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Abstract Morphogen profiles allow cells to determine their position within a developing8

organism, but not all morphogen profiles form by the same mechanism. Here we derive9

fundamental limits to the precision of morphogen concentration sensing for two canonical10

mechanisms: the diffusion of morphogen through extracellular space and the direct transport of11

morphogen from source cell to target cell, e.g., via cytonemes. We find that direct transport12

establishes a morphogen profile without adding noise in the process. Despite this advantage, we13

find that for sufficiently large values of profile length, the diffusion mechanism is many times more14

precise due to a higher refresh rate of morphogen molecules. We predict a profile lengthscale15

below which direct transport is more precise, and above which diffusion is more precise. This16

prediction is supported by data from a wide variety of morphogens in developing organisms.17

18

Introduction19

Within developing organisms, morphogen profiles provide cells with information about their position20

relative to other cells. Cells use this information to determine their position with extremely high21

precision (Dubuis et al., 2013; Erdmann et al., 2009; Gregor et al., 2007a; Houchmandzadeh et al.,22

2002; De Lachapelle and Bergmann, 2010). However, not all morphogen profiles are formed via23

the same mechanism, and for some profiles the mechanism is still not well understood. One24

well-known mechanism is the synthesis-diffusion-clearance (SDC) model in which morphogen25

molecules are produced by localized source cells and diffuse through extracellular space before26

degrading or being internalized by target cells (Akiyama and Gibson, 2015; Gierer and Meinhardt,27

1972; Lander et al., 2002; Müller et al., 2013; Rogers and Schier, 2011; Wilcockson et al., 2017).28

Alternatively, a direct transport (DT) model has been proposed where morphogen molecules travel29

through protrusions called cytonemes directly from the source cells to the target cells (Akiyama and30

Gibson, 2015; Bressloff and Kim, 2018; Kornberg and Roy, 2014; Müller et al., 2013; Wilcockson31

et al., 2017). The presence of these two alternative theories raises the question of whether there32

exists a difference in the performance capabilities between cells utilizing one or the other.33

Experiments have shown that morphogen profiles display many characteristics consistent with34

the SDC model. The concentration of morphogen as a function of distance from the source cells has35

been observed to follow an exponential distribution for a variety of different morphogens (Driever36

and Nüsslein-Volhard, 1988; Houchmandzadeh et al., 2002). The accumulation times for several37

morphogens in Drosophila have been measured and found to match the predictions made by the38

SDC model (Berezhkovskii et al., 2011). In zebrafish, the molecular dynamics of the morphogen39

Fgf8 have been measured and found to be consistent with Brownian diffusion through extracellular40

space (Yu et al., 2009). Despite these consistencies, recent experiments have lent support to the41

theory that morphogen molecules are transported through cytonemes rather than extracellular42
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space. The establishment of the Hedgehog morphogen gradient in Drosophila is highly correlated in43

both space and time with the formation of cytonemes (Bischoff et al., 2013), while Wnt morphogens44

have been found to be highly localized around cell protrusions such as cytonemes (Huang and45

Kornberg, 2015; Stanganello and Scholpp, 2016). Theoretical studies of both the SDC and DT46

models have examined these measurable effects (Berezhkovskii et al., 2011; Bressloff and Kim,47

2018; Shvartsman and Baker, 2012; Teimouri and Kolomeisky, 2015, 2016), but direct comparisons48

between the two models have thus far been poorly explored. In particular, it remains unknown49

whether one model allows for a cell to sense its local morphogen concentration more precisely than50

the other given biological parameters such as the number of cells or the characteristic lengthscale51

of the profile.52

Here we derive fundamental limits to the precision of morphogen concentration sensing for both53

the SDC and DT models. We investigate the hypothesis that sensory precision plays a major role in54

the selection of a gradient formation mechanism during evolution, and we test this hypothesis by55

quantitatively comparing our theory to morphogen data. Intuitively one might expect the DT model56

to have less noise due to the fact that molecules are directly deposited at their target. Indeed,57

we find below that the noise arises only from molecular production and degradation, with no58

additional noise from molecular transport. However, we also find below that for sufficiently large59

morphogen profile lengthscales, the SDC model produces less noise than the DT model due to it60

being able achieve a higher effective unique molecule count. By elucidating the competing effects61

of profile amplitude, steepness, and noise, we ultimately conclude that there should exist a profile62

lengthscale below which the DT model is more precise and above which the SDC mechanism is63

more precise. We find that this prediction is quantitatively supported by data from a wide variety64

of morphogens, suggesting that readout precision plays an important role in determining the65

mechanisms of morphogen profile establishment.66

Results67

Several past studies have focused on the formation dynamics of morphogen profiles (Berezhkovskii68

et al., 2011; Bressloff and Kim, 2018; Shvartsman and Baker, 2012; Teimouri and Kolomeisky, 2015,69

2016). Here we model profiles in the steady state regime, as most of the experimental measure-70

ments to which we will later compare our results were taken during stages when the steady state71

approximation is valid (Grimm et al., 2010; Gregor et al., 2007b; Kicheva et al., 2007; Yu et al., 2009;72

Kanodia et al., 2009). Precision depends not only on stochastic fluctuations in the morphogen73

concentration, but also on the shape of the mean morphogen profile, as the shape determines74

concentration differences between adjacent cells that may adopt different fates. Therefore, as75

in past studies (Gregor et al., 2007a; Tostevin et al., 2007), we define the precision as P = Δm̄j∕�j ,76

where �j is the standard deviation of the number of morphogen molecules arriving at cell j, and77

Δm̄j = m̄j − m̄j+1 is the difference between the molecule number in that cell and the adjacent cell.78

As is typical in studies of both the DT (Teimouri and Kolomeisky, 2015; Bressloff and Kim, 2018)79

and SDC (Berezhkovskii et al., 2011; Shvartsman and Baker, 2012; Teimouri and Kolomeisky, 2016)80

mechanisms, we focus on a one-dimensional line of target cells. However, we derive analogous81

results for 2D and 3D systems, and we generally find that the dimensionality does not qualitatively82

change our results, as we discuss later. In 1D, cells extend in both directions from the source cell,83

with N cells on each side (Fig. 1).184

Direct Transport Model85

We first consider the DT case, where morphogen molecules are transported via cytonemes that86

connect a single source cell to multiple target cells (Fig. 1A). Cytonemes are tubular protrusions87

1We note that in the case of the Bicoid morphogen in the Drosophila embryo, target cells extend only on one side of the
source. This will introduce a factor of 2 in the means of both the DT and SDC models and a factor slightly greater than 2 in the
variance of the SDC model. This will not affect the agreement of the Bicoid data with our theory in Fig. 3C.
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Figure 1. Source cell (green) produces morphogen which is delivered to N target cells (blue) via (A) direct
transport (DT) or (B) synthesis-diffusion-clearance (SDC).

that are hundreds of nanometers thick and between several and hundreds of microns long (Ko-88

rnberg and Roy, 2014; Kornberg, 2014). They are supported by actin filaments, and it is thought89

that morphogen molecules are actively transported along the filaments via molecular motors90

(Kornberg and Roy, 2014; Kornberg, 2014; Sanders et al., 2013; Huang and Kornberg, 2015). It was91

recently shown that a DT model that includes forward and backward transport of molecules within92

cytonemes reproduces experimentally measured accumulation times (Teimouri and Kolomeisky,93

2015; Bressloff and Kim, 2018), although the noise properties of this model were not considered.94

Here, we review the steady state properties of this model and derive its noise properties.95

Consider a single source cell that produces morphogen at rate �. Morphogen molecules enter96

each cytoneme at rate . The cytoneme that leads to the jth target cell has length 2ja, where a is97

the cell radius. Once inside a cytoneme, morphogen molecules move forward towards the target98

cell with velocity v+ or backwards toward the source cell with velocity v−, and can switch between99

these states with rates �+ (forward-to-backward) or �− (backward-to-forward). Once a molecule100

reaches the forward (backward) end of the cytoneme it is immediately absorbed into the target101

(source) cell. Molecules within a target cell spontaneously degrade with rate �. The dynamics of102

the mean number of morphogen molecules in the source cell m̄0(t) and jth target cell m̄j(t), and the103

mean density of forward-moving molecules ū+j (x, t) and backward-moving molecules ū
−
j (x, t) in the104

jth cytoneme are (Bressloff and Kim, 2018)105

)m̄0
)t

= � −
N
∑

j=1

[

m̄0 − v−ū−j (0, t)
]

,

)ū+j
)t

= − v+
)ū+j
)x

+ �−ū−j − �+ū
+
j + m̄0�(x) − v+ū

+
j �(x − Lj),

)ū−j
)t

= v−
)ū−j
)x

− �−ū−j + �+ū
+
j − v−ū

−
j �(x), (1)

)m̄j
)t

= v+ū+j (Lj , t) − �m̄j .

