆" = −1 for the left 266 

stimulus, and 𝑆" = 1 for the right stimulus. At the start of each trial, the decision 267 

variable was initialized to 𝐷𝑉( = 0. 268 

𝐷𝑉" = 	𝐷𝑉"+, + 𝑆" (1) 269 

The second factor we considered was whether the stimulus was the same as the 270 

previously presented one, i.e. 𝑆𝐴" = 1 if 𝑆" = 𝑆"+, and 𝑆𝐴" = 0 otherwise. For all 271 

stimuli excluding the first stimulus on each trial (for which it is not possible to define 272 

𝑆𝐴") we performed a logistic regression predicting if the choice has been made after 273 

this stimulus, i.e. we tried to predict a variable 𝐷" = 1 if choice made after stimulus t 274 

and 𝐷" = 0 otherwise. For each participant, we looked at the significance of the two 275 

factors. 276 

Estimating accumulated evidence using computational models  277 

In order to analyse if STN activity reflects the amount of available evidence for each 278 

response based on the stimuli presented so far, we employed computational models 279 

that can estimate this quantity at each point in time. We compared how well different 280 

models of evidence accumulation could capture the behaviour of different patients, 281 

and then generated regressors for each patient based on the best model for that 282 

patient. In addition to the model assuming evidence is integrated according to 283 
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Equation 1, we also considered three extended models which included a forgetting 284 

term (𝜆), a bonus term (𝜔), or both (Equations 2-4). 285 

𝐷𝑉" = (1 − 𝜆)𝐷𝑉"+, + 𝑆" (2) 286 

𝐷𝑉" = 𝐷𝑉"+, + (1 + 𝜔𝑆𝐴")𝑆" (3) 287 

𝐷𝑉" = (1 − 𝜆)𝐷𝑉"+, + (1 + 𝜔𝑆𝐴")𝑆" (4) 288 

The forgetting term was used to model the decay of memory over the course of the 289 

trial and the bonus term is a weighting of ‘same’ pairs, i.e. the stimuli which match the 290 

directly preceding one (e.g.: in a ‘left-left-right’ sequence the second left stimulus 291 

would be weighted extra as it is the same as the first one). 292 

To estimate the parameters (𝜆, 𝜔), we assumed that the ratio of making a right 293 

choice to making a left choice is related to decision variable according to: 294 

 295 

log
𝑃(𝑟𝑖𝑔ℎ𝑡)
𝑃(𝑙𝑒𝑓𝑡) = 𝛽( + 𝛽"𝐷𝑉" 296 

For each participant, we looked for parameters that maximized the likelihood of 297 

participant’s behaviour after all stimuli shown to that participant. 298 

We found the winning model (based on Bayesian information criterion) to be variable 299 

across participants (number of participants in patients/control group indicated): M1 = 300 

1/0; M2 = 0/0; M3 = 4/1; M4 = 8/8, although the model that included both forgetting 301 

and bonus terms was the most common. The value of |𝐷𝑉"| from the best model for a 302 

given patient was used as a regressor in Figure 5A. 303 

Estimating Bayesian normalization term 304 

We investigated if the STN activity follows a pattern predicted by a computational 305 

model of the basal ganglia (Bogacz et al., 2007; Bogacz and Larsen, 2011). This model 306 

suggests that the basal ganglia compute the reward probabilities for selecting different 307 

actions according to Bayesian decision theory. These probabilities are updated after 308 

each stimulus and the updated information is fed back to the cortex via the thalamus. 309 

An action is initiated when the expected reward under a particular action exceeds a 310 

certain threshold. The model attributes a very specific function to the STN: ensuring 311 
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that if the probability of one action goes up, the probabilities of the others go down at 312 

the same time by normalising all probabilities so that they add up to one.  313 

In order to create regressors for neural activity recorded from the STN, we used the 314 

original proposal that the STN computes the normalization term of the Bayesian 315 

equation during the evidence integration process (Bogacz & Gurney, 2007). We 316 

defined 2 cortical integrators YL and YR, which integrate evidence for the left and right 317 

stimulus respectively, as described above. Additionally, we subtracted the STN 318 

normalization term from the cortical integrators after each stimulus input in a sequence 319 

