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Abstract

Mormyrids, a family of weakly electric fish, use electric pulses for communication and
for extracting information from the environment (active electroreception). The
electromotor system controls the timing of pulse generation. Ethological studies have
described several sequences of pulse intervals (SPIs) which are related to distinct
behaviors (e.g. mating or exploratory behaviors). Accelerations, scallops, rasps, and
cessations are four SPI patterns reported in these fish, each showing characteristic
temporal structures and large variability. This paper presents a computational model of
the electromotor command circuit that reproduces SPI patterns as a function of the
inputs to the model while keeping the same internal network configuration. The
topology of the model is based on a simplified representation of the network with four
neuron clusters (nuclei). An initial ad hoc tuned configuration (S-T) was built to
reproduce nucleus characteristics and network topology as described by detailed
morphological and electrophysiological studies. Then, a genetic algorithm (GA) was
developed and applied to automatically tune the synaptic parameters of the model
connectivity. Two different configurations obtained from the GA are presented here:
one optimized to a set of synthetic examples of SPI patterns (S-GA) and another
configuration adjusted to patterns recorded from freely-behaving Gnathonemus Petersii
specimens (R-GA). Robustness analyses to input variability were performed to discard
overfitting and assess validity. Results show that the set of SPI patterns are consistently
reproduced, both for synthetic data and for recorded data. This model can be used as a
tool to test novel hypotheses regarding temporal structure in electrogeneration.

1 Introduction 1

Pulse mormyriforms, a group of weakly electric fish, produce electric pulses with high 2

temporal precision. These fish have the ability of polarize their body in fast voltage 3

transients whose deflection in the fish surroundings is detected by the fish using a 4

specialized electric organ [5]. The electric organ discharges (EODs) occur as a result of 5

the synchronous activation of modified muscle or nerve cells named electrocytes. This 6

ability, known as active electroreception is a well-suited sensory modality to study 7

information processing in a living neural system as the signal from a freely-behaving fish 8

can be monitored during long time periods. 9

Information is encoded in the fish signal using a multiplexed temporal coding [2]. 10

The pulse shape, with a mean duration of ∼1 ms, is stereotyped, although there are 11

variations among species [17], sex [3] or relative dominance [12]. The interval between 12
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EODs, known as the inter-pulse interval (IPI), is much larger and variable than the 13

duration of the EOD. At rest, IPIs are around 100 to 300 ms, but they fluctuate from 14

less than 10 to more than 400 ms [32]. IPIs and sequences of pulse intervals (SPIs) are 15

also relevant to information processing in these animals, as complex higher-level 16

information can be encoded using this kind of temporal coding [2,17]. For instance, IPIs 17

decrease when the fish is actively probing their environment [33]. The timing flexibility 18

of IPIs in this system gives rise to an interesting set of SPI patterns with behavioral 19

relevance, as we will discuss below. 20

The neural system responsible for controlling the timing of the EODs is the 21

electromotor system, located at the central nervous system of the fish [6]. A neural 22

ensemble known as the command nucleus (CN) initiates the EOD. Action potentials in 23

CN are correlated with EODs (i.e., each action potential in CN leads to an EOD). 24

Nevertheless, CN is not a pacemaker but an integrator system. It mainly receives 25

synaptic input from the mesencephalic precommand nucleus (PCN) and the adjacent 26

thalamic dorsal posterior nucleus (DP) (Fig. 1). Nuclei DP and PCN receive 27

projections from multiple sources, but they are both inhibited by the ventroposterior 28

nucleus (VPd). This inhibition is mediated by the activation of VPd through a feedback 29

mechanism, the corollary discharge pathway (see EPCN in Fig. 1). Inhibition feedback 30

is a mechanism for avoiding responses to the fish own EOD and seems to regulate the 31

resting electromotor rhythm [10]. This is also emphasized by the fact that the IPI of 32

DP/PCN nuclei last, at least, as much as VPd bursts [9]. 33
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Figure 1. Abridged schematic of the electromotor command network based on [4,9] and
used for developing the computational model discussed in this paper. An EOD occurs
after each action potential in CN [16], so CN activations represent the output of the
model. CN receives excitatory projections from DP (EDP) and PCN (EPCN). Inhibitory
afferents are driven to DP and PCN through VPd (IDP and IPCN respectively) triggered
by the corollary discharge pathway (ECDP), which makes VPd to fire a burst of action
potentials right after the production of an EOD [8]. This inhibition feedback seems
to regulate the rythm of EOD output [34]. Current inputs to the electromotor model
(InVPd, InDP, InPCN) can be tuned to simulate different behavioral conditions.

We have developed a model of the electromotor command system of pulse 34

mormyrids capable of reproducing the variability of temporal firing patterns shown by 35

these fish as a function of the input while sustaining the same network architecture. 36

The model topology and nucleus dynamics are based in the results from previous 37

physiological studies of the pulse mormyrid electromotor system [6]. 38

Samples of these patterns were obtained for this work from experimental data 39

recordings of living Gnathonemus Petersii specimens [14,15,21] for the first time. These 40

types of patterns have been previously characterized in another species of the 41