The steady-state solution is (Bressloff and Kim, 2018)106

m̄DTj =
�Γj

�
∑N

k=1 Γk
, where Γj =

e−2j�a(1 − e−�)
1 − e−�−2j�a

. (2)

Here Γj is the effective transport rate of morphogen molecules to the jth target cell, and � =107

log(d−∕d+) and � = d−1+ − d−1− are defined in terms of the average distance a molecule would move108

forward d+ = v+∕�+ or backward d− = v−∕�− within a cytoneme before switching direction. The109

parameter � sets the shape of Γj , and thus of m̄j : when � ≪ −1 the profile is constant, Γj = 1; when110

� ≫ 1 it is exponential, Γj = e−2ja∕d+ ; and when |�|≪ 1 it is a power law for large j, Γj = (1+2ja∕d+)−1.111
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The parameter � sets the lengthscale of the profile, defined as112

�
DT
=

N
∑

j=1

Γj − ΓN
Γ1 − ΓN

≈ 1
|�|

(

e|�| − 1
)

(

|�| − log
(

e|�| − 1
)

)

, (3)

where we approximate the sum as an integral for N ≫ 1. We use this expression to eliminate �,113

writing Γj in Eq. 2 entirely in terms of � and �̂ ≡ �∕a.114

Despite the complexity of the transport process in Eq. 1, we find that it adds no noise to mj .115

In fact, here we prove that any system in which molecules can only degrade in the target cells116

and cannot leave the target cells has the steady-state statistical properties of a simple birth-death117

process. First consider the special case of only one target cell. Because each morphogen molecule118

produced in the source cell acts independently of every other morphogen molecule, we define p(�)119

as the probability density that any given molecule will enter the target cell a time � after it is created120

in the source cell. Next, we define Q(�t) as the probability that a morphogen molecule will enter the121

target cell between t and t + �t. This event requires the molecule to have been produced between122

t − � and t − (� + d�), which occurs with probability �d�; to arrive at the target cell a time � later123

and to enter the target cell within the window �t, which occurs with probability p(�)�t; and we must124

integrate over all possible times �. Therefore,125

Q(�t) = ∫

∞

0
[�d�][p(�)�t] = ��t∫

∞

0
d�p(�) = ��t, (4)

where the last step follows from normalization. We see that regardless of the form of p(�), the126

probability of a morphogen molecule entering the target cell in any given small time window �t127

is simply ��t. This result holds regardless of the mechanism by which morphogen molecules go128

from the source cell to the target cell, as the only effect such a mechanism can have is on p(�). This129

result still holds when the system is expanded to have multiple target cells, as then p(�) is replaced130

with pj(�), the probability density that the molecule enters the jth target cell a time � after being131

produced. In this case, ∫ ∞
0 d�pj(�) evaluates to �j , the total probability the morphogen molecule is132

ultimately transported to the jth target cell, and ��t is simply replaced with ��j�t. Combined with133

the constant degradation rate � of morphogen molecules within the target cell, this is precisely a134

birth-death process with birth rate ��j and death rate �. For our system �j = Γj∕
∑N

k=1 Γk in Eq. 2.135

We now assume that each cell integrates its morphogen molecule count over a time T (Berg136

and Purcell, 1977; Gregor et al., 2007a). The variance in the time average T −1 ∫ T
0 dt mj(t) is simply137

that of a birth-death process, given by �2j = 2m̄j∕(T ∕�) (Fancher and Mugler, 2017), so long as T ≫ �,138

where � = �−1 is the correlation time. We see that, as expected for a time-averaged Poisson process,139

the variance increases with the mean m̄j and decreases with the number T ∕� of independent140

measurements made in the time T . The precision is therefore141

P 2
DT =

m̄DTj T

2�DT

(

Δm̄DTj
m̄DTj

)2

, with �DT =
1
�
. (5)

We see that the precision increases with the profile amplitude m̄j , the number of independent142

measurements T ∕�, and the profile steepness Δm̄j∕m̄j . The transport process influences the143

precision only via m̄j , not �. For a given N , j, and �̂, we find that the precision is maximized at a144

particular �∗ > 0 (Fig. 2A). The reason is that an exponential profile (� ≫ 1) has constant steepness145

but small amplitude, whereas a power-law profile (� ≪ 1) has low steepness but large amplitude146

due to its long tail; the optimum is in between.147

Synthesis-Diffusion-Clearance Model148

We next consider the SDC case (Fig. 1B). Again a single source cell at the origin x = 0 produces149

morphogen at rate �. However, now morphogen molecules diffuse freely along x with coefficient150
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Figure 2. Comparing theoretical DT precision to SDC precision for a single cell. (A) DT precision shows a
maximum as a function of shape parameter � for any value of the profile lengthscale. (B) Ratio �j of DT to SDC
precision shows a crossover (�j = 1) as a function of profile lengthscale �∕a for 1D, 2D, and 3D geometries. Here
j = 50 is the central cell of N = 100 target cells. (C) Percentage of cells for which SDC is more precise (�j < 1) in
1D for N = 100.

D and degrade spontaneously at any point in space with rate �. The dynamics of the morphogen151

concentration c(x, t) are152

)c
)t
= D∇2c + �D − �c − �� +

(

� + ��
)

�(x), (6)

where the noise terms associated with diffusion, degradation, and production obey153

⟨

�D(x′, t′)�D(x, t)
⟩

= 2D�(t − t′)∇⃗x ⋅ ∇⃗x′ c̄(x)�(x − x′)
⟨

��(x′, t′)��(x, t)
⟩

= �c̄(x)�(t − t′)�(x − x′), (7)

⟨

��(t′)��(t)
⟩

= ��(t − t′),

respectively (Gardiner, 2004; Gillespie, 2000; Fancher and Mugler, 2017; Varennes et al., 2017).154

Here c̄(x) = �e−x∕�∕(��) is the steady state mean concentration, with characteristic lengthscale155

�
SDC

=
√

D∕�. We imagine a target cell located at x that is permeable to the morphogen and156

counts the number m (x, t) = ∫V dy c (x + y, t) of morphogen molecules within its volume V . We157

use this simpler prescription over explicitly accounting for more realistic mechanisms such as158

surface receptor binding because it has been shown that the two approaches ultimately yield159

similar concentration sensing results up to a factor of order unity (Berg and Purcell, 1977). For a160

cell at position x = 2ja, the integral evaluates to161

m̄SDCj = 2(�∕�) sinh(1∕�̂)e−2j∕�̂ (8)

in steady state.162

Because Eq. 6 is linear with Gaussian white noise, calculating the time-averaged variance �2j163

is straightforward: we Fourier transform Eq. 6 in space and time, calculate the power spectrum164

of m(x, t), and take its low-frequency limit (Appendix 1). So long as T ≫ �−1, we obtain the same165

functional form as Eq. 5,166

P 2
SDC =

m̄SDCj T

2�SDC

(

Δm̄SDCj

m̄SDCj

)2

, (9)
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because diffusion is a Poisson process. However, here the correlation time is167

�SDC =
1
�

[

1 −
(2∕�̂) + sinh(2∕�̂)
4 sinh(1∕�̂)e1∕�̂

]

. (10)

The factor in brackets is always less than one and decreases with �̂. It reflects the fact that, unlike168

in the DT model, molecules can leave a target cell not only by degradation, but also by diffusion.169

Therefore, the rate �−1 at which molecules are refreshed is larger than that from degradation alone.170

This effect increases the precision because more independent measurements T ∕� can be made.171

To understand this effect more intuitively, consider a simplified SDC model in which diffusion is172

modeled as discrete hopping between adjacent target cells at rate ℎ. The autocorrelation function173

is Cj(t) = m̄jI0(2ℎt)e−(2ℎ+�)t (Appendix 2), where I0 is the zeroth modified Bessel function of the first174

kind. The correlation time is � = ∫ ∞
0 dt Cj(t)∕Cj(0) = [�(4ℎ + �)]−1∕2, and we see explicitly that it175

decreases with both degradation (�) and diffusion (ℎ). In fact, in the limit of fast diffusion (ℎ ≫ �),176

the expression becomes � = (4�ℎ)−1∕2. Correspondingly, in the fast-diffusion limit of Eq. 10 (�̂ ≫ 1),177

the term in brackets reduces to �̂−1, and it becomes � = (��̂)−1∕2 = [4�D∕(2a)2]−1∕2. These expressions178

are identical, with D∕(2a)2 playing the role of the hopping rate ℎ, as expected.179

Comparing the models180

We now ask which model has higher precision. We calculate the precision ratio �j = P 2
DT∕P

2
SDC in181

the jth target cell from Eqs. 2, 5, and 8-10, which depends on j, N , �̂, and �. Fig. 2B shows �j as a182

function of profile length �̂ for a cell in the center (j = N∕2) of a line of N = 100 target cells, where183

for each �̂ we use the �∗ that maximizes P 2
DT as seen in Fig. 2A. We see that for short profiles the184

DT model is more precise (�j > 1) whereas for long profiles the SDC model is more precise (�j < 1).185

This effect holds for a single source cell providing morphogen for a 1D line of target cells as well as186

for a 1D line of source cells with a 2D sheet of target cells and a 2D sheet of source cells with a 3D187

volume of target cells.2188

Fig. 2C shows similar information as Fig. 2B but for all target cells in the line. Specifically, at each189

�̂ value, we find the �∗ value that maximizes the percentage of cells for which the DT model is more190

precise. The color shows the complement: the percentage of cells for which the SDC model is more191

precise. We normalize the �̂ axis by �̂50, the value at which this percentage is 50%. As expected, we192

see that for short profile lengths the DT model is more precise in the majority of cells, whereas for193

long profiles the SDC model is more precise in the majority of cells.194

The reason that the SDC model is more precise for long profiles is that long profiles correspond195

to fast diffusion, which increases the refresh rate �−1SDC as discussed above. Conversely, the reason196

that that the DT model is more precise for short profiles is that it has a larger amplitude. It also has197

a smaller steepness, but the larger amplitude wins out. Specifically, whereas the SDC amplitude198

falls off exponentially, m̄j ∼ e−2j∕�̂, for sufficiently small �∗ the DT amplitude falls off as a power law,199

m̄j ∼ 1∕j. The steepness Δm̄j∕m̄j of the SDC profile is constant, while the steepness of the DT profile200

also scales like 1∕j. Thus, the product of the ratio of amplitudes and the square of the ratio of201

steepnesses, on which �j depends, scales like e2j∕�̂∕j3. For small �̂, the exponential dominates over202

the cubic for the majority of j values. Consequently, the DT model has the higher precision.203

Comparison to Data204

We now test our predictions against data for various morphogens. In Drosophila, the morphogen205

Wingless (Wg) is localized near cell protrusions such as cytonemes (Huang and Kornberg, 2015;206

Stanganello and Scholpp, 2016), and the Hedgehog (Hh) gradient correlates highly in both space207

and time with the formation of cytonemes (Bischoff et al., 2013), suggesting that these two mor-208

phogen profiles are formed via a DT mechanism. Conversely, Bicoid has been understood as209

a model example of SDC for decades (Driever and Nüsslein-Volhard, 1988; Gregor et al., 2007a;210

2For the DT model, the 2D and 3D cases are identical to the 1D case as we assume that cytonemes extend perpendicular to

the source cells; for the SDC model see Appendix 1.
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Figure 3. Comparing theory and experiment. (A) � values for morphogens estimated from experiments, colored
by whether experiments support a DT (red), SDC (blue), or multiple mechanisms (white). (B) Data from A

overlaid with color from theory using values of a and N estimated from experiments. Color is as in Fig. 2C
indicating percentage of cells for which SDC is predicted to be more precise.