(Bogacz et al., 2016). For each participant, we assumed the integration follows one of 320 

the models described by Equations 1-4, which best describes given participants (see 321 

previous subsection). So, for example, for participants best described by Equation 1, 322 

the integrators were updated as follows 323 

𝑌C," = 	𝑌C,"+, + 𝐿" − 𝑆𝑇𝑁"+, (5) 324 

𝑌G," = 	𝑌G,"+, + 𝑅" − 𝑆𝑇𝑁"+, (6) 325 

𝑆𝑇𝑁" = logIexp𝑌C," + exp𝑌G,"	M	 (7) 326 

In the above equations, 𝐿" = 1, 𝑅" = 0 if cue 𝑡 is left, and 𝐿" = 0, 𝑅" = 1, otherwise. 327 

However, for models 2-4 we added decay to the cortical integrators and bonus terms 328 

to Equations 5-6 analogously to Equation 2-4, i.e. we ensured that 𝐷𝑉" = 𝑌G," − 𝑌C,". At 329 

the start of each trial, the integrators were initialized to 𝑌C,( = 𝑌G,( = log 0.5 330 

(corresponding to equal prior probabilities of the two responses). The value computed 331 

from Equation 7 was used as Bayesian normalization regressor in Figure 5. 332 

 333 

Results 334 

Patients are able to accumulate evidence over time 335 

Patients waited on average 6.6 stimuli before making a response (6.59±0.52 sem) 336 

and their accuracy was significantly above the 70% level expected if they only based 337 

their decision on a single cue (80±0.03 sem, t=3.6, p=0.004). Controls waited on 338 

average 6.3 stimuli before making a response (6.29±0.46 sem) and were similarly 339 

above 70% in their accuracy (88.6±0.01 sem, t=18.4, p<0.001). There was no 340 

significant difference between groups in the number of stimuli viewed before making 341 
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a choice (t=0.42, p-value = 0.68), but patients had lower accuracy (t=-2.99, 342 

p=0.0009) and slower reaction time (as measured from the onset of the last cue 343 

before a response was made, t=2.16, p=0.041). See Table 1 for summary of 344 

behavioural measures. 345 

To explore potential strategies participants could have used in the task, we 346 

compared performance in both groups to an agent that would have been an optimal 347 

observer, and would choose to respond left if the number of left cues was higher 348 

than the number of right cues, to respond right for a larger number of right cues, and 349 

would choose randomly if the numbers were equal. In other words, for each 350 

participant, we calculated the accuracy they would have achieved had they 351 

integrated evidence optimally, having seen the stimuli sampled by the participant on 352 

each trial. We found that controls and patients had significantly lower accuracy 353 

(controls: p=0.019, patients: p=0.0076) than an ideal observer would have, based on 354 

the same cue sampling (89% for controls and 87% for patients).  355 

Next, we asked whether participants were just solving the task by responding after 356 

they spotted two of the same stimuli in a row (i.e. after the first ‘same’ pair). To 357 

address this question, we investigated to what extent participants’ response after 358 

stimulus was predicted by accumulated evidence, and by same stimuli in a row (see 359 

Materials and Methods for details). Most participants had responses best predicted 360 

either by accumulated evidence alone (6 patients and 6 controls), or by both 361 

accumulated evidence and stimulus repetition (5 patients and 7 controls). For 362 

remaining 2 patients none of these factors was predicting their response. Hence, 363 

there was no participant who exclusively relied of making a choice after seeing the 364 

‘same’ stimulus, without considering evidence integrated so far. 365 

 366 

 367 

 368 

 369 

 370 

 371 
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Table 1: Behavioural results showing mean and standard deviations for each group. 372 
RT: Reaction time; ACC: accuracy. The analytical probability of a ‘same’ pair at the end 373 
of the sequence would be 58% if participants chose the moment of response randomly. Both 374 
patients and controls responded significantly more often after a ‘same’ pair (both groups 375 
p<0.001). 376 

 
# stimuli 

seen 
Accuracy RT(ms) 

