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Abstract

We study how recurrent neural networks (RNNs) solve a hierarchical inference task involving two
latent variables and disparate timescales separated by 1-2 orders of magnitude. The task is of interest to
the International Brain Laboratory, a global collaboration of experimental and theoretical neuroscientists
studying how the mammalian brain generates behavior. We make four discoveries. First, RNNs learn
behavior that is quantitatively similar to ideal Bayesian baselines. Second, RNNs perform inference by
learning a two-dimensional subspace defining beliefs about the latent variables. Third, the geometry of
RNN dynamics reflects an induced coupling between the two separate inference processes necessary to
solve the task. Fourth, we perform model compression through a novel form of knowledge distillation
on hidden representations – Representations and Dynamics Distillation (RADD)– to reduce the RNN
dynamics to a low-dimensional, highly interpretable model. This technique promises a useful tool for
interpretability of high dimensional nonlinear dynamical systems. Altogether, this work yields predictions
to guide exploration and analysis of mouse neural data and circuity.

1 Introduction
Decision making involves weighing mutually-exclusive options and choosing the best among them. Selecting
the optimal action requires integrating data over time and combining it with prior information in a Bayesian
sense. Here we seek to understand how RNNs perform hierarchical inference. For concreteness and for the
later goal of comparing against the mammalian brain, we consider a perceptual decision-making and change-
point detection task used by the International Brain Laboratory (IBL) [1], a collaboration of twenty-two
experimental and theoretical neuroscience laboratories. Optimally solving the IBL task requires using sensory
data to infer two latent variables, one cued and one uncued, over two timescales separated by 1-2 orders of
magnitude.

We address two questions. First, how do RNNs compare against normative Bayesian baselines on this
task, and second, what are the representations, dynamics and mechanisms RNNs employ to perform inference
in this task? These questions are of interest to both the neuroscience and the machine learning communities.
To neuroscience, RNNs are neurally-plausible mechanistic models that can serve as a good comparison with
animal behavior and neural data, as well as a source of scientific hypotheses [15, 16, 31, 5, 27, 10, 8]. To
machine learning, we build on prior work reverse engineering how RNNs solve tasks [30, 28, 16, 15, 3, 20, 14,
19], by studying a complicated task that nevertheless has exact Bayesian baselines for comparison, and by
contributing task-agnostic analysis techniques.

The IBL task is described in prior work [29], so we include only a brief summary here. On each trial, the
mouse is shown a (low or medium contrast) stimulus in its left or right visual fields and must indicate on which

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.09.142745doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.142745
http://creativecommons.org/licenses/by-nc-nd/4.0/


side it perceived the stimulus. Upon choosing the correct side, it receives a small reward. Over a number
of consecutive trials (a block), the stimulus has a higher probability of appearing on one side (left stimulus
probability ps, right stimulus probability 1− ps). In the next block, the stimulus side probabilities switch.
The change-points between blocks are not signaled to the mouse. This task involves multiple computations,
elements of which have been studied under various names including change-point detection [2, 22].

2 Methods

2.1 IBL task implementation
Each session consists of a variable number trials, indexed n. Each trial is part of a block, with blocks defining
the prior probability that a stimulus presented on the trail is shown on the left versus the right. The block
side on trial n, denoted bn ∈ {−1, 1} (-1: left, 1: right), is determined by a 2-state semi-Markov chain with a
symmetric transition matrix. The probability of remaining on the same block side as in the last trial is 1− pb;
the probability of switching block sides is pb. The process is semi-Markov because pb varies as a function of
the current block length (ln) to ensures a minimum block length of 20 and maximum block length of 100,
with otherwise geometrically distributed block lengths.

[
P (bn = 1)
P (bn = −1)

]
=

[
1− pb pb
pb 1− pb

] [
P (bn−1 = 1)
P (bn−1 = −1)

]
pb =


0 ln < 20

pb0 20 ≤ ln ≤ 100

1 100 < ln

The stimulus (sn ∈ {−1, 1}) presented on trial n is either a left or right stimulus, determined by a
Bernoulli process with a single fixed parameter ps, which gives the probability that the stimulus is on the
same side as the current block (termed a concordant trial). The probability of a discordant trial (stimulus on
opposite side of block) is 1− ps. In the IBL task, pb0 = 0.02 and ps = 0.8.

Neural time-constants (10-100 ms) are much shorter than the timescale of trials (∼ 1 s), so we model a
trial as itself consisting of multiple timesteps indexed by t. A trial terminates one timestep after the RNN
takes an action (explained in the next subsection) or after timing out at Tmax steps, whichever comes first.
At the start of the trial, the stimulus side sn and a stimulus contrast strength µn are sampled (Fig. 1).
Within a trial, on each step, the RNN receives three scalar inputs. On the first step, all three are 0. For
each subsequent step, the RNN receives two noisy observations oLn,t, oRn,t, sampled i.i.d. from two univariate
Gaussians with mean µn for the stimulus side and mean 0 for the other. The third input is a reinforcement
signal rn,t, which takes one of three possible values: a small waiting penalty (-0.05) in every timestep, a
reward (+1) if the correct action was taken on the previous step, or a punishment (-1) if the incorrect action
was taken on the previous step or the model timed out.

bn ∼ P (b|bn−1, pb(ln))

sn = bn|bn ∼ Bern(ps)

µn ∼ U([0, 0.5, 1.0, 1.5, 2.0, 2.5])

o Sn,t|µn ∼ N (µn, 1)

o∼Sn,t |µn ∼ N (0, 1)

bn

sn on,t

µn

T

N

Figure 1: Generative model of the IBL task. Block side bn is determined by a 2-state semi-Markov chain.
Stimulus side sn is either bn with probability ps or −bn with probability 1 − ps. Trial stimulus contrast
µn determines the observations on each timestep t within a trial: oSn,t for the stimulus side, o∼Sn,t for the
non-stimulus side.
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2.2 Recurrent network architecture and training

On each step, the observation on,t =
[
oLn,t oRn,t rn,t

]T is input to the RNN. Letting hn,t denote the RNN
state on the nth trial and the tth step within the trial, the state is defined by the typical dynamics

hn,t = tanh(W rechn,t−1 +W inon,t + brec)

an,t = softmax(W outhn,t + bout)

where an,t is a probability distribution over the two possible actions (left or right). An action is defined
by when the probability mass on either action exceeds a fixed threshold (0.9). We present RNNs with 50
hidden units, but the results are similar for other numbers of units (e.g. 100, 250). We train the RNN under
cross entropy loss using stochastic gradient descent with initial learning rate 0.001 and initial momentum =
0.1. RNN parameters were initialized using PyTorch defaults. PyTorch and NumPy random seeds were both
set to 1. Our code will be publicly available at https://github.com/int-brain-lab/ann-rnns.

2.3 Normative Bayesian baselines
The IBL task involves inference of two latent variables, the stimulus side and the block side. Exact inference
can be decomposed into two inference subproblems that occur over different timescales, which we term
stimulus side inference and block side inference:

P (sn|s<n, o≤n,≤T )︸ ︷