Houchmandzadeh et al., 2002). Similarly, Dorsal is spread by diffusion, however its absorption is211

localized to a specific region of target cells via a nonuniform degradation mechanism, making it212

more complex than the simple SDC model (Carrell et al., 2017). Finally, for Dpp there is evidence213

for a variety of different gradient formation mechanisms (Akiyama and Gibson, 2015;Müller et al.,214

2013;Wilcockson et al., 2017).215

In zebrafish, themorphogen Fgf8 has been studied at the single molecule level and found to have216

molecular dynamics closely matching the Brownian movement expected in an SDC mechanism217

(Yu et al., 2009). Similarly, Cyclops, Squint, Lefty1, and Lefty2, all of which are involved in the218

Nodal/Lefty system, have been shown to spread diffusively and affect cells distant from their source219

(Müller et al., 2013; Rogers and Müller, 2018). This would support the SDC mechanism, although220

Cyclops and Squint have been argued to be tightly regulated via a Gierer-Meinhardt type system,221

thus diminishing their gradient sizes to values much lower than what they would be without this222

regulation (Gierer and Meinhardt, 1972; Rogers and Müller, 2018).223

For all of these morphogens, we estimate the profile lengthscales � from the experimental224

data (Kicheva et al., 2007; Wartlick et al., 2011; Gregor et al., 2007b,a; Liberman et al., 2009; Yu225

et al., 2009; Müller et al., 2012) (Appendix 3). Fig. 3A shows these � values and indicates for226

each morphogen whether the evidence described above suggests a DT mechanism (red), an SDC227

mechanism (blue), or multiple mechanisms including DT and SDC (white). We see that in general,228

the three cases correspond to short, long, and intermediate profile lengths, respectively, which is229

qualitatively consistent with our predictions.230

To make the comparison quantitative, we estimate the values of cell radius a and cell number231

N from the experimental data (Kicheva et al., 2007; Gregor et al., 2007a; Liberman et al., 2009; Yu232

et al., 2009; Kimmel et al., 1995) (Appendix 3) in order to calculate �j from our theory in each case.233

The background color in Fig. 3B shows the percentage of cells for which we predict that the SDC234

model is more precise as a function of �̂ as in Fig. 2C. The data points in Fig. 3B show the values of �̂235

from the experiments, also normalized by �̂50 from the theory. For each morphogen species we236

assume a 1D system for simplicity as we have checked that considering higher dimensions yields237

negligible differences to the results presented in Fig. 3B. We see that our theory predicts the correct238

threshold: the morphogens for which the evidence suggests either a DT or an SDC mechanism (red239

or blue) fall into the regime in which we predict that mechanism to be more precise for most of the240

cells, and the morphogens with multiple mechanisms (white) fall in between. This result provides241

quantitative support for the idea that morphogen profiles form according to the mechanism that242

maximizes the sensory precision of the target cells.243

7 of 25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.09.141937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.141937
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Discussion244

We have shown that in the steady-state regime, the DT and SDC models of morphogen profile245

formation yield different scalings of readout precision with the length of the profile and population246

size. As a result, there exist regimes in this parameter space in which either mechanism is more247

precise. While the DT model benefits from larger molecule numbers and no added noise from the248

transport process, the ability of molecules to diffuse into and away from a target cell in the SDC249

model allows the cell to measure a greater number of effectively unique molecules in the same250

time frame. By examining how these phenomena affect the cells’ sensory precision, we predicted251

that morphogen profiles with shorter lengths should utilize cytonemes or some other form of252

direct transport mechanism, whereas morphogens with longer profiles should rely on extracellular253

diffusion, a prediction that is in quantitative agreement with measurements on known morphogens.254

It will be interesting to observe whether this trend is further strengthened as more experimental255

evidence is obtained for different morphogens, as well as to expand the theory of multicellular256

concentration sensing to further biological contexts.257

Despite the quantitative agreement between our theory and experiments, it is clear that the258

models presented here are minimal and thus cannot be directly applied to all systems. This is259

exemplified by morphogen such as Dorsal, which due to aforementioned diffusive spreading and260

nonuniform degradation mechanism clearly does not strictly follow either model. Additionally,261

the SDC model can be violated if the diffusion of morphogen through a biological environment is262

hindered by the typically crowded nature of such environments, leading to possibly subdiffusive263

behavior (Ellery et al., 2014; Fanelli and McKane, 2010). For the DT model, we explicitly ignored the264

dynamics of the cytonemes themselves due to the growth rate of the cytonemes being sufficiently265

fast so as to traverse the entire system size in significantly less time than is required for the cells to266

integrate their morphogen counts over (Bischoff et al., 2013; Chen et al., 2017). This assumption267

is problematic if cytonemes continue to behave dynamically after reaching the source cell. In268

particular, the process of cytonemes switching between phases of growing and retracting can269

introduce super-Poissonian noise sources to the morphogen count within the target cells. It will be270

interesting to explore the implications of each of these complications in future works.271
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Appendix 1: Time-averaged variance in the SDC model274

Here we calculate the time-averaged variance of the morphogen molecule number using the275

low-frequency limit of the power spectrum. We first introduce the power spectrum, and then we276

calculate the variance for the 1D, 2D, and 3D geometries.277

Power Spectrum278

We first discuss the correlation function and power spectrum to establish some definitions and279

notation. Specifically, we show that the variance in the long-time average of a variable is given by280

the low-frequency limit of its power spectrum. For a one dimensional function x(t) with mean 0, the281

correlation function C (t) takes the form282

C
(

t − t′
)

=
⟨

x
(

t′
)

x (t)
⟩

. (11)

Since absolute time is irrelevant in the steady state of any physical system with no time dependent283

forcing, t′ can be set to 0 without loss of generality. This leads to a definition for the power spectrum284

of x(t) as285
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S (!) = ∫
d!′

2�

⟨

x̃∗
(

!′
)

x̃ (!)
⟩

= 1
2� ∫ d!′dtdt′

⟨

x
(

t′
)

x (t)
⟩

ei!te−i!′t′

= ∫ dtdt′C
(

t − t′
)

ei!t�
(

t′
)

= ∫ dtC (t) ei!t. (12)

Thus, under this definition the power spectrum is seen to be the Fourier transform of the correlation286

function. Additionally, when x (t) is averaged over a time T , the time averaged correlation function287

of x (t) takes the form288

CT
(

t − t′
)

=

⟨(

1
T ∫

t′+T

t′
d� ′x

(

� ′
)

)(

1
T ∫

t+T

t
d�x (�)

)⟩

= 1
T 2 ∫

t+T

t
d� ∫

t′+T

t′
d� ′

⟨

x
(

� ′
)

x (�)
⟩

= 1
T 2 ∫

t+T

t
d� ∫

t′+T

t′
d� ′C

(

� − � ′
)

. (13)

Let y ≡
(

� − � ′
)

−
(

t − t′
)

and z ≡
(

� + � ′
)

−
(

t + t′
)

. This transforms Eq. 13 into289

CT
(

t − t′
)

= 1
T 2 ∫

T

−T
dy∫

2T−|y|

|y|
dz1
2
C
(

y + t − t′
)

= 1
T 2 ∫

T

−T
dy

(

T −|y|
)

C
(

y + t − t′
)

. (14)

By inverting the relationship found in Eq. 12, C
(

y + t − t′
)

can be replaced with an inverse Fourier290

transform of S (!) to produce291

CT
(

t − t′
)

= 1
T 2 ∫

T

−T
dy∫

d!
2�

(

T −|y|
)

S (!) e−i!(y+t−t′)

= ∫
d!
2�

(

2
!T

sin
(

!T
2

)

)2

S (!) e−i!(t−t′). (15)

The factor of (!T )−2 in the integrand of Eq. 15 forces only small values of ! to contribute when292

T is large. Thus, the approximation S (!) ≈ S
(

0
)

can be made since only values of ! near 0 are293

contributing. This causes CT
(

0
)

, which we will denote as �2 through this and the main text, to be294

exactly calculable to295

�2 = CT
(

0
)

≈ S
(

0
)

∫
d!
2�

(

2
!T

sin
(

!T
2

)

)2

=
S
(

0
)

T
. (16)

Of important note is the fact that this approximation only works if S(!) varies slowly compared to296

(2 sin(!T ∕2)∕!T )2 near ! = 0. Since C(t)must be time symmetric, S(!)must also be symmetric and297

thus an even function of !. Thus, near ! = 0 the lowest order correction term for each function will298

be the second order term. Normalizing each term by the 0-frequency value of each function then299

lets us to impose the condition300

|

|

|

|

|

|

1
S(0)

)2S (!)
)!2

|

|

|

|

|!=0

|

|

|

|

|

|

≪

|

|

|

|

|

|

|

|

)2

)!2

(

2
!T

sin
(

!T
2

)

)2|
|

|

|

|

|

|!=0

|

|

|

|

|

|

|

|

= T 2

6
. (17)

So long as this condition is satisfied, the approximation given in Eq. 16 is valid.301
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We now cast Eq. 16 into a more intuitive form by considering the correlation time �, which can302

be defined as303

� = ∫

∞

0
dt
C (t)
C
(

0
) . (18)

Continuing the use the fact that C (t)must be time symmetric and thus an even function of t, Eq. 12304

can be used to produce the result305

S
(

0
)

= ∫ dtC (t) = 2∫

∞

0
dtC (t) = 2�C

(

0
)

. (19)

Inserting this result into Eq. 16 produces306

�2 ≈ 2�
T
C
(

0
)

, (20)

thus relating the long-time averaged variance, �2, to the instantaneous variance, C
(

0
)