Fraction of 

responses after 

‘same’ at end 

PATIENTS Mean 6.59 0.80 536.52 0.73 

PATIENTS SD 1.88 0.10 29.48 0.11 

CONTROLS Mean 6.29 0.89 502.74 0.81 

CONTROLS SD 1.65 0.04 48.81 0.09 

 377 

STN beta power shows persistent activity to local conflict during evidence 378 

accumulation 379 

In order to investigate how the STN represents the inconsistencies when faced with 380 

conflicting evidence, we separated all cues into two categories: ‘same’ or ‘different’ to 381 

the one immediately before it (we term this ‘cue i’, Figure 2A). In our analyses of neural 382 

responses to cues, we excluded the first cues in a sequence, because it is not possible 383 

to classify them as ‘same’ or ‘different’, and last cues seen as they overlapped with 384 

the response period. Thus, if a participant experienced this sequence of mouse 385 

images: ‘left-right-left-left-right’, the analysed conditions would be ‘different-different-386 

same’.  387 

We found that beta oscillations responded to local conflict, generating a significant 388 

difference between ‘same’ and ‘different’ cues (cue ‘i’ in Figure 2B left panel) starting 389 

around 100ms after cue onset. Beta also showed a significant difference in the 390 

subsequent cue (i+1), with ‘different’ cues showing an increase in beta power, thus 391 

conflicting information on cue i results in increased beta power on cue i+1 (see Figure 392 

2C), a pattern of activity that is consistent with response inhibition (significant time 393 

clusters: 100-450ms, 750-1100ms, 1300-1600ms). These effects were greatly 394 

reduced in the theta band, with an effect of condition only briefly detectable during cue 395 

‘i+1’ (Figure 2B-C, right panel). 396 

We did not find a relationship between behaviour on the task and these neural effects. 397 
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 399 
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 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

Figure 2: Beta signalled local conflict, and carried this effect over to the next 416 

cue in a sequence. A) Notation used in the paper. Let us consider an arbitrary cue i 417 

in a sequence, where i>1: If cue i-1 is the same as cue i, then we would call this the 418 

‘same’ condition, and ‘different’ otherwise. We also plot the subsequent cues (i+1, i+2) 419 

for carry-over effects, but these are collapsed across cue type, left or right. (B) Left 420 

panel: Beta carried information locally as well as over to the next cue, with increased 421 

beta power for the ‘different’ condition. Right panel: Theta only carried mismatch 422 

information at the next cue in the sequence. Significant time periods are highlighted 423 

with shaded grey bars. Vertical lines show onset of cues in the sequence. The shaded 424 
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error bars show standard error of the mean. C) Difference waves of conditions 425 

(‘different’ minus ‘same’) with 95% confidence intervals shown by the dotted lines. 426 

After an initial dip there is a clear increase in beta power following the conflicting cue 427 

(i) starting just before the onset of cue i+1. Significant time periods are highlighted with 428 

shaded grey bars copied from panel B for comparison. Note that the apparent onset 429 

of the effect before zero is due to limited time resolution of the time-frequency 430 

decomposition. 431 

 432 

Cortical activity reflects rapid but non-persistent local conflict detection 433 

We investigated sensor-level MEG signals from controls in response to local conflict 434 

detection within the sequence. As with the STN, widespread activity over central 435 

sensors was found to signal local conflict – with an initial dip followed by an increase 436 

in beta power on ‘different’ trials (Figure 3A). The dip and increase in beta power were 437 

associated with different clusters of electrodes. The first cluster showed a significant 438 

decrease to different cues in the beta band across central, and predominantly right 439 

occipital, parietal and temporal sensors (inset in Figure 3A, 0-450ms, 8-35Hz, 440 

p=0.002, Cohen’s d=1.22;). A subsequent second cluster, more restricted to central 441 

sensors, showed an increase in beta power to different cues (550-800ms, 9-25Hz, p= 442 

0.008, Cohen’s d=1.35). 443 

Interestingly, the time-course of the cortical effect was quicker than that of the STN 444 

(Figure 3B vs 2B), with conflicting information only lasting until the onset of the next 445 

cue in the sequence. 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 
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Figure 3: Cortical activity to local conflict parallels STN but peaks earlier on 478 

average and has a shorter time course. A) Time-frequency plot showing significant 479 

times and frequencies when contrasting ‘different’ vs ‘same’ cues, averaged over all 480 

significant sensors. Significant sensors are shown as an inset, separately for the 2 481 

clusters (cluster 1: 0-450ms, 8-35Hz; cluster 2: 550-800ms, 9-25Hz,). B) Difference 482 

wave for the beta effects over clusters (13-30Hz) band, as represented in Figure 2B. 483 