Mormyridae family [11]. 42
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An automated method based on genetic algorithms (GA), with the development of a 43

multiobjective fitness function specifically adapted to this system, was applied for 44

synaptic parameter setting. Patterns recorded from Gnathonemus petersii and synthetic 45

samples generated from previously described behavioral patterns in pulse mormyrids 46

were used to fit the model parameters. Finally, the robustness of the model was tested 47

under systematic variations of network inputs to assess validity and discard overfitting 48

to these inputs. 49

2 Computational model of the electromotor 50

command network 51

Figure 1 illustrates the model of the electromotor command network described in the 52

following subsections. We also describe below the genetic approach used to fit the 53

connectivity parameters that give rise to the generation of distinct activity patterns as a 54

function of the stimuli. 55

2.1 Characteristic sequences of pulse interval (SPIs): 56

Synthetic and experimental data 57

Pulse mormyrids generate a wide variety of electrical activity patterns using different 58

sequences of pulse intervals (SPIs). Resting IPIs range from ∼100-300 msec. Previous 59

studies have described several stereotyped SPIs related to distinctive social 60

behaviors [11]. Accelerations, scallops, rasps and cessations are four relevant SPIs that 61

have been described [6, 11,22]. 62
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Figure 2. Characteristic SPI patterns recorded from freely-behaving Gnathonemus
Petersii specimens (top) and examples of corresponding synthetic SPIs to evolve and
validate the electromotor command network model (bottom). Signals were recorded
using the platform and the methodology explained in the Experimental Methods section.
Synthetic SPIs were constructed preserving the characteristic temporal structure of
reported experimental observations [6, 10,26].

Accelerations are sustained interval shortenings to a series of regular smaller IPIs 63

with variable duration. Accelerations (see Fig. 2) are related to the activation of the 64

neural ensemble known as the adjacent thalamic dorsal posterior nucleus (DP, see Fig. 65

1) [10]. According to [20], this kind of SPI is related with aggressive behaviors. 66

Scallops (see Fig. 2) are sudden drops to very short IPIs followed by an almost 67

immediate recovery to regular resting IPIs. Contrary to what occurs in accelerations, 68

the emmission of shorter IPIs is not sustained. An scallop pattern in CN takes place 69

after the activation of the mesencephalic precommand nucleus (PCN, see Fig. 1), and 70

this kind of firing pattern may serve as an advertisement signal [29]. 71
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Rasps (see Fig. 2) are a type of IPI pattern that has an initial sudden decrease to 72

very short IPIs, similar to the one observed in scallops, followed by a step increase of 73

IPIs duration for a sustained series of IPIs, like a long tail of short regular IPIs similar 74

to the ones observed in the acceleration pattern [18]. Rasps likely relies on activation of 75

both DP and PCN [6] (see Fig. 1). This SPI is evoked during male courtship 76

behavior [11]. 77

Finally, cessations (see Fig. 2) correspond to activity dropping in the EOD 78

generation for time periods up to one second. A cessation is evoked by the activation of 79

the ventroposterior nucleus (VPd, see Fig. 1). Submissive behavior has been associated 80

with this SPI [25, 26]. We will use these four representative patterns to validate our our 81

electromotor command network modeling approach. 82

2.2 Nuclei model 83

Four different neuron ensembles in the electromotor command chain were modeled: The
medullary command nucleus (CN), the mesencephalic precommand nucleus (PCN), the
adjacent thalamic dorsal posterior nucleus (DP) and the dorsal region of the
ventroposterior nucleus (VPd). Each nucleus was simulated using the neuron model
developed by Izhikevich (2003) [19]. This model combines biologically plausibility and
computational performance characteristic of integrate-and-fire neuron modeling
approaches [23]. It is based in a two-dimensional system of ordinary differential
equations:

dv

dt
(t) = 0.04v2 + 5v + 140− u+ Isyn(t), (1)

du

dt
(t) = a(bv − u), (2)

with an auxiliary after-spike resetting:

if v ≥ 30mV, then

{
v = c
u = u+ d

, (3)

where v represents the neuron’s membrane voltage and u represents the combined 84

action of ionic current dynamics. The parameters a, b, c and d set the working regime 85

of the neuron model. In is the model external input. 86

A wide range of neuron dynamics, and in particular firing temporal structures, can 87

be reproduced by selecting different values of the parameters a, b, c and d, as shown 88

in [19]. 89

The parameters of the neuron model were first adjusted to reproduce dynamics of 90

the nuclei described by previous neurophysiological studies of the electromotor 91

command network [9]. DP model parameters were adjusted to show regular frequency 92

spiking, whereas PCN parameters were chosen to reproduce decreasing frequency 93

spiking. These dynamics were selected because they are observed in the corresponding 94

pattern evoked by each nucleus. According to [9], units from DP/PCN nuclei showed 95

wide variations in baseline frequency, from sporadical firing units to units with high 96

spiking rates, so no baseline firing frequency was preselected for the DP/PCN models. 97

Nevertheless, as it occurs in the living network, a bimodal structure arose from the IPIs 98

intervals before and after CN action potential in both DP/PCN, with larger intervals 99

ocurring after the activation of CN. VPd nucleus model fires high-frequency sequences 100

of action potentials with a noticeable spike frequency adaptation, which is in accordance 101

to physiological records showing bursts of action potentials from VPd during each IPI. 102

This behavior was modelled using a low-threshold spiking firing regime, which is usually 103

displayed by inhibitory neurons (initial synaptic parameters were also adjusted to 104
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reproduce this behavior). Also, there was considerable variation in the timing of the 105

first spike of the burst relative to CN, intraburst firing rate, burst duration, and number 106

of spikes per burst from VPd units, so none of these characteristics were a priori 107

selected. Finally, CN model was configured to a phasic spiking firing regime as it mainly 108

integrates inputs from DP and PCN [7]. 109

The parameter values for modelling each nucleus are listed in B, Table 2 depicts the 110

activity of each model nucleus (isolated from the network) in response to a step current 111

input. 112

2.3 Synapses model 113

We reproduced neural projections using a model of chemical synapses as chemical
inter-nuclei communication takes place in the real electromotor command network. In
these synapses, when the pre-synaptic target generates an action potential a certain
amount of neurotransmitters are released and bind to the postsynaptic receptors. The
mathematical description used to model this behavior is based in a description of the
receptor bindings [13]. These equations define a simple method for computing synaptic
currents with low computational cost. The ratio of bound chemical receptors in the
post-synaptic target (r) during a pulse (tf < t < tr) and after the pulse (tr < t) was
calculated as follows:

ṙ =

{
α[T ](1− r)− βr, if tf < t < tr
−βr, otherwise

, (4)

where α and β are the forward and backward rate constants for transmitter binding and 114

[T] is the neurotransmitter concentration. 115

The beginning of a pulse (tf ) was detected when presynaptic neuron’s membrane 116

potential crossed a given threshold. Time between tf and tr was defined as the 117

maximum release time (tmax). Both threshold and tmax were tuned as a parameter of 118

the synapsis. 119

From the ratio of bound receptors is given by equation 4, the current received by the
post-synaptic target, Isyn, at any time t was then calculated as follows:

Isyn(t) = g · r(t) · (Vpost(t)− Esyn), (5)

where g is the synaptic conductance, Vpost(t) is the post-synaptic potential at time t, 120

and Esyn is the synaptic reversal potential at the same time. 121

The topology of the model was set up using a standard configuration of the model of 122

chemical synapses (EDP, EPCN,IDP, IPCN, ECDP in Fig 1). The adjustment of the 123

parameters of these synapses is essential to generate the four types of SPI patterns 124

showed by the electromotor command network. An ad hoc iterative tuning of the 125

parameters of the model was performed to match previously described dynamics in the 126

electromotor command network: (i) DP/PCN units firing sporadically before CN, (ii) 127

DP/PCN remaining silent for tens to hundreds of milliseconds after an action potential 128

from CN and (iii) VPd firing burst of action potentials during DP/PCN silence starting 129

≈1-8 msec after CN activation. 130

The intrinsic complexity of manually tuning all the parameters to reflect these 131

dynamics shown by the real network leaded to develop an automatic method for tuning 132

synaptical parameters of the model. This method is described in the next section. 133

2.4 Automatic selection of synapse parameters 134

An automatic approach was used to tune the parameters of the model synapses. This 135

approach was followed to overcome the lack of specific physiological information about 136
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the characteristics of the synapses in the real system. A genetic algorithm (GA) was 137

developed and applied to evolve the parameters of the synapses in order to reproduce 138

the variability of the electromotor command system patterns. 139

Each individual I in the population of the GA was conformed by a set of 20 140

parameter values: α, β, g, tmax for each of the 5 synapses of the model (see Fig. 1, Eq. 141

4 and Eq. 5). Each I in a generation had different randomly modified values from the 142

initial ad hoc tuned model. Alterations for each parameter were constrained under 143

distinct ranges in different executions of the GA. 144

Each generation, starting from the initial one, was formed by 100 different 145

individuals. The GA follows an steady state GA scheme [1,22]. In this scheme, a 146

temporary population was created by cross and mutation and it was added to the 147

original population. All individuals were then evaluated (using the fitness function 148

described in the next section) and ranked according to their grade. The worst 149

individuals were discarded in order to return the population to its original size. The 150

best individuals (10%) were maintained between generations. This process continued for 151

a predefined number of generations or until a certain fitting value was reached. 152

2.4.1 Fitness function 153

Each individual, defined by a set of values for the previously specified parameters, was
evaluated being simulated under a predefined set of 4 different simulation cases (S) ,
each one corresponding to a target SPI: Acceleration (Sacc), scallop (Ssca), rasp (Srasp),
cessation (Scess). Simulation cases (Spat) established the current inputs required to
reproduce the pat pattern. Each individual I was modeled under all four simulation
cases. The fitness function of the overall individual (f(I)) was defined as the sum of the
fitness results under each case:

f(I) = facc(I) + fsca(I) + frasp(I) + fcess(I). (6)

The four target patterns (acceleration, scallop, rasp and cessation) were defined in 154

terms of an ordered sequence of IPIs (p0, ..., pm) where pi is each IPI in temporary order. 155

The output of a simulation case was also defined in terms of an ordered sequence of IPIs. 156

To compare sequences, they were normalized to the same duration (1000 arbitrary 157

units), regularly interpolated (every 20 arbitrary units, obtaining n = 50 points) to 158

detect the pattern shape, and differentiated, as SPI patterns are better defined by the 159

increasing/decreasing slopes between IPIs better than the absolute timing values (see 160

Fig. 3 for an example). The pseudocode of this fitness function is shown in Table 1. 161

Finally, the fitting value fpat(I) was calculated by comparing the target SPI patterns
after these transformations (pt0, ..., p

t
n) with the SPI model outputs after the same

transformations (pS(I)0, ..., p
S(I)n) using the mean squared error (MSE) as follows:

MSE(I) =

∑n
i=0(pti − pS(I)i)

2

n
, (7)

fpat(I) =
100

1 +MSE(I)
. (8)

2.4.2 Model simulation 162

Since the model presented here is multi-objective (i.e., it reproduces different SPI 163

patterns when modifying only the model inputs), a set of four different simulation cases 164

(each one related to a distinct SPI pattern) was determined. Each simulation case was 165

defined by the input current values received by the model (InVPd, InDP, InPCN in Fig. 166

1) during the simulation of the four SPI patterns shown in Fig. 4. 167
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Table 1 Pseudocode of the fitness function, which relies on three different procedures:
First, tranformSPI procedure considers the list of sequential IPIs that form one SPI
and applies the transformations showed in Fig. 3. Then, evalPattern procedure applies
tranformSPI to both the simulated SPI (simulSPI procedure) and the target pattern
(targetSPI ) to compare them by calculating the mean squared error between both
(msePattern, calculated as described in Eq. 7). The evalPattern procedure returns the
fitting value of a pattern (fitValuePattern) calculated as described in Eq. 8. Finally,
evaluate procedure invokes evalPattern for each of the four patterns (scallop, acceleration,
rasp and cessation) and adds them to return the fitness value of the overall individual
(fitValue, equivalent to f(I) in Eq. 6).