, and the307

number of correlation times the system averages over, T ∕�.308

Variance and precision309

We now consider a model for the Synthesis-Diffusion-Clearance system. We still assume there is a310

single source cell which produces morphogen at rate �, but now the morphogen is released into the311

extracellular environment where it freely diffuses at rateD. The morphogen can also spontaneously312

degrade at rate �. Even though in the main text we focus on a zero-dimensional source in a one-313

dimensional space, here we will look at diffusion in a multitude of different spaces with different314

dimensions as well as morphogen sources that span a multitude of different dimensions. In each315

case, the sources will secrete morphogen molecules into a density field c which must follow316

)c
)t
= D∇2c + �D − �c − �� +

(

� + ��
)

�SP−SO
(

x⃗
)

, (21)

where SP is the number of spatial dimensions, SO is the dimensionality of the source, and ∇2 is317

taken over all SP dimensions. Each � term is a Langevin noise term that represents Gaussian white318

noise for the diffusion, degradation, and production processes respectively. Of important note is319

that �SP−SO
(

x⃗
)

is a � function only in the last SP − SO dimensions of the space. So, for example, if320

there was a 1 dimensional source in 3 dimensional space, then �3−1
(

x⃗
)

would be a � function in321

the ŷ and ẑ directions but not the x̂ direction. This means that � and �� will have units of T −1L−SO,322

where T is time and L is space.323

We can now assume c has reached a steady state and separate it into c = c̄ + �c, which in turn324

allows Eq. 21 to separate into325

0 = D∇2c̄ − �c̄ + ��SP−SO
(

x⃗
)

(22)

)�c
)t

= D∇2�c + �D − ��c − �� + ���SP−SO
(

x⃗
)

. (23)

Fourier transforming Eq. 22 in space and dividing it by � then yields326

0 = −�2||
|

k⃗||
|

2
̃̄c − ̃̄c +

�
�
(

2�
)SO �SO

(

k⃗
)

⟹ ̃̄c =
�
�

(

2�
)SO �SO

(

k⃗
)

1 + �2||
|

k⃗||
|

2
, (24)

where327

� =
√

D
�
. (25)
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Of similarly important note is that �SO
(

k⃗
)

is a � function only in the first SO dimensions of328

k-space. So in the 1 dimensional source, 3 dimensional space example �SO
(

k⃗
)

would be a � function329

in the x̂ direction of k-space but not the ŷ or ẑ directions.330

This allows c̄ to be written as331

c̄
(

x⃗
)

= ∫
dSPk
(

2�
)SP e

−ik⃗⋅x⃗ ̃̄c
(

k⃗
)

=
�
� ∫

dSPk
(

2�
)SP e

−ik⃗⋅x⃗

(

2�
)SO �SO

(

k⃗
)

1 + �2||
|

k⃗||
|

2

=
�
� ∫

dSP−SOk
(

2�
)SP−SO e

−ik⃗⋅x⃗ 1

1 + �2||
|

k⃗||
|

2
=
��−(SP−SO)

�
PSP−SO

(

|

|

x⃗|
|

�

)

, (26)

where332

PN (x) = ∫
dNu
(

2�
)N e

−iu⃗⋅x⃗ 1
1 +|

|

u⃗|
|

2
. (27)

It is important to note that PN does not integrate over all available dimensions, but only over333

the last N dimensions of the space. This in turn means that its argument can only depend on the334

last N dimensions of any input vector. Returning to the 1 dimensional source, 3 dimensional space335

example, P3−1
(

|

|

x⃗|
|

∕�
)

should only take the y and z components of x⃗ into account. The x component336

is made irrelevant by the translational symmetry of the system along the x-axis.337

Moving on to the noise terms, Eq. 23 can be Fourier transformed in space and time to yield338

−i!�̃c = −D||
|

k⃗||
|

2
�̃c + �̃D − ��̃c − �̃� + �̃� ⟹ �̃c =

�̃D − �̃� + �̃�

�
(

1 + �2||
|

k⃗||
|

2
− i!

�

) , (28)

where ��
(

k⃗, !
)

depends only on the first SO dimensions of k-space. Assuming the � terms are all339

independent of each other allows the cross spectrum of c to be340

⟨

�̃c∗
(

k⃗′, !′
)

�̃c
(

k⃗, !
)

⟩

= 1

�2
(

1 + �2||
|

k⃗||
|

2
− i!

�

)(

1 + �2||
|

k⃗′||
|

2
+ i!

′

�

)

⋅

(

⟨

�̃∗D
(

k⃗′, !′
)

�̃D
(

k⃗, !
)

⟩

+
⟨

�̃∗�
(

k⃗′, !′
)

�̃�
(

k⃗, !
)

⟩

+
⟨

�̃∗�
(

k⃗′, !′
)

�̃�
(

k⃗, !
)

⟩

)

. (29)

The cross spectrum of �D can be obtained from its correlation function. To derive such a341

correlation function, we first consider a separate Markovian system comprised of a 1-dimensional342

lattice of discrete compartments that a diffusing species Y can exist in. The dimensionality is chosen343

purely for simplicity, as the method outlined below can be easily generalized to higher dimensions344

to produce the same result. Let yi (t) be the number of Y molecules in the ith compartment at345

time t and d be the rate at which these molecules move to the i − 1 or i + 1 compartment. Given a346

sufficiently small time step �t, the probability of a molecule moving from the ith compartment to347

the i ± 1 compartment is348

P
(

{yi (t + �t) , yi±1 (t + �t)} = {yi (t) − 1, yi±1 (t) + 1}
)

= yi (t) d�t. (30)

Higher order interactions in which multiple molecules are transfered within the time step �t349

will have probabilites of order (�t)2 or higher and can thus be ignored. This allows the mean of350

�yi (t) = yi (t + �t) − yi (t) to take the form351

⟨

�yi (t)
⟩

=
(

yi−1 (t) + yi+1 (t) − 2yi (t)
)

d�t, (31)
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where the first two terms come from molecules moving into the ith compartment from the i−1 and352

i + 1 compartments respectively and the third term comes from the two different ways molecules353

can leave the ith compartment. As �t is small, each of these transfer processes can be treated354

as being Poissonianly distributed. This allows the variance of �yi (t) to simply be the right-hand355

side of Eq. 31 but with each term taken to be its absolute value so there are no subtractions.356

Additionally, this approximation allows the covariance between �yi and �yi±1 to be taken as the357

negative of the sum of the expected number of molecules moving from the ith compartment to the358

i ± 1 compartment and vice versa. With these, the correlation function between �yi (t) and �yj (t)359

can be written as360

⟨

�yj (t) �yi (t)
⟩

=
(

yi−1 (t) + yi+1 (t) + 2yi (t)
)

d�t�i,j −
(

yi (t) + yi−1 (t)
)

d�t�i−1,j −
(

yi (t) + yi+1 (t)
)

d�t�i+1,j .
(32)

We now take the system to continuous space by letting yi (t) → lc (x, t) and �i,j → l�
(

x − x′
)

with361

any intances of ±1 in the indices also being converted to ±l. Putting these substitutions into Eq. 32362

and dividing by
(

l�t
)2
yields363

⟨

�c
(

x′, t
)

�t
�c (x, t)
�t

⟩

= d
�t

(

(

c
(

x − l, t
)

+ c
(

x + l, t
)

+ 2c (x, t)
)

�
(

x − x′
)

−
(

c (x, t) + c
(

x − l, t
)

)

�
(

x − l − x′
)

−
(

c (x, t) + c
(

x + l, t
)

)

�
(

x + l − x′
)

)

= d
�t

(

(

c
(

x + l, t
)

�
(

x − x′
)

− c
(

x + l, t
)

�
(

x + l − x′
)

)

−
(

c (x, t) �
(

x − l − x′
)

− c (x, t) �
(

x − x′
)

)

(

c (x, t) �
(

x − x′
)

− c (x, t) �
(

x + l − x′
)

)

−
(

c
(

x − l, t
)

�
(

x − l − x′
)

− c
(

x − l, t
)

�
(

x − x′
)

)

)

.

(33)

Eq. 33 has been rearranged into this form so as to easily apply the operators )±x defined as364

)+x f (x) =
f
(

x + l
)

− f (x)
l

, (34a)

365

)−x f (x) =
f (x) − f

(

x − l
)

l
. (34b)

366

Using this notation, Eq. 33 can be simplfied into367

⟨

�c
(

x′, t
)

�t
�c (x, t)
�t

⟩

= ld
�t

(

)+x
(

c (x, t) �
(

x − l − x′
)

− c (x, t) �
(

x − x′
)

)

+)−x
(

c (x, t) �
(

x − x′
)

− c (x, t) �
(

x + l − x′
)

)

)

= l2d
�t

(

)+x )
+
x′ + )

−
x )

−
x′

)(

c (x, t) �
(

x − x′
)

)

. (35)

Taking the l → 0 limit while holding D = l2d constant allows )±x and )
±
x′ to converge to true368

derivatives, )x and )x′ . Additionally, if the �c
(

x′, t
)

∕�t term on the left-hand side of Eq. 35 is replaced369

with �c
(

x′, t′
)

∕�t for t′ ≠ t, then the entire right-hand side must go to 0 as the system is Markovian.370

This can be accomplished by multiplying the right-hand side by a factor of �t,t′ . Taking the �t → 0371

limit then turns the two terms on the left-hand side into true derivatives in time, )t and )t′ , acting on372

c (x, t) and c
(

x′, t′
)

respectively while the factor of �t,t′∕�t on the right-hand side becomes �
(

t − t′
)

.373

Altogether, this transforms Eq. 35 into374

⟨

)t′c
(

x′, t′
)

)tc (x, t)
⟩

= 2D�
(

t − t′
)

)x)x′
(

c (x, t) �
(

x − x′
)

)

. (36)
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Finally, by approximating the system as being in steady state, c (x, t) can be replaced with c̄ (x)375

and )tc (x, t) becomes equivalent to �D (x, t). Making these substitutions and generalizing Eq. 36 to376

arbitrary dimensions yields377

⟨

�D
(

x⃗′, t′
)

�D
(

x⃗, t
)