The dotted lines indicate 95% confidence intervals. C) Left: Source localization in a 484 

combined sample of patients and controls revealed the source of cluster 1 in three 485 

right-lateralized areas: occipital pole, ventral temporal cortex and lateral premotor 486 

cortex (BA6). Right: Cluster 2 showed left lateralized superior parietal lobe (BA7), left 487 

posterior cingulate cortex (BA23), right primary sensory cortex and right dorsal 488 

premotor cortex/pre-supplementary motor area (dPM/BA6).  489 

Coherence is increased between STN and frontal cortex during local conflict 490 

We used beamforming in a combined sample of patients and controls to localize the 491 

source of the ‘same-different’ effect (cluster 1: averaged over: 200-400ms [to 492 

exclude the time the stimulus was displayed on the screen], 10-30Hz; cluster 2: 493 

averaged over 600-800ms, 10-20Hz). In cluster 1 we found  3 right-hemisphere 494 

lateralized peaks (Figure 3C): occipital pole (2 peaks: MNI 19, -98, -14; 35, -89, -16), 495 

ventral temporal cortex (2 peaks: MNI 59, -53, -21; 52, -51, -21) and lateral premotor 496 

cortex (BA6, 2 peaks: MNI 52, -7, 44; 51, 3, 40). Cluster 2 was localized to left 497 

superior parietal lobe (SPL/BA7, MNI -23, -61, 52), left posterior cingulate cortex 498 

(PCC/BA23, MNI -14, -47, 31), right dorsal premotor area (dorsal/medial BA6, MNI 7, 499 

2, 69) and right primary somatosensory cortex (BA1, MNI 61, -18, 31). Note, at an 500 

uncorrected threshold (p<0.001) we also found the lateral premotor cortex, occipital 501 

pole and temporal cortex as in cluster 1, which is expected given the overlapping 502 

topography of sensors in the two clusters.   503 

Next, we measured in patients the coherence between these cortical vertices and both 504 

the left and right STN-LFPs, separately. The coherence spectra were averaged over 505 

adjacent vertices resulting in three cortical sources for cluster 1 and four sources for 506 

cluster 2. We found a significant increase in coherence between the right dorsal 507 

premotor cortex and the right STN (510-900ms, 10-13Hz, p=0.03, Cohen’s d=1.71; 508 

900-1240ms, 18-24Hz, p=0.01, Cohen’s d=1.44; see Figure 4), suggesting that 509 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2020.06.09.141713doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.141713
http://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

18 

Fr
eq

ue
nc

y

C

A

B
cue 'i' 'i+1'

Time from cue 'i' onset (s) Time from cue 'i' onset (s)

C
oh

er
en

ce

C
oh

er
en

ce

Frequency

Early coherence cluster 1: 10-13 Hz Late coherence cluster 1: 18-24 Hz

Coherence Different > Same
right dPM

right STN

MEG

LFP

D
iff

-S
am

e 
(+

95
%

C
I)

D
iff

-S
am

e 
(+

95
%

C
I)

Frequency

same
different

ipsilateral cortical-subthalamic coherence is increased in the face of local conflict in 510 

the right hemisphere. Furthermore, it seems there are two separate points of 511 

coherence over the course of the cue, one after the onset of the conflict cue and one 512 

that extends into the processing of the next cue in the sequence, this latter effect is in 513 

the mid-high beta band, possibly reflecting response inhibition.  No other sources, nor 514 

the left STN showed any significant effects. For completeness based on previous 515 

reports, we also investigated coherence with the inferior frontal gyrus (which was 516 

present as a source in patients at an uncorrected threshold), and found that it did not 517 

show any significant coherence with the STN.  518 

 519 
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Figure 4: Increased coherence between right frontal cortex and right STN during 536 

local conflict. A) Time-frequency plot of coherence between the right STN and the 537 

right dorsal premotor cortex (visualized on the left). Two coherent clusters emerged, 538 

with an alpha/low beta coherence increase after ‘different’ cues, and a later increase 539 

in beta coherence carrying over into the next cue in the sequence. Significant clusters 540 

are shown in black outline. Inset on top left shows the source of the cortical effect for 541 

reference. B) Time-courses of coherence for both alpha/low and high beta plotted as 542 

a difference wave between conditions. The dotted lines indicate 95% confidence 543 

intervals. Significant timepoints are highlighted in grey. C) Frequency spectra of ‘same’ 544 