procedure transformSPI(SPI )
SPI ← normalize(SPI)
SPI ← interpolate(SPI)
SPI ← diff(SPI)
return SPI

end procedure

procedure evalPattern(I,Spat)
simulSPI ← transformSPI(simulate(I, Spat))
targetSPI ← transformSPI(targetSPIspat)
msePattern← MSE(targetSPI, simulSPI)
fitValuePattern← 1/(1 + msePattern)
return fitValuePattern

end procedure

procedure evaluate(I )
fitValue← 0
for Spat in Simulations do

fitValue← fitValue + evalPattern(I,Spat)
end for
return fitValue

end procedure
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Figure 3. Steps for SPI output fitness evaluation in a rasp pattern example comparing
a target SPI (top) and a simulated SPI (bottom). The input current step function is
injected at 500 ms and lasts for 400 ms. First, the SPI is normalized to 1000 arbitrary
units (in the figure, it is represented starting at the first IPI). Normalized IPIs are then
interpolated every 20 ms and differentiated (ġ(IPI)). Finally, the mean squared error is
calculated between the target SPI pattern and the simulated one.

This predefined inputs were step functions that represent projections received by 168

VPD, DP and PCN nuclei from other sources of the nervous system. We assume that 169

with no input, there is no activity in the model network. Before each simulation, the 170

model was initialized for a random amount of time. During this period, the model is 171

stimulated to reproduce a base rhythm of IPIs of ∼120ms (in the range of IPIs showed 172

by the real fish during resting). Input values for each SPI case are described in C. The 173

source code of both the electromotor command network model and the GA for synaptic 174

parameter optimization are provided (see G). The GA can be easily adapted to any 175

alternative experimental data from weakly electric fish. 176

2.4.3 Robustness to input variability and overfitting analysis 177

An analysis for all the different configurations of the model was conducted to assess 178

robustness to input variability and discard overfitting to the predefined stimulation 179

cases. The step functions used as inputs in the simulations are meant to reproduce the 180

nuclei activation associated with each SPI (see C). As a consequence, similar SPIs were 181

expected to result from distinct inputs as long as the appropriate nucleus was stimulated. 182

According to this hypothesis, a robustness analysis to input variability was conducted. 183

To perform this analysis, a set of different simulations was conformed by modifying
the intensity and duration of the predefined model inputs (i.e., the inputs used in the
GA for simulating the patterns showed in Fig. 4) up to a 50%. Being In0

p(n) the
predefined value of the input received by nucleus n in the p pattern simulation case (see
C), and t0p(n) the duration of the step, the set of simulations to assess robustness is

built by modifying intensity from −0.5 · In0
p(n) to 0.5 · In0

p(n) in steps of 0.05, and also
modifying duration from −0.5 · t0p(n) to 0.5 · t0p(n) using the same interval steps (see Fig.
5 - Right). Then, the reproducibility of the patterns under this set of stimulation cases
was evaluated using the fitting function. In this case, a relative fitting value was defined
as the change ratio of the fitting value from the default stimulation case. Being f0 the
fitness value of the model under predefined stimulation, and f i the fitness value under a
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given stimulation case of the set, then, the relative fitting value (∆f(i)) was given by:

∆f(i) = 100
f i − f0

f0
(9)

where negative results mean a decrement in the fitting value when varying the 184

stimulation inputs. When f i = f0, ∆f(i) = 0, which is the case in the central point of 185

robustness charts that we will discuss later (see Fig. 5 - Left and Fig. 6) 186

Robustness of the model is evaluated below in terms of the relative increments and 187

decrements of this value. Strong robustness is defined as the ability to maintain 188

∆f(i) > 0. Note that, here, the fitness function was used again to measure the distance 189

to target patterns, but no GA was employed. 190

3 Results 191

Three different configurations of the model were analyzed (see Table 2 and also B), first 192

the ad hoc tuned configuration (S-T) and the other two from GA-tuning of synaptic 193

parameters, one fitted to synthetic SPI patterns (S-GA) and the other one fitted to 194

reproduce SPI patterns recorded from Gnathonemus Petersii specimens (R-GA) (See 195

Fig. 2). Each configuration reproduced all four SPI patterns with a different level of 196

accuracy and robustness. A specific SPI pattern was evoked only due to changes in the 197

inputs (InVPd,InDP,InPCN in Fig. 1) without modifying any internal parameters. GA 198

configurations showed some shared characteristics between them when compared with 199

the S-T configuration, as the increases in the absolute value of the synaptic 200

conductances (gsyn). Note that some of these parameters noticeable change, this is the 201

case of the gsyn parameter for the EPCN synapsis (an increase of four times for S-GA 202

and five times R-GA from its initial value in S-T, as it can be seen in Table 2 and B). 203

These similarities are remarkable as network parameters are fitted to a different set of 204

samples of the same SPI patterns. Also remarkable is that S-GA showed similar α, β 205

and tmax parameters for both EDP and EPCN projections (Fig. B), which means that 206

the timing of the synapses is almost symmetrical for both excitatory pathways (Fig. 1). 207