⟩

= 2D�
(

t − t′
)

∇⃗ ⋅ ∇⃗′
(

c̄
(

x⃗
)

�SP
(

x⃗ − x⃗′
)

)

. (37)

Fourier transforming Eq. 37 can be easily performed due to the � functions, integrating the spatial378

terms by parts, and utilizing Eq. 24 to yield379

⟨

�̃∗D
(

k⃗′, !′
)

�̃D
(

k⃗, !
)

⟩

= ∫ dSPxdSPx′dtdt′eik⃗⋅x⃗e−ik⃗′⋅x⃗′ei!te−i!′t′
⟨

�D
(

x⃗′, t′
)

�D
(

x⃗, t
)

⟩

= 2D ∫ dSPxdSPx′dtdt′eik⃗⋅x⃗e−ik⃗′⋅x⃗′ei!te−i!′t′�
(

t − t′
)

∇⃗ ⋅ ∇⃗′
(

c̄
(

x⃗
)

�SP
(

x⃗ − x⃗′
)

)

= 2D
(

2��
(

! − !′
)

)

∫ dSPxdSPx′eik⃗⋅x⃗e−ik⃗′⋅x⃗′ ∇⃗ ⋅ ∇⃗′
(

c̄
(

x⃗
)

�SP
(

x⃗ − x⃗′
)

)

= 2D
(

2��
(

! − !′
)

)

∫ dSPxdSPx′c̄
(

x⃗
)

�SP
(

x⃗ − x⃗′
)

∇⃗ ⋅ ∇⃗′
(

eik⃗⋅x⃗e−ik⃗′⋅x⃗′
)

= 2Dk⃗ ⋅ k⃗′
(

2��
(

! − !′
)

)

∫ dSPxdSPx′c̄
(

x⃗
)

�SP
(

x⃗ − x⃗′
)

eik⃗⋅x⃗e−ik⃗′⋅x⃗′

= 2Dk⃗ ⋅ k⃗′
(

2��
(

! − !′
)

)

∫ dSPxc̄
(

x⃗
)

eix⃗
(

k⃗−k⃗′
)

= 2Dk⃗ ⋅ k⃗′ ̃̄c
(

k⃗ − k⃗′
)(

2��
(

! − !′
)

)

= 2�2k⃗ ⋅ k⃗′

1 + �2||
|

k⃗ − k⃗′||
|

2

(

�
(

2�
)SO+1 �

(

! − !′
)

�SO
(

k⃗ − k⃗′
)

)

. (38)

Moving on to �� , its correlation function must be � correlated in time and space since it is a380

purely local reaction and as such, at steady state, must take the form381

⟨

��
(

x⃗′, t′
)

��
(

x⃗, t
)

⟩

= �c̄
(

x⃗
)

�
(

t − t′
)

�SP
(

x⃗ − x⃗′
)

. (39)

Fourier transforming Eq. 39 is again easily performed due to the � functions and Eq. 24. This yields382

⟨

�̃∗�
(

k⃗′, !′
)

�̃�
(

k⃗, !
)

⟩

= ∫ dSPxdSPx′dtdt′eik⃗⋅x⃗e−ik⃗′⋅x⃗′ei!te−i!′t′
⟨

��
(

x⃗′, t′
)

��
(

x⃗, t
)

⟩

= � ∫ dSPxdSPx′dtdt′eik⃗⋅x⃗e−ik⃗′⋅x⃗′ei!te−i!′t′ c̄
(

x⃗
)

�
(

t − t′
)

�SP
(

x⃗ − x⃗′
)

= �
(

2��
(

! − !′
)

)

∫ dSPxdSPx′eik⃗⋅x⃗e−ik⃗′⋅x⃗′ c̄
(

x⃗
)

�SP
(

x⃗ − x⃗′
)

= �
(

2��
(

! − !′
)

)

∫ dSPxeix⃗⋅
(

k⃗−k⃗′
)

c̄
(

x⃗
)

= � ̃̄c
(

k⃗ − k⃗′
)(

2��
(

! − !′
)

)

= 1

1 + �2||
|

k⃗ − k⃗′||
|

2

(

�
(

2�
)SO+1 �

(

! − !′
)

�SO
(

k⃗ − k⃗′
)

)

. (40)

Finally, the cross spectrum of �� must be � correlated in !-space as well as all source dimensions383

of k-space since it is merely a uniform production term that does not depend on space or time. This384

yields385

⟨

�̃∗�
(

k⃗′, !′
)

�̃�
(

k⃗, !
)

⟩

= �
(

2�
)SO+1 �

(

! − !′
)

�SO
(

k⃗ − k⃗′
)

. (41)

Combining Eqs. 29, 38, 40, and 41 then yields386
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⟨

�̃c∗
(

k⃗′, !′
)

�̃c
(

k⃗, !
)

⟩

=
�
(

2�
)SO+1 �

(

! − !′
)

�SO
(

k⃗ − k⃗′
)

�2
(

1 + �2||
|

k⃗||
|

2
− i!

�

)(

1 + �2||
|

k⃗′||
|

2
+ i!

′

�

)

⋅

⎛

⎜

⎜

⎜

⎝

2�2k⃗ ⋅ k⃗′

1 + �2||
|

k⃗ − k⃗′||
|

2
+ 1

1 + �2||
|

k⃗ − k⃗′||
|

2
+ 1

⎞

⎟

⎟

⎟

⎠

=
�
(

2�
)SO+1 �

(

! − !′
)

�SO
(

k⃗ − k⃗′
)

�2
(

1 + �2||
|

k⃗||
|

2
− i!

�

)(

1 + �2||
|

k⃗′||
|

2
+ i!

′

�

)

2 + �2
(

|

|

|

k⃗||
|

2
+||
|

k⃗′||
|

2
)

1 + �2||
|

k⃗ − k⃗′||
|

2

=

̃̄c
(

k⃗ − k⃗′
)(

2��
(

! − !′
)

)

(

2 + �2
(

|

|

|

k⃗||
|

2
+||
|

k⃗′||
|

2
)

)

�
(

1 + �2||
|

k⃗||
|

2
− i!

�

)(

1 + �2||
|

k⃗′||
|

2
+ i!

′

�

) . (42)

We now define m as387

m
(

x⃗, t
)

= ∫V (a)
dSP rc

(

x⃗ + r⃗, t
)

, (43)

where V (a) is a SP -dimensional sphere with radius a. This allows the mean value of m to be written388

as389

m̄
(

x⃗
)

= ∫V (a)
dSP rc̄

(

x⃗ + r⃗
)

=
��2−(SP−SO)

D ∫V (a)
dSP rPSP−SO

(

|

|

x⃗ + r⃗|
|

�

)

=
��SO

�
MSP−SO,SP

(

|

|

x⃗|
|

�
, a
�

)

, (44)

where390

MN,N ′ (x, y) = ∫V (y)
dN ′uPN

(

|

|

x⃗ + u⃗|
|

)

. (45)

Since PN
(

|

|

x⃗|
|

)

can only depend on the last N dimensions of its input vectors, the same must be391

true ofMN,N ′ . From here we define S
(

x⃗
)

as the 0-frequency limit of the cross spectrum in !-space392

of m. This allows the time averaged variance, �2 (x) to take the form393
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�2 (x) =
S
(

x⃗
)

T
= 1
T
lim
!→0∫

d!′

2�

⟨

̃�m∗
(

x⃗, !′
) ̃�m

(

x⃗, !
)

⟩

= 1
T
lim
!→0∫

d!′

2� ∫V (a)
dSP rdSP r′ ∫

dSPk
(

2�
)SP

dSPk′
(

2�
)SP e

−ik⃗⋅(x⃗+r⃗)eik⃗′⋅(x⃗+r⃗′)
⟨

�̃c∗
(

k⃗′, !′
)

�̃c
(

k⃗, !
)

⟩

= 1
(

2�
)2SP �T ∫V (a)

dSP rdSP r′ ∫ dSPkdSPk′e−ik⃗⋅(x⃗+r⃗)eik⃗′⋅(x⃗+r⃗′)

⋅

̃̄c
(

k⃗ − k⃗′
)

(

2 + �2
(

|

|

|

k⃗||
|

2
+||
|

k⃗′||
|

2
)

)

(

1 + �2||
|

k⃗||
|

2
)(

1 + �2||
|

k⃗′||
|

2
)

= 1
(

2�
)2SP �T ∫V (a)

dSP rdSP r′ ∫ dSPkdSPk′dSP ze−ik⃗⋅(x⃗+r⃗)eik⃗′⋅(x⃗+r⃗′)eiz⃗⋅
(

k⃗−k⃗′
)

⋅ c̄
(

z⃗
)

2 + �2
(

|

|

|

k⃗||
|

2
+||
|

k⃗′||
|

2
)

(

1 + �2||
|

k⃗||
|

2
)(

1 + �2||
|

k⃗′||
|

2
)

= 1
(

2�
)2SP �T ∫V (a)

dSP rdSP r′ ∫ dSPkdSPk′dSP ze−ik⃗⋅(x⃗+r⃗−z⃗)eik⃗′⋅(x⃗+r⃗′−z⃗)

⋅ c̄
(

z⃗
)

⎛

⎜

⎜

⎜

⎝

1

1 + �2||
|

k⃗||
|

2
+ 1

1 + �2||
|

k⃗′||
|

2

⎞

⎟

⎟

⎟

⎠

= 1
(

2�
)2SP �T ∫V (a)

dSP rdSP r′ ∫ dSP zc̄
(

z⃗
)

⎛

⎜

⎜

⎜

⎝

∫ dSPke−ik⃗⋅(x⃗+r⃗−z⃗)
(

2�
)SP �SP

(

x⃗ + r⃗′ − z⃗
)

1 + �2||
|

k⃗||
|

2

+∫ dSPk′eik⃗′⋅(x⃗+r⃗′−z⃗)
(

2�
)SP �SP

(

x⃗ + r⃗ − z⃗
)

1 + �2||
|

k⃗′||
|

2

⎞

⎟

⎟

⎟

⎠

=
��2−(SP−SO)