(black) and ‘different’ (blue) trials during the significant time period from A. Grey area 545 

highlights significant frequencies:10-13, 18-24 Hz.  546 

Other variables related to decision making 547 

In addition to local conflict, we analyzed whether other variables occurring in 548 

theoretical models of decision making were reflected in neural activity. First, we 549 

explored if STN represents the normalization term in Bayes theorem as proposed in 550 

a previously suggested computational model (Bogacz et al., 2007). This model 551 

predicts that the activity in the STN is proportional to a logarithm of the normalization 552 

term in Bayes theorem ln P(cue i). This probability is computed on the basis of all 553 

previous cues {cue 1 , …, cue i-1} so it expresses how expected the current cue is 554 

given all cues seen before. The negative of this regressor, -ln P(cue i), is equal to 555 

Shannon’s surprise, so it expresses how much cue i disagrees with overall 556 

information in all previous cues, and hence it could be viewed as a  measure of 557 

global conflict. Therefore, by investigating the correlation between the normalization 558 

term ln P(cue i) and LFP activity we can test two separate hypotheses: a 559 

computational model (Bogacz et al., 2007) predicts a positive correlation, while a 560 

hypothesis that STN responds to global conflict predicts a negative correlation. We 561 

tested if the normalization term affects power of beta oscillations in the STN and did 562 

not find evidence supporting any of these two hypotheses in our data.  563 

It has been previously reported that the Bayesian normalization term was encoded in 564 

the power of beta oscillations in the cortex in a decision task in which the evidence 565 

was also presented gradually (Gould et al., 2012). Consequently, we explored whether 566 

there was any coding of the Bayesian normalization term in the cortex in controls, by 567 
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running a regression across all times, frequencies and channels, with cue identity 568 

(‘same’ or ‘different’) as a control variable. We found a significant effect in the beta 569 

band towards the end of the cue period (Figure 5B), matching in timing and frequency 570 

to those reported by Gould et al. (2012).   571 

We also explored whether there was a signal reflecting the magnitude of accumulated 572 

evidence in the STN and cortex, but we did not find such a signal (STN: Figure 5A, 573 

cortex: not shown). Finally, given previous reports of decreasing beta power as a result 574 

of increasing working memory load (Zavala et al., 2017), we also ran a regression on 575 

beta power including the serial position at each cue stimulus, and found no significant 576 

effects (see Figure 5A, ‘stimulus number’). Instead as can be seen in Figure 5A, beta 577 

power carried information about the similarity of the stimulus to the previous one 578 

(‘same’ or ‘different’), but no signal pertaining to of any form of evidence accumulation. 579 

There were no significant effects of any of the above regressors on theta power. 580 

 581 
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 612 

Figure 5: STN activity encodes local conflict via beta oscillations, but does not 613 

code variables related to accumulation of evidence. A) A linear regression of beta 614 

and theta in the STN revealed that the only clear signal was related to the identity of 615 

the cue (‘same’ or ‘different’, shaded in grey) in beta power only, and there was no 616 

encoding of Bayesian normalization, as proposed previously (Bogacz et al., 2007, 617 

2016), nor was there encoding of integrated evidence, or stimulus number in the 618 

sequence of cues in a trial. B) We found evidence for the Bayesian normalization term 619 

in controls at the sensor level (500-750ms, 10-23Hz, P<0.001, Cohen’s d=1.98). 620 
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Discussion 621 

In this experiment we present novel evidence pertaining to the role of the STN and 622 

cortico-subthalamic communication during sequential decision making, using a task 623 

in which participants had to integrate evidence over discrete time periods, with no 624 

constraints on how many samples they could observe before making a decision. We 625 

find evidence for persistent local conflict representation in the STN via beta 626 

oscillations, and increased coherence with frontal cortex.  627 

 628 

Representation of Conflict in the STN 629 

We found that activity in the beta band carried information about local conflict, i.e. a 630 

difference between the current cue and the preceding one, but not about global 631 

conflict i.e. a surprise by the current cue given all previous cues. Although we 632 

established that beta power varies depending on whether the current cue differs from 633 

a previous one in a sequence – an event to which we refer as a local conflict – it is 634 

less clear from our data what the function of this activity is, and what fundamental 635 

variable it encodes.  636 

It is possible that the observed changes in beta power are connected with motor 637 

inhibition. Beta power was initially lower for cues that were ‘different’ to the one 638 

immediately before and continued to increase across the next cue in the sequence. 639 