Four different SPIs patterns were simulated (Fig. 4) using the three configurations of 208

the model: S-T, S-GA and R-GA. 209

Scallop simulations in both S-GA and R-GA showed the typical behavior associated 210

to this pattern (which is a sudden drop to short IPIs (around 40 ms) followed by an 211

almost immediate recovery). The shorter IPI reached in S-T was slightly faster (∼25 212

ms), although the burst duration in all the three configurations remained almost the 213

same. Both in S-GA and R-GA, scallop SPIs reached lower IPI duration than 214

accelerations, in accordance with the activity recorded from the fish. 215

In all the three configurations, accelerations (Fig. 4 - B) showed a series of almost 216

regular shorter IPIs. In S-T, short IPIs during acceleration were around 20 ms. In S-GA, 217

IPIs during acceleration were longer (around 60 ms. in S-GA and 85 ms in R-GA), 218

better complying with the accelerations from the fish (which are highly variable, but 219

consistently larger than 20 ms, and even larger in Gnathonemus Petersii recordings). It 220

is worth noting that, contrary to what happened in the initial S-T model, in both 221

GA-fitted configurations CN integrated several DP spikes before firing. Regarding IPIs 222

regularity during the acceleration, IPIs within SPI had approximately the same duration. 223

Both R-GA and S-GA configurations showed regularity in the sequence of short IPIs 224

that define acceleration, although in S-GA the starting IPI tended to be slightly shorter. 225

Regarding S-T results, scallop and rasp SPI patterns cannot be easily distinguished, 226

as both showed acceleration-like short regular IPIs (Fig. 4). The total SPI duration was 227

different for each pattern, but in S-T rasps and scallops lacked their own characteristic 228

internal structure. 229
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Table 2. Relevant synapse parameters of the GA adjusted to synthetic patterns
(S-GA) and GA adjusted to recorded Gnathonemus Petersii patterns (R-GA, see Fig. 2)
configurations of the model (threshold = 0; Esyn = −80; T = 1; see Eq. 4 and Eq. 5).

S-GA
Synapse α β gsyn tmax

IDP 9.05623 0.00272207 -0.1251 223.097
IPCN 7.50072 0.0270961 -0.27628 169.763
EDP 4.949 0.127261 0.179499 78.9001
EPCN 4.949 0.148451 0.259499 78.9001
ECDP 4.79499 0.00327418 0.705623 396.811

R-GA
Synapse α β gsyn tmax

IDP 0.537866 0.0052969 -0.165774 177.288
IPCN 5.94833 0.00129492 -0.307652 167.175
EDP 5.98168 0.120037 0.238086 9.51458
EPCN 5.02672 0.218571 0.199753 84.4537
ECDP 4.43346 0.0137051 0.647143 428.988

In S-GA and R-GA, rasps (Fig. 4 - C) showed an initial scallop-type decrease to 230

IPIs around 40 ms, followed by a sustained burst of regular short IPIs like in 231

accelerations. As mentioned before, in S-T the pattern was not fully identifiable. In 232

S-GA the IPIs were shorter, so the SPI was formed by a larger number of IPIs. Also, 233

the recovery to larger IPIs was more abrupt in this case. Again, in both GA-fitted 234

configurations, CN integrated several DP spikes in their IPIs. Conversely, PCN spiking 235

was tightly phase-locked with CN. 236
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Finally, cessations (Fig. 4 - D) showed the expected stop in the generation of pulses 237

during long time periods (of around 500 ms) in all three configurations. 238
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Figure 5. Left: Robustness analysis to input variability of the R-GA electromotor
model tuned to recorded Gnathonemus Petersii SPI patterns. The central point in the
left panel represents the reference fitness value, the one obtained simulating the model
under the predetermined simulation conditions (i.e., ∆Duration = 0 and ∆Intensity =
0). Duration and intensity of the step function current input was variated from -0.5 to
0.5 from their initial values and the relative change in the fitness value was calculated as
described by Eq. 9. White and lighter yellowish colors represent decreases in the fitness
value under variable stimulation. Orange colors represent an equivalent result to the
reference fitness value. Darker red colors represent an improvement in the fitness value.
Right: Representative example of distinct current inputs in the simulation at different
places of the chart.

Results for the robustness analysis to input variability of R-GA are depicted in Fig. 239

5 using a color representation of ∆f(i) as described by Eq. 9. Results did not show 240

relevant decreases in the fitting value for changes up to 50% in the intensity and 241

duration of the default simulation values. Conversely, they showed a limited increase of 242

the fitting value when slight decreases in duration were balanced with slight increases of 243

intensity and, similarly, when slight increases in duration were balanced with slight 244

decreases of intensity. 245

To discard overfitting to any of the SPI patterns, results of this analysis 246

disaggregated by pattern are also shown in Fig. 6 (rightmost column). No relevant 247

drops in the fitness results stands out in these panels for variations of up to 50% in the 248

intensity and duration of the predefined stimulation inputs. Quite the opposite, better 249

evaluation results (depicted in dark red) were usually obtained, for example, in R-GA 250

scallops, specially for increases in the input duration. For comparison, we also depict in 251

Fig. 6 the robustness results of the other two configurations of the model (those 252

adjusted to synthetic patterns: S-T, S-GA). S-T moderately improved the fitness results 253

in accelerations, and also in cessations when a increase in the duration of the inputs were 254

compensated with a decrease in the input duration. S-GA, in general, showed greater 255

robustness to input variability, maintaining or improving fitness in all SPI patterns. 256

In Fig. 7, IPI mean and standard deviation of each SPI pattern simulated during the 257

robustness analysis of the R-GA model are depicted. Line depicted in red is the mean 258

SPI of the several executions with variable inputs and the red shade represents the 259

standard deviation of the results. Finally, black line corresponds to the closer target 260

pattern used to calculate the fitness. The simulation of each SPI pattern were divided 261

in three partitions according to its fitting value: Worse fit than the one obtained with 262

default inputs (∆f < −100); similar fit (−100 < ∆f < 100) and worse fit (∆f > 100). 263
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4 Discussion and conclusions 264