D��SPT ∫V (a)
dSP rdSP r′ ∫ dSP zPSP−SO

(

|

|

z⃗|
|

�

)

⋅
⎛

⎜

⎜

⎝

�SP
(

x⃗ + r⃗′ − z⃗
)

PSP

(

|

|

x⃗ + r⃗ − z⃗|
|

�

)

+ �SP
(

x⃗ + r⃗ − z⃗
)

PSP

(

|

|

x⃗ + r⃗′ − z⃗|
|

�

)

⎞

⎟

⎟

⎠

=
��4−(2SP−SO)

D2T ∫V (a)
dSP rdSP r′PSP

(

|

|

r⃗ − r⃗′|
|

�

)

⎛

⎜

⎜

⎝

PSP−SO

(

|

|

x⃗ + r⃗|
|

�

)

+ PSP−SO

(

|

|

x⃗ + r⃗′|
|

�

)

⎞

⎟

⎟

⎠

=
��4−(SP−SO)

D2T

⎛

⎜

⎜

⎝

∫V (a)
dSP rMSP ,SP

(

|

|

r⃗|
|

�
, a
�

)

PSP−SO

(

|

|

x⃗ + r⃗|
|

�

)

+ ∫V (a)
dSP r′MSP ,SP

(

|

|

r⃗′|
|

�
, a
�

)

PSP−SO

(

|

|

x⃗ + r⃗′|
|

�

)

⎞

⎟

⎟

⎠

=
2��4−(SP−SO)

D2T ∫V (a)
dSP rMSP ,SP

(

|

|

r⃗|
|

�
, a
�

)

PSP−SO

(

|

|

x⃗ + r⃗|
|

�

)

=
2��SO

�2T
ΣSP−SO,SP

(

|

|

x⃗|
|

�
, a
�

)

=
2m̄

(

x⃗
)

�T

ΣSP−SO,SP

(

|
x⃗
|

�
, a
�

)

MSP−SO,SP

(

|
x⃗
|

�
, a
�

) , (46)

15 of 25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.09.141937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.141937
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

where394

ΣN,N ′ (x, y) = ∫V (y)
dN ′uMN ′ ,N ′ (u, y)PN

(

|

|

x⃗ + u⃗|
|

)

. (47)

Wherein once again only the last N dimensions of the input vectors can be taken into account.395

Combining Eqs. 44 and 46 yields the full precision to be396

P 2 (x⃗
)

=
m̄2

(

x⃗
)

�2
(

x⃗
)

(

Δm̄
(

x⃗
)

m̄
(

x⃗
)

)2

= T
2�
�
�
MSP−SO,SP

(

|

|

x⃗|
|

�
, a
�

)

⎛

⎜

⎜

⎜

⎜

⎝

1 −
MSP−SO,SP

(

|
x⃗
|
+2a

�
, a
�

)

MSP−SO,SP

(

|
x⃗
|

�
, a
�

)

⎞

⎟

⎟

⎟

⎟

⎠

2

, (48)

where397

� = 1
�

ΣSP−SO,SP

(

|
x⃗
|

�
, a
�

)

MSP−SO,SP

(

|
x⃗
|

�
, a
�

) . (49)

With Eq. 48, once the forms of PN ,MN,N ′ , and ΣN,N ′ are determined for a given SP and SO, the full398

form of the noise-to-signal ratio can be found. We now calculate these forms for specific choices of399

SP and SO.400

1D space, 0D source401

To begin, we start with the simple scenario in which SP = 1 and SO = 0. This allows P1,M1,1, and402

Σ1,1 to take the forms403

P1 (x) = ∫
du
2�
e−iux 1

1 + u2
= 1
2
e−|x| (50)

M1,1 (x, y) = ∫

y

−y
duP1

(

|x + u|
)

= 1
2 ∫

y

−y
due−|x+u|

=

⎧

⎪

⎨

⎪

⎩

1 − e−y cosh (x) x < y

e−x sinh (y) x ≥ y
(51)

Σ1,1 (x, y) = ∫

y

−y
duM1,1 (u, y)P1

(

|x + u|
)

= 1
2 ∫

y

−y
du

(

1 − e−y cosh (u)
)

e−|x+u|

=

⎧

⎪

⎨

⎪

⎩

1 − 1
4
e−y

(

(

5 + 2y − e−2y
)

cosh (x) − 2x sinh (x)
)

x < y

1
4
e−x

(

4 sinh (y) − e−y
(

2y + sinh
(

2y
)

)

)

x ≥ y
. (52)

Eqs. 51 and 52 can then be put into Eq. 48 along with the assumption|x| > a to obtain404

P 2 (x) =
m̄ (x) T
2�

(

1 − e−
2a
�

)2
, (53)

and405

� = 1
�

⎛

⎜

⎜

⎜

⎝

1 − e−
a
�

2a
�
+ sinh

(

2a
�

)

4 sinh
(

a
�

)

⎞

⎟

⎟

⎟

⎠

(54)

as in Eqs. 9 and 10 of the main text.406

Next we apply the condition given by Eq. 17 to determine the regime in which these results are407

valid for the SP = 1 and SO = 0 case. A similar methodology can be done for each of the other408
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cases we will look at, though this is the only one we do explicitly. To begin, we will reperform the409

calculation done in Eq. 46 but without taking the !→ 0 limit so as to obtain the full form of S(!, x).410

S (!, x) = ∫
d!′

2�

⟨

̃�m∗
(

x, !′
) ̃�m (x, !)

⟩

= ∫
d!′

2� ∫

a

−a
drdr′ ∫

dk
2�

dk′

2�
e−ik(x+r)eik′(x+r′)

⟨

�̃c∗
(

k′, !′
)

�̃c (k, !)
⟩

= 1
(

2�
)2 � ∫

a

−a
drdr′ ∫ dkdk′e−ik(x+r)eik′(x+r′)

̃̄c
(

k − k′
)

(

2 + �2
(

k2 + k′2
)

)

(

1 + �2k2 − i!
�

)(

1 + �2k′2 + i!
�

)

= 1
(

2�
)2 � ∫

a

−a
drdr′ ∫ dkdk′dze−ik(x+r)eik′(x+r′)eiz(k−k′)c̄ (z)

2 + �2
(

k2 + k′2
)

(

1 + �2k2 − i!
�

)(

1 + �2k′2 + i!
�

)

= 1
(

2�
)2 � ∫

a

−a
drdr′ ∫ dkdk′dze−ik(x+r−z)eik′(x+r′−z)c̄ (z)

⎛

⎜

⎜

⎝

1
1 + �2k2 − i!

�

+ 1
1 + �2k′2 + i!

�

⎞

⎟

⎟

⎠

= 1
(

2�
)2 � ∫

a

−a
drdr′ ∫ dzc̄ (z)

⎛

⎜

⎜

⎝

∫ dke−ik(x+r−z)
2��

(

x + r′ − z
)

1 + �2k2 − i!
�

+ ∫ dk′eik′(x+r′−z)
2�� (x + r − z)
1 + �2k′2 + i!

�

⎞

⎟

⎟

⎠

= 1
2�� ∫

a

−a
drdr′

(

∫ dke−ik(r−r′)
c̄
(

x + r′
)

1 + �2k2 − i!
�

+ ∫ dkeik(r′−r)
c̄ (x + r)

1 + �2k2 + i!
�

)

= 1
�� ∫

a

−a
drdr′

(

c̄
(

x + r′
)

Q
(

r − r′
�

,−!
�

)

+ c̄ (x + r)Q
(

r − r′
�

, !
�

)

)

, (55)

where411

Q (x, y) = ∫
du
2�
e−iux 1

1 + iy + u2
= 1
2
√

1 + iy
e−|x|

√

1+iy
(56)

and
√

1 + iy is assumed to be the branch with a positive real component. Plugging this and the412

explicit form of c̄ into Eq. 55 then yields413

S (!, x) =
�
4�D ∫

a

−a
drdr′

⎛

⎜

⎜

⎜

⎝

1
√

1 − i!
�

e−
|
x+r′

|

� e−
|
r−r′

|

�

√

1−i !� + 1
√

1 + i!
�

e−
|x+r|
� e−

|
r−r′

|

�

√

1+i !�

⎞

⎟

⎟

⎟

⎠

=
�
2�D

Re

⎡

⎢

⎢

⎢

⎣

∫

a

−a
drdr′ 1

√

1 + i!
�

e−
|x+r|
� e−

|
r−r′

|

�

√

1+i !�

⎤

⎥

⎥

⎥

⎦

=
2�
�2
Re

⎡

⎢

⎢

⎣

Υ

(

|x|
�
, a
�
,
√

1 + i!
�

)

⎤

⎥

⎥

⎦

, (57)

where414

Υ (x, y,w) = ∫

y

−y
dudu′ 1

4w
e−|x+u|e−w|u−u′|. (58)

The function Υ (x, y,w) limits to Σ1,1 (x, y) when w → 1 and as such has different forms when x415

is less or greater than y. As the purpose of this exercise is to determine the regime in which our416

theoretical approximations are valid and our model obeys |x| ≥ 2a for all cells, here we will only417

present the x > y solution for simplicity. Using this to perform the integrals in Eq. 58 and applying418

the result to Eq. 57 then yields419

S (!, x) =
2�
�2
e−

|x|
� Re

⎡

⎢

⎢

⎢

⎣

1
W 2

sinh
(

a
�

)

− e−
a
�W

W sinh
(

a
�
W

)

cosh
(

a
�

)

− cosh
(

a
�
W

)

sinh
(

a
�

)

W 2
(

W 2 − 1
)

⎤

⎥

⎥

⎥

⎦

, (59)
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where W =
√

1 + i!
�
, which in turn implies ! = −i�(W 2 − 1). With this, it is easier to perform all420

further calculations with respect toW and take theW → 1 limit as that is equivalent to the ! → 0421

limit.422

We can now combine this with the known form of S(0, x) given in Eq. 46 to evaluate Eq. 17 to423

take the form424

T 2 ≫
|

|

|

|

|

|

6
S
)2S
)!2

|

|

|

|

|!=0

|

|

|

|

|

|

=
|

|

|

|

|

|

6
S
)W
)!

)
)W

(

)W
)!