Activity in the beta band has been shown to carry conflict information across trials 640 

(Zavala et al., 2018), but we also show this effect within a trial, as conflict arises 641 

within the sequence of evidence. Hence, one can interpret the increase of beta power 642 

as a stop signal, or a break on motor output (Alegre et al., 2013) inhibiting a response 643 

after an inconsistent cue. Moreover, the majority of trials ended on a ‘same’ cue 644 

(Table 1), which is in line with an overall increase in beta synchronization after 645 

‘different’ cues and lower probability of responding.  646 

The response to different cues could also be interpreted as encoding of expectancy 647 

valuation, uncertainty or surprise. Beta power increases have been reported when a 648 

‘surprise’ stimulus is presented (Wessel et al., 2016), and STN activity measured with 649 

fMRI has been shown to increase when there is increased uncertainty which option 650 

is correct arising due to too much choice (Keuken et al., 2015). Although, in our study 651 

we found no evidence that the STN encodes the Shannon’s surprise term. 652 

 653 
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Interaction between STN and Cortex  654 

Interestingly, the ‘same’-‘different’ effect on average peaked earlier in the cortex, and 655 

also did not carry over to the next cue in the sequence (Figure 3A). A possible 656 

interpretation is that the cortex signalled the immediate local conflict to STN, 657 

dovetailing with recent evidence suggesting the cortical conflict signal precedes the 658 

STN (Chen et al., 2020), which then maintained a more persistent activity to inhibit 659 

responses (Brittain et al., 2012; Fife et al., 2017).  660 

When we localized the sources of the ‘same’-‘different’ effect, we found the local 661 

conflict signal in widespread areas of the cortex. Only one frontal source, located in 662 

dorsal premotor cortex/supplementary motor area (dPM/BA6) showed a significant 663 

coherence modulation with the ipsilateral STN only, namely an increase in alpha/low-664 

beta coherence shortly after the offset of a ‘different’, or conflict, cue, and an increase 665 

in beta coherence that carried over to the next cue in the sequence (Figure 4). The 666 

right BA6, specifically dorsal BA6 (Mattia et al., 2012; Mirabella, 2014),  is well-667 

established as a cortical region involved in response-inhibition/initiation and 668 

cognitive control (Chambers et al., 2007; Simmonds et al., 2008; Aron, 2011).  669 

While it is well-established that the cortex communicates with the STN via two 670 

anatomically defined pathways, the indirect and the hyperdirect pathways (Albin et 671 

al., 1989; DeLong, 1990; Nambu et al., 2002), recent evidence suggests the 672 

existence of two separate coherent beta oscillatory networks between the cortex and 673 

the STN (Oswal et al., 2016a). Here we find evidence for two different bands of 674 

oscillatory connectivity between the STN and dorsal premotor cortex, which may 675 

have implications for understanding the involvement of various pathways in 676 

sequential evidence accumulation. Interestingly, a recent study showed evidence of 677 

a hyperdirect pathway from inferior frontal gyrus (IFG) to the STN operating in the 678 

13-30Hz range (Chen et al., 2020), which points to a more ventral portion of the 679 

frontal cortex than presented here. In fact, many studies in stop-signal/go-nogo tasks 680 

point to the IFG (Aron et al., 2014), however in these tasks conflict is not part of an 681 

evidence accumulation process, hence we may expect differences depending on the 682 

type of decision being made, (Erika-Florence et al., 2014; Hampshire, 2015; Mosley 683 

et al., 2020).  684 

Due to the evoked-activity as a result of the ongoing cue presentation, we were 685 

unable to reliably estimate the directionality of coherence, but previous reports on 686 
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resting-state data have shown cortex to drive STN activity (Litvak et al., 2011a), 687 

which is in line with the finding here that the ‘same’-‘different’ effect seems to peak 688 

earlier in the cortical signal. However, recent data has also suggested that during 689 

processing of incongruent stimuli, STN to primary motor effective connectivity is 690 

increased in the beta band (Wessel et al., 2019), suggesting that the directionality of 691 

communication may be different across task and non-task contexts.  692 

 693 

Where is the theta conflict signal? 694 

The predominant theory of STN function, and also that of the cortex during conflict 695 

detection, is the involvement of theta oscillations (Cavanagh and Frank, 2014). A large 696 

portion of empirical findings on the STN shows that it carries conflict information via 697 

the theta band (Cavanagh et al., 2011; Bastin et al., 2014; Zavala et al., 2015, 2016, 698 