Computational models have been previously used to answer different questions in the 265

study of electroreception and electrogenesis. Regarding electrogenesis, authors 266

in [24,27,31] used an anatomically detailed model of the pacemaker of Apteronotus 267

leptorhynchus to study the electric organ signal and its spatiotemporal features in 268

wave-type fish. In [30] a model for the Eigenmannia was employed to address the 269

jamming avoidance response in these fish. Electroreceptor models are of particular 270

interest as they have a relevant role in understanding the electrical sense, even in 271

non-electroactive species. On the other hand, bioinspired approaches intend to mimic 272

electrolocation by building robotic electrosensory systems at different abstraction levels. 273

Aiming to develop an underwater autonomous robot with electric sense, a robotic model 274

of the electric fish fins was developed to study fish manoeuvrability [28]. 275
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Figure 6. Deviation from the f0P (reference fitness value) of each model configuration (S-
T, S-GA and R-GA) modifying default current input intensity (In0

p(n)) from −0.5 · In0
p(n)

to 0.5 · In0
p(n) in steps of 0.05, and also modifying default current input duration (t0p(n))

from −0.5 · t0p(n) to 0.5 · t0p(n) using the same step. The color scheme is the same as the
one described in Fig 3. See Fig. 7 for a representation of the IPIs (mean and variance)
resulting from worse (light yellow), similar (orange) and better (dark red) fitness results
in R-GA.

Despite the variety of models regarding signal generation in weakly electric fish, the 276
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Figure 7. Mean and variance of simulated SPIs using the R-GA model under the
variated simulation conditions of the robustness analysis (see Fig. 6). As in the GA
fitness function, the duration of each simulation was normalized to 1000 arbitrary units
for representation, starting at its first IPI. Red line is the mean SPI from the executions
with variated inputs, red shade represents the standard deviation. Finally, the SPI
represented in black is the closer target pattern. Simulations of each SPI pattern were
divided in three partitions according to its fitting value: the ones that obtains better
fitting (upper row: ∆f < −100), those that obtains similar results to the reference
fitness value (center row: −100 < ∆f < 100) and the ones that yield worse fitting results
(bottom row: 100 < ∆f).

development of a computational model of the electromotor command network that can 277

produce the variability of SPIs observed in pulse mormyrids had not been attempted 278

until now. The model presented here assesses the relevance of different parameters in 279

the electromotor command network for reproducing as a whole the diverse temporal 280

structure of output patterns displayed by the living system. Our results suggest that 281

the diversity of SPIs shown by the system is only possible due to a dynamic balance of 282

intensity and timing between the synapses of the network triggered by input stimulation 283

without temporal structure. This highlighted the hypothesis that relevant synaptic 284

parameters (and not only the nucleus dynamics or the network topology) play an 285

important role for reproducing the whole set of SPIs observed in experimental data. 286

A multi-objective genetic algorithm (GA) was developed and applied to tune the 287

synaptic parameters of the model. GA optimization method allowed us to readily 288

obtain different parameter configurations which optimize the ability of the model to 289

reproduce all target patterns. Attending to the results, automatic synaptic parameter 290

optimization allowed to prove that it is possible to reproduce the four preselected SPI 291

patterns using the described topology. 292

Robustness results show that overfiting to the stimulation inputs was avoided. 293

Although there are considerable drops in fitness for certain combinations of inputs, the 294

general tendency was to maintain (and sometimes even improve) the performance of the 295

model under distinct stimulation (as shown in Fig. 5 and Fig. 6). S-GA and S-T 296

configurations showed a strong robustness to changes in the stimulation inputs (both in 297

terms of intensity and duration), which is coherent with the fact that synthetic target 298
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patterns showed less richness and thus were more easily reproduced. In R-GA, rasps 299

were the least robust SPI patterns, but even those with the worsts fitting results kept a 300

recognizable, though slightly flattened, rasp shape. These robustness results give credit 301

to the idea that SPI generation depends on which nucleus is activated and not so much 302

on the intensity or the duration of the inputs. 303

Regarding the resulting model configurations (described in B), they all indicate that 304

the corollary discharge must have a larger maximum release time than any other of the 305

synapses in the model. This characteristic is always present in all best individuals 306

obtained from the GA and is coherent with the idea that it might be an indirect 307

pathway. Also, the fact that S-GA showed similar α, β and tmax parameters for both 308

EDP and EPCN projections (see table 2) reinforces the hypothesis of synaptic intensity 309

being the decisive parameter in the elicitation of accelerations or scallops. Nevertheless, 310

the conductance ratio between these synapses is not the same in R-GA. It denotes that 311

the relation between synaptic strengths determines the output of the system in a 312

non-linear manner. 313

Its important to note that SPI patterns are generated over a background of ongoing 314

activity in the electromotor system. This activity is highly affected by noisy external 315

inputs. Although the resting rhythm of the system (IPIs ranging from ∼100-300 msec., 316

following a bimodal distribution) is easily reproduced by the model using biologically 317

plausible input values, an in-depth study of the baseline activity contribution to the 318

overall output (and how it affects SPI temporal structure) is yet to be done. 319