)S
)W

)

|

|

|

|

|W =1

|

|

|

|

|

|

=
|

|

|

|

|

|

|

6
S

(

(

)!
)W

)−2
)2S
)W 2

−
(

)!
)W

)−3
)2!
)W 2

)S
)W

)

|

|

|

|

|

|W =1

|

|

|

|

|

|

|

= 1
2�2

96 sinh
(

a
�

)

− e−
a
�

(

48 a
�
+ 30

(

a
�

)2
+ 8

(

a
�

)3
+ 33 sinh

(

2 a
�

)

)

+ 6e−3
a
�

(

3 a
�
+
(

a
�

)2
)

4 sinh
(

a
�

)

− e−
a
�

(

2 a
�
+ sinh

(

2 a
�

)

) . (60)

The right-hand side of Eq. 60 is a function that monotonically increases from 9∕2�2 to 21∕2�2 as425

a∕� goes from 0 to∞. Thus, regardless of the value of �, � sets the timescale to which T must be426

compared.427

2D space, 0D source428

For SP = 2 and SO = 0, P2,M2,2, and Σ2,2 each take the form429

P2 (x) = ∫
d2u
(

2�
)2
e−iu⃗⋅x⃗ 1

1 +|
|

u⃗|
|

2
= 1
2�
K0 (x) (61)

M2,2 (x, y) = ∫V (y)
d2uP2

(

|

|

x⃗ + u⃗|
|

)

= ∫V (y)
d2u∫

d2u′
(

2�
)2
e−iu⃗′⋅(x⃗+u⃗) 1

1 +|
|

u⃗′|
|

2

= y∫

∞

0
du′

J0
(

xu′
)

J1
(

yu′
)

1 + u′2
(62)

Σ2,2 (x, y) = ∫V (y)
d2uM2,2

(

|

|

u⃗|
|

, y
)

P2
(

|

|

x⃗ + u⃗|
|

)

= y∫V (y)
d2u∫

∞

0
du′ ∫

d2u′′
(

2�
)2

J0
(

|

|

u⃗|
|

u′
)

J1
(

yu′
)

1 + u′2
e−iu⃗′′⋅(x⃗+u⃗)

1 +|
|

u⃗′′|
|

2

= y2 ∫

∞

0
du′du′′

u′′J0
(

xu′′
)

J1
(

yu′
)

(

u′J0
(

yu′′
)

J1
(

yu′
)

− u′′J0
(

yu′
)

J1
(

yu′′
)

)

(

u′2 − u′′2
) (

1 + u′2
) (

1 + u′′2
) , (63)

where Jn (x) and Kn (x) are the Bessel functions of the first kind and modified Bessel functions of430

the second kind respectively. Unfortunately, the complicated nature of Bessel functions makes the431

remaining integrals unsolvable analytically, and therefore we evaluate them numerically. Similar432

problems arise whenever SP = 2 or SP − SO = 2.433

3D space, 0D source434

For SP = 3 and SO = 0, P3,M3,3, and Σ3,3 each take the form435

P3 (x) = ∫
d3u
(

2�
)3
e−iu⃗⋅x⃗ 1

1 +|
|

u⃗|
|

2
= 1
4�x

e−x (64)

M3,3 (x, y) = ∫V (y)
d3uP3

(

|

|

x⃗ + u⃗|
|

)

= 1
4� ∫V (y)

d3u 1
|

|

x⃗ + u⃗|
|

e−|x⃗+u⃗|

=

⎧

⎪

⎨

⎪

⎩

1 − 1+y
x
e−y sinh (x) x < y

1
x
e−x

(

y cosh (y) − sinh (y)
)

x ≥ y
(65)
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Σ3,3 (x, y) = ∫V (y)
d3uM3,3

(

|

|

u⃗|
|

, y
)

P3
(

|

|

x⃗ + u⃗|
|

)

= 1
4� ∫V (y)

d3u

(

1 −
1 + y
|

|

u⃗|
|

e−y sinh
(

|

|

u⃗|
|

)

)

1
|

|

x⃗ + u⃗|
|

e−|x⃗+u⃗|

=

⎧

⎪

⎨

⎪

⎩

1 − 1
4x
e−y

(

1 + y
)

(

(

5 + 2y + e−2y
)

sinh (x) − 2x cosh (x)
)

x < y

1
4x
e−x

(

4
(

y cosh (y) − sinh (y)
)

+ e−y
(

1 + y
)

(

2y − sinh
(

2y
)

)

)

x ≥ y
(66)

2D space, 1D source436

For SP = 2, SO = 1, P1 andM2,2 are known from Eqs. 50 and 62. This leavesM1,2 and Σ1,2 to take437

the forms438

M1,2 (x, y) = ∫V (y)
d2uP1

(

|

|

x⃗ + u⃗|
|

)

= 1
2 ∫

y

0
du∫

2�

0
d�ue−|x2+u2|

= e−|x2| ∫

2�

0
d�
1 − e−y sin(�)

(

1 + y sin (�)
)

2
(

sin (�)
)2

(67)

Σ1,2 (x, y) = ∫V (y)
d2uM2,2

(

|

|

u⃗|
|

, y
)

P1
(

|

|

x⃗ + u⃗|
|

)

=
y
2 ∫

y

0
du∫

2�

0
d� ∫

∞

0
du′u

J0
(

uu′
)

J1
(

yu′
)

1 + u′2
e−|x2+u sin(�)| (68)

Again, we evaluate the remaining integrals numerically.439

3D space, 2D source440

For SP = 3, SO = 2, P1 andM3,3 are known from Eqs. 50 and 65. This leavesM1,3 and Σ1,3 to take441

the forms442

M1,3 (x, y) = ∫V (y)
d3uP1

(

|

|

x⃗ + u⃗|
|

)

= 1
2 ∫V (y)

d3ue−|x3+u3|

= 2�

⎧

⎪

⎨

⎪

⎩

e−y
(

1 + y
)

cosh (x) + y2−x2

2
− 1 x < y

e−x
(

y cosh (y) − sinh (y)
)

x ≥ y
(69)

Σ1,3 (x, y) = ∫V (y)
d3uM3,3

(

|

|

u⃗|
|

, y
)

P1
(

|

|

x⃗ + u⃗|
|

)

= 1
2 ∫V (y)

d3u

(

1 −
1 + y
|

|

u⃗|
|

e−y sinh
(

|

|

u⃗|
|

)

)

e−|x3+u3|

= 2�

⎧

⎪

⎨

⎪

⎩

e−y
(

1 + y
)

(

7+2y+e−2y

4
cosh (x) − x

2
sinh (x) − cosh (y)

)

+ y2−x2

2
− 1 x < y

e−x
(

4y2+5y−1
8

e−y + 1+y
8
e−3y + 3y

4
cosh (y) − 5

4
sinh (y)

)

x ≥ y
(70)

Appendix 2: Hopping model for SDC case443

To obtain a more intuitive understanding of why the SDC model results in the scaling properties444

seen in the various calculations of M
SP−SO,SP and ΣSP−SO,SP, we now look at a simpler version of445

one dimensional diffusion in which we discretize space into compartments of uniform size. Let446

molecules still be produced in the 0th compartment at rate � and degrade anywhere in space at447

rate �. The process of diffusion can be approximated by letting the molecules hop to neighboring448

compartments with rate ℎ with equal probability of moving left or right. This allows the dynamics of449

mj , the number of molecules in the j compartment for j ∈ ℤ, to be written as450

)mj
)t

= ��0j + ℎ
(

mj+1 + mj−1 − 2mj
)

− �mj . (71)
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By setting the left-hand side of Eq. 71 to 0, the resulting system of equations can be easily solved451

by assuming m̄j = Aexp(−2|j| ∕�) and calculating A and �. Imposing this assumption on Eq. 71 and452

taking j > 0 yields453

0 = ℎ
(

Ae−
2(j+1)
� + Ae−

2(j−1)
� − 2Ae−

2j
�

)

− �Ae−
2j
� = Ae−

2j
�

(

ℎe−
2
� + ℎe

2
� − 2ℎ − �

)

= Ae−
2j
�

(

4ℎ sinh2
(

1
�

)

− �

)

⟹ � = asinh−1
(

√

�
4ℎ

)

. (72)

With � solved for, we solve for the proportionality constant by noting that the total number of454

molecules in the whole system must follow a simple birth-death process with a mean of �∕�. This in455

turn implies456

�
�
=

∞
∑

j=−∞
Ae−

2|j|
� = A

⎛

⎜

⎜

⎜

⎝

2
⎛

⎜

⎜

⎝

∞
∑

j=0
e−

2j
�

⎞

⎟

⎟

⎠

− 1

⎞

⎟

⎟

⎟

⎠

= A

(

2

1 − e−
2
�

− 1

)

= A

⎛

⎜

⎜

⎜

⎝

e
1
�

sinh
(

1
�

) − 1

⎞

⎟

⎟

⎟

⎠

= A coth
(

1
�

)

⟹ A =
�
�
tanh

(

1
�

)

, (73)

This in turn gives the average value of mj to be457

m̄j =
�
�
tanh

(

1
�

)

e−
2|j|
� . (74)

Next, we calculate the full distribution of mj by assuming that at any given moment in time each458

molecule in the system has probability Pj of being in the jth compartment. This can be combined459

with the aforementioned fact that N , the total number of molecules in the system, must follow460

a birth-death process and thus to Poissonianly distributed with mean �∕�. For any given value461

of N , P (mj|N)must be a binomial distribution with success probability Pj since each molecule is462

independent. This allows the marginal distribution P (mj) to be calculated to be463

P
(

mj
)

=
∞
∑

N=mj

P (N)P
(

mj|N
)

=
∞
∑

N=mj

e−
�
�

(

�
�

)N

N!

(

N
mj

)

P mj
j

(

1 − Pj
)N−mj

= e−
�
�

(

�
�
Pj
)mj

mj!