2017, 2018; Herz et al., 2016). Yet in our task we only found a weak effect of theta 699 

modulation, in the cue following a local conflict (cue i+1). This effect was present only 700 

in the STN, and no theta effects were found in the cortex. Moreover, this manifested 701 

as reduced theta synchronization to ‘different’ cues, which is the opposite of the 702 

standard reported theta increase during conflict. One explanation may be the task 703 

design, as it differs from previous paradigms: there are no long intervals over which to 704 

examine slow oscillations, such as theta. Our results, therefore, though focussed on 705 

theta power, may be dominated by evoked potentials, as cues were presented in a 706 

fixed, relatively short duration sequence. Additionally, here conflict is defined over the 707 

course of multiple cues, not on a singular trial in isolation. Thus, the integration of 708 

conflict over time may in fact be driven by different signals – beta may represent a 709 

more consistent inhibition. Nevertheless, others have also reported a lack of theta 710 

effects in the STN during a stop-signal task (Bastin et al., 2014).  711 

Updating models of the STN 712 

.An influential model of the role of the STN in decision making proposed by Frank 713 

(2006) suggests that in situations of conflict between competing responses an 714 

increased activity of STN postpones action initiation (Frank, 2006). This model 715 

proposes that STN is essential for decision making since it ensures that an action is 716 

only selected when it has high evidence, relative to the other options. Another model 717 

proposed by Bogacz & Gurney (2007) suggests that the basal ganglia compute the 718 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2021. ; https://doi.org/10.1101/2020.06.09.141713doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.141713
http://creativecommons.org/licenses/by-nc/4.0/


   
 

   
 

25 

reward probabilities for selecting different actions according to Bayesian decision 719 

theory (Bogacz et al., 2007; Bogacz and Larsen, 2011). While in our task we did not 720 

find conclusive evidence that the STN is encoding Bayesian normalization (Figure 5A), 721 

we observed its participation in conflict processing.  It is important to remember that, 722 

despite being on medication, these experiments were performed in patients whose 723 

neural circuitry has been affected by advanced Parkinson’s disease. Control 724 

participants did show activity encoding Bayesian normalization at the cortical level 725 

(Figure 5B), in remarkable agreement with a previous study (Gould et al., 2012), cf. 726 

their Figure 8. Thus, one cannot rule out the possibility that the Bayesian normalization 727 

is encoded by the STN of healthy individuals, but testing this hypothesis would require 728 

a different experimental technique (e.g. recording of STN neural activity from animals 729 

during an analogous decision making task, such as in  Brunton, Botvinick, & Brody, 730 

2013). Evidence also suggests that subdivisions within the STN may be responsible 731 

for different types of inhibition, with prepotent response inhibition to cues (go-no-go 732 

task) being more dependent on the ventral portion of the STN  (Hershey et al., 2010). 733 

Given that the majority of our recording sites were well within the dorsal (‘motor’) region 734 

of the STN, we cannot rule out the contribution of more ventral sites to these 735 

computations.  736 

We conclude that contrary to the emphasis on theta signals in the context of immediate 737 

conflict, here we find a prominent role for beta oscillations in signalling local conflict in 738 

a sequence of evidence. We find that both frontal cortex and the STN carry this signal, 739 

and show increased coherence in the beta band that carries over to the next cue in 740 

the sequence. Thus, we show increased communication in these areas may reduce 741 

the probability of responding in the face of incoming conflicting information. 742 

 743 

Data availability 744 

The full MEG dataset for controls is available in BIDS format on 745 

https://openneuro.org/datasets/ds002908 and LFP and source data for patients is 746 

available on https://data.mrc.ox.ac.uk/data-set/human-lfp-recordings-stn-during-747 

sequential-conflict-task. Code and analysis pipeline at 748 

https://github.com/zits69/MOUSE_LFPMEG. 749 
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