The implemented model and its computational efficiency also enables 320

closer-to-natural stimulation to perform more realistic closed-loop experiments with the 321

real system (as pulse-type mormyrids have been previously used in several closed-loop 322

studies where stimulation is guided by the fish own activity, like in [14,15,21]). In this 323

context, we can expect these experiments to benefit from a more realistic stimulator 324

based in the described model [21]. The model can also allow further studies of the 325

underlying mechanisms of electrocommunication, although the internal relationship 326

between fish skin electroreceptors and the electromotor system has yet to be further 327

studied. 328

All the software developed and used in the analysis presented here (the model, the 329

multi-objective GA used for parameter adjustment with the fitness function used to 330

represent and compare different sequences of temporal firing patterns and the 331

robustness analysis) is provided for future studies of this network and similar networks 332

of other animal models (see S7 supplementary material). These tools can deepen our 333

understanding about the role of the ensemble connectivity and the synaptic mechanisms 334

shaping functional neural temporal structures. 335
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A Target SPI patterns: synthetic and recorded 440

Synthetic SPI data was used for S-GA tuning to reflect the characteristic temporal 441

structure of reported behavioral SPI patterns [6, 11,26] as they are described in the 442

section Characteristic sequences of pulse interval (SPIs). Four different synthetic SPIs 443

were generated for each behavioral pattern (scallop, acceleration, rasp and cessation). 444

Figure 2 (bottom) shows only one set of the patterns. 445

Non-synthetic SPIs were recorded from three different freely-behaving Gnathonemus 446

Petersii specimens in a 80 l water tank, using four differential dipoles placed in the tank 447

forming 45º angles between them. The grounding electrode was also located in the 448

aquarium. The signal from the dipoles was amplified (TL082 JFET-Input Dual 449

Operational Amplifier), summed (LM741 Operational Amplifiers), squared (using 450

AD633 Analog Multiplier) and then digitized at 15 Khz by a DAQ board (NI PCI-6251, 451

National Instruments Corporation). 452

IPIs detection was performed using an spike detection algorithm as described in [21]. 453

Examples of SPI recorded from Gnathonemus Petersii specimens are depicted in Fig 2 454

(top). We selected from the Gnathonemus Petersii recordings those SPIs that most 455

closely resemble the temporal structure of SPI patterns reported in other mormyrid 456

species. The evolutionary approach used in this paper can be applied to reproduce 457

different sets of temporal SPIs given an adequate network topology. Permission of the 458

ethics committee of Universidad Autónoma de Madrid was obtained 459

(TIN2017-84452-R/CEI-88-1661). All experiments were noninvasive behavioral trials. 460

All animals behaved normally after the experiments. 461

B Model parameters 462

The electromotor system was modeled using four nuclei and five synapses. The nuclei 463

VPd, DP, PCN and CN were simulated using the neuron model developed by Izhikevich 464

(2003) [19], where a wide range of neuron dynamics can be evoked by selecting different 465

values of the parameters a, b, c and d [13]. These values were tuned ad hoc to reproduce 466

dynamics described by previous neurophysiological studies. The following firing regimes 467

were used: 468

• Low-threshold spiking (LTS): A type of low firing threshold activity tipically 469

observed inhibitory cortical cells. In this mode, a neuron can fire high-frequency 470

trains of spikes (burst) and it also shows frequency adaptation while the 471

stimulation is sustained (see table 2). The parameters of VPd in the model 472

correspond to this kind of behavior. 473

• Regular frequency spiking (RFS): This mode correspond to spike firing at a 474

regular frequency when stimulation amplitude is held constant (see table 2). It is 475

the firing regime in which DP operates. 476

• Regular Spiking (RS): This mode increases its regular firing frequency when 477

stimulated (see table 2). Adaptation to the stimulus results in a recovery from 478

short interspike intervals to the regular firing frequency. PCN follows this 479

behavior. 480

• Phasic Spiking (PS): This firing regime operates as an integrate-and-fire model, 481

although it fires only a single spike as a response to the input, and remain 482

quiescent afterwards. In the model, it is the firing regime used for CN. 483

Table 1 show the parameter values used in the electromotor model. Figures in table B.2 484

show the activity of the individual dynamics of all nucleus types considered in the 485

model. 486
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The synapses (IDP , IPCN , EDP , EPCN and ECDP ) were simulated using the model 487

described by [13]. The most relevant parameters of the model (α, β, gsyn and tmax) 488

were automatically adjusted to the target SPI patterns using the genetic algorithm (GA) 489

described in this paper. Table 2 showed the initial ad hoc tuned configuration (S-T). 490

B.1 Table. Neuron parameters of the model to reproduce the dynamics of the
electromotor nuclei as described by previous neurophysiological studies [6] (see Eq. 1,

Eq. 2 and Eq. 3).

Neuron Dynamics a b c d

VPd Low-threshold spiking (LTS) 0.02 0.25 -65 2
DP Regular frequency spiking (RFS) 0.1 0.26 -65 2
PCN Regular spiking (RS) 0.02 0.2 -65 8
CN Phasic spiking (PS) 0.02 0.25 -65 6

B.2 Table. Dynamic properties of the model nuclei chosen in this study to match
their biological counterparts. Values for the parameters of the model by [19] were tuned
to replicate the desired experimental dynamic (parameter values are detailed in B). Last

column shows the activity of each isolated nucleus model in response to an input
current step (Isyn(t) in Eq. 1).

Nucleus Desired dynamic Nucleus model response

VPd Low threshold
spiking V

o
lt
a
g
e

Time

PCN Frequency
adaptation V

o
lt
a
g
e

Time

DP Regular
frequency V

o
lt
a
g
e

Time

CN Integrate
and fire V

o
lt
a
g
e

Time
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B.3 Table. Relevant synapse parameters of the ad hoc tuning to synthetic patterns
(S-T) configuration of the model (threshold = 0; Esyn = −80; T = 1; see Eq. 4 and Eq.

5).