∞
∑

N=mj

(

�
�

(

1 − Pj
)

)N−mj

(

N − mj
)

!
= e−

�
�

(

�
�
Pj
)mj

mj!
e
�
� (1−Pj) = e−

�
� Pj

(

�
�
Pj
)mj

mj!
. (75)

Thus, mj is seen to be Poissonianly distributed with mean �Pj∕�. Comparing this mean to that464

derived in Eq. 74 then implies465

Pj = tanh
(

1
�

)

e−
2|j|
� . (76)

We now consider the joint distribution of mj and mk for j ≠ k. Since molecules cannot be in the466

jth and kth compartment simultaneously, the joint conditional distribution P (mj , mk|N)must be467

trinomially distributed. This allows for the joint distribution to be calculated in a manner similar to468

Eq. 75 to produce469
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P
(

mj , mk
)

=
∞
∑

N=mj+mk

P (N)P
(

mj , mk|N
)

=
∞
∑

N=mj+mk

e−
�
�

(

�
�

)N

N!

(

N
mj , mk

)

P mj
j P mk

k

(

1 − Pj − Pk
)N−mj−mk

= e−
�
�

(

�
�
Pj
)mj

mj!

(

�
�
Pk
)mk

mk!

∞
∑

N=mj+mk

(

�
�

(

1 − Pj − Pk
)

)N−mj−mk

(

N − mj − mk
)

!

= e−
�
�

(

�
�
Pj
)mj

mj!

(

�
�
Pk
)mk

mk!
e
�
� (1−Pj−Pk) =

⎛

⎜

⎜

⎜

⎝

e−
�
� Pj

(

�
�
Pj
)mj

mj!

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

e−
�
� Pk

(

�
�
Pk
)mk

mk!

⎞

⎟

⎟

⎟

⎠

. (77)

Thus the joint probability distribution of mj and mk is seen to be separable into the product of the470

two marginal distribution, meaning that same-time, instantaneous measurements of mj an mk must471

be uncorrelated.472

From here we can begin to calculate the full correlation function for mj and mk. We start by473

defining �mj(t) = mj(t) − m̄j and �mk(t) = mk(t) − m̄k. Since m̄j is known to set the right-hand side of Eq.474

71 to 0, the dynamics of �mj can be written as475

)�mj
)t

= ℎ
(

�mj+1 + �mj−1 − 2�mj
)

− ��mj , (78)

with the same being true for �mk. Additionally, we assume the system is at steady state so that all476

mean expressions are invariant to time translation. Given this, we can without loss of generality477

take the correlation function between �mj and �mk to have the form478

Cj,k (t) =
⟨

�mk (t) �mj
(

0
)

⟩

, (79)

where t > 0. Applying the dynamic result given in Eq. 78 then yields479

)Cj,k
)t

=
⟨

)�mk(t)
)t

�mj(0)
⟩

=
⟨

(

ℎ
(

�mk+1(t) + �mk−1(t) − 2�mk(t)
)

− ��mk(t)
)

�mj
(

0
)

⟩

= ℎ
(

Cj,k+1 + Cj,k−1
)

−
(

2ℎ + �
)

Cj,k. (80)

The final form of Eq. 80 can be split into the term −(2ℎ+�)Cj,k which implies Cj,k ∝ exp(−(2ℎ+�)t)480

and the term ℎ(Cj,k+1+Cj,k−1) which is the recursion relation for Il(2ℎt), the modified Bessel function481

of the first kind, where l is some function of j and k. This means Cj,k(t) can be written as482

Cj,k (t) = AIl(j,k)
(

2ℎt
)

e−(2ℎ+�)t, (81)

for some proportionality constant A.483

To determine the forms of A and l(j, k), we can utilize the initial condition that mj is Poissonianlly484

distributed and thus has a variance equal to its mean while being completely uncorrelated with mk485

when both are measured at the same time. This means Cj,k(0) can be written as486

Cj,k
(

0
)

=
�
�
Pj�jk, (82)

which in turn implies l(j, j) = 0 as In(0) = �0n for n ∈ ℤ. To satisfy the recursion relation term of Eq.487

80, it must then be the case that l(j, j + n) = n. Setting k = j + n thus yields l(j, k) = k − j. Since k488

and j are integers, l(j, k) = j − k is equally valid as In = I−n again for n ∈ ℤ. Combining these results489

together yields the final form of Cj,k(t) to be490

Cj,k (t) =
�
�
PjIk−j

(

2ℎt
)

e−(2ℎ+�)t. (83)
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Next, let � be the autocorrelation time of mj . This quantity is typically defined by integrating491

Cj,j(t)∕Cj,j(0) over all time. Using the known properties of modified Bessel functions, this can be492

solved to yield493

� = ∫

∞

0
dt
Cj,j (t)

Cj,j
(

0
) = ∫

∞

0
dt I0

(

2ℎt
)

e−(2ℎ+�)t = 1
√

�
(

4ℎ + �
)

. (84)

If we now defineM = T ∕� whereM is the number of effectively independent measurements that494

can be made in a time T , we see that for ℎ ≫ �, M ≈ 2
√

�ℎT . Additionally, from Eq. 72 we see495

that in the ℎ ≫ � regime � ≈ 2
√

ℎ∕�. By equating this � to the nondimensionalized �
SDC
∕a from the496

SDC model we see thatM ≈ ��T = (�
SDC
∕a)�T . This is consistent with the fact that for �

SDC
≫ a the497

right-hand side of Eq. 54 becomes approximately a∕�
SDC

�, which allowsM = T ∕�SDC ≈
(

�
SDC
∕a
)

�T .498

In the ℎ ≪ � regime we findM ≈ �T . Once again, this consistent with Eq. 54 when �
SDC

≪ a as499

this causes the right-hand side to become approximately �−1. Thus, the SDC model is seen to have500

a correlation time that agrees with Eq. 84 in both the large and small ℎ regime.501

Appendix 3: Comparison to experimental data502

To compare our theory to experimental data, we focus on ten of the morphogens presented in503

Table 1 of Kicheva et al. (2012) and obtain data from the references therein. For Bicoid, we obtain504

a value of � of ∼100�m from the text of Gregor et al. (2007b) with and error of ±10�m from the505

finding in Gregor et al. (2007a) that cells have a ∼10% error in measuring the Bicoid gradient. We506

then take the a value of the Drosophila embryo cells that are subjected to the Bicoid gradient to be507

∼2.8�m based on Fig. 3A of Gregor et al. (2007a). We use the same figure to estimate the size of the508

whole embryo to be ∼500�m or ∼90 cells. This value of a is also used for Dorsal as measurements509

of both Bicoid and Dorsal occur in the Drosophila embryo at nuclear cycle 14. For the value of � for510

Dorsal, we use Fig. 3D from Liberman et al. (2009) to obtain a full width at 60% max of 45±10�m.511

Since this represents the width of Gaussian fit on both sides of the source whereas our model uses512

an exponential profile, we assume the appropriate � value for such an exponential fit would be half513

this value, 22.5±5�m. Fig. 3A from the same source also shows that the distance from the ventral514

midline to the dorsal midline is ∼200�m or ∼35 cells.515

For Dpp and Wg, Kicheva et al. (2007) provides explicit measurements of � for each. These516

values are 20.2±5.7�m and 5.8±2.04�m respectively. For Hh, we use Fig. S2C in the supplementary517

material of Wartlick et al. (2011) to determine � to be 8±3�m. Dpp, Wg, and Hh all occur in the518

wing disc during the third instar of the Drosophila development. As such, we use a common value519

of a for all three. This value is taken to be 1.3�m based on the area of the cells being reported as520

5.5±0.8�m2 in the supplementary material of Kicheva et al. (2007) and the assumption that the521

cells are circular. Additionally, the scale bar for Fig. 1A inWartlick et al. (2011) shows the maximal522

distance from the morphogen producing midline of the wing disc to its edge to be ∼250�m or ∼100523

cells.524

The � value of Fgf8 is reported as being 197±7�m in Yu et al. (2009). Additionally, based off525

the scale bars seen in Fig. 2C-E of Yu et al. (2009), we estimate the value of a for the cells to be526

∼10�m. For the morphogens involved in the Nodal/Lefty system (cyclops, squint, lefty1, and lefty2),527

measurements of � for each are taken from Fig. 2C-F of Müller et al. (2012) by observing where528

the average of the three curves crosses the 37% of max threshold with error bars given by the529

width of the region in which the vertical error bars of each plot intersect this threshold line. We530

assume the a value of each morphogen in the Nodal/Lefty system to be equivalent to the a value of531

cells in the Fgf8 measurements performed in Yu et al. (2009). This is because the measurements532

made in Müller et al. (2012) were taken during the blastula stage of the zebrafish development533

while measurements taken in Yu et al. (2009) we taken in the sphere germ ring stage. These stages534

occur at ∼2.25 and ∼5.67 hpf respectively, but the blastula stage can last until ∼6 hpf based on535

the timeline of zebrafish development presented in Kimmel et al. (1995). As such, since there is536
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potential overlap in the time frame of these two stages, we assume the cells maintain a relatively537

fixed size and thus that the value of a for the Nodal/Lefty system can be taken as the same value of538

a used for Fgf8. Additionally, as seen in Figs. 8F and 11B in Kimmel et al. (1995), these two stages539

also share a rougly equal overall diameter of the embryo of ∼500�m at the largest point. This540

creates a circumference of ∼1600�m or ∼80 cells, which in turn means the morphogen must travel541

a maximum distance of ∼40 cells away from the source.542

Morphogen Organism � (�m) a (�m) N

Bicoid Drosophila 100±10 2.8 90

Fgf8 Zebrafish 197±7 10 40

Lefty2 Zebrafish 150±25 10 40

Lefty1 Zebrafish 115±20 10 40

Dpp Drosophila 20.2±5.7 1.3 100

Dorsal Drosophila 22.5±5 2.8 35

Squint Zebrafish 65±10 10 40

Cyclops Zebrafish 30±5 10 40

Hh Drosophila 8±3 1.3 100

Wg Drosophila 5.8±2.04 1.3 100

543
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