S-T
Synapse α β gsyn tmax

IDP 5 0.005 -0.12 160
IPCN 5 0.005 -0.15 160
EDP 5 0.1 0.1 30
EPCN 5 0.18 0.05 30
ECDP 5 0.02 0.3 400

C Simulation parameters 491

To simulate the electromotor command system, VPd, DP and PCN received external 492

currents, which represent inputs. These predefined values represent current inputs 493

received by the nuclei from other sources of the nervous system. The following tables 494

show the current input values for simulating scallops (C.4 Table), accelerations (C.5 495

Table), rasps (C.6 Table) and cessations (C.7 Table). The first row in each table 496

represents simulation time (in milliseconds), and subsequent rows represents neuron 497

current input for each nucleus model (VPd, DP, PCN) during this time. These inputs 498

were step functions used to simulate the SPIs shown in Fig. 4. Also, these are the 499

predefined simulation parameters for the GA evolution and the In0
p(n) robustness 500

analysis (center values in Fig. 5 and Fig. 6). 501

C.4 Table. Scallop simulation parameters. This SPI pattern is evoked by increasing
current input to PCN neuron. VPd input (-0.5 mA) and DP input (1.7 mA) are

constant in this pattern.

Time (ms) [0, 520] [520, 680] [680, 1200]

PCN input 6.5 14 6.5

C.5 Table. Acceleration simulation parameters. This SPI pattern is evoked by
increasing current input to DP neuron. VPd input (-0.5 mA) and PCN input (6.5 mA)

are constant in this pattern.

Time (ms) [0, 800] [800, 1200] [1200, 2000]

DP input 1.7 4 1.7
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C.6 Table. Rasp simulation parameters. This SPI pattern is evoked by increasing
current input to both DP and PCN neurons. VPd input (-0.5 mA) is constant in this

pattern.

Time (ms) [0, 500] [500, 580] [580, 830] [830, 1330]

DP input 1.7 4.5 4 1.7
PCN input 6.5 15 7 6.5

C.7 Table. Cessation simulation parameters. This SPI pattern is evoked by
increasing current input to VPd neuron. DP input (1.7 mA) and PCN input (6.5 mA)

are constant in this pattern.

Time (ms) [0, 250] [250, 650] [650, 1000]

VPd input -0.5 8 -0.5
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D Homogeneous phasic spiking neurons 502

In order to address the contribution of the ad-hoc tuned nuclei parameters to the overall 503

network output, all nuclei (VPd, DP, PCN, CN) were adjusted to homogeneous 504

parameters reproducing a phasic spiking behavior. GA was then applied to fit 505

synaptical parameters to both recorded and synthetic data. Fitting results (calculated 506

using the evaluation function) were consistently lower than those obtained in S-GA and 507

R-GA. The best result obtained is depicted in Fig. 1. In this case all SPI patterns were 508

still recognizable. This denotes that SPIs temporal structure is not directly determined 509

by the nuclei intrinsic characteristics. On the contrary, this reinforces the idea that it is 510

synaptic conductances in the mormyrids electromotor system which play a primary role 511

in the generation of the temporal structure of SPI patterns. 512
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Figure 1. Simulation of the four SPI patterns in the best fitting model using homoge-
neous nuclei parameters reproducing a phasic spiking behavior. The results are depicted
in two columns: the first one (left) shows SPIs resulting from the simulations and the
second one (right) shows the nuclei voltages (top) and synaptic currents (bottom).
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E No corollary discharge 513

In order to address how the presence of a corollary discharge pathway (CDP) 514

contributes to the variability of SPI patterns showed by the mormyrids electromotor 515

system, CDP synapse was removed from the original model. GA was then applied to fit 516

synaptical parameters (for the rest of synapses) to both recorded and synthetic data. 517

Fitting results calculated using the evaluation function were consistently lower than 518

those obtained in S-GA and R-GA. The best result obtained in our tests is depicted in 519

Fig. 1, where SPI patterns are not recognizable anymore. It is relevant to note that 520

cessation SPI pattern becomes not reproducible, even though the same current input 521

was applied to VPd (which provides inhibition to DP-PCN). 522
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Figure 1. Simulation of the four SPI patterns in the best fitting model without corollary
discharge pathway. The results are depicted in two columns: the first one (left) shows
SPIs resulting from the simulations and the second one (right) shows the nuclei voltages
(top) and synaptic currents (bottom).
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F No PCN pathway 523

In order to address how the topology of the model and, more especifically, the presence 524

of two different synaptical pathways affects the diversity of SPI patterns showed by the 525

mormyrids electromotor system, one of these two pathways was removed (more 526

precisely, the one corresponding to PCN nucleus). GA was then applied to fit synaptical 527

parameters (for the rest of synapses) to both recorded and synthetic data. The best 528

result obtained in our tests is depicted in Fig. 1, where SPI patterns are not 529

recognizable anymore. This reinforces the importance of the two synaptical pathways in 530

the topology of the model to reproduce the variability of SPIs showed by the 531

electromotor command network. 532
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Figure 1. Simulation of the four SPI patterns in the best fitting model without PCN
nucleus pathway. The results are depicted in two columns: the first one (left) shows
SPIs resulting from the simulations and the second one (right) shows the nuclei voltages
(top) and synaptic currents (bottom).
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G Source code 533

All the software used to develop and run the model, as well as the model itself, are 534

publicly available under an open-source license in a github repository1. 535

The repository includes C++ code needed to run the model, which makes use of 536

Neun dynamical-systems library2. The genetic algorithm applied to automatically tune 537

the parameters of the model, implemented using GAlib3, it is also provided. Some 538

examples of the recorded and synthetic patterns used as targets to tune the model are 539

also included. Finally, the repository also includes detailed instructions to compile and 540

use the software. 541

1https://github.com/GNB-UAM/electromotor-nmodel
2https://code.launchpad.net/∼elferdo/neun/trunk
3http://lancet.mit.edu/ga/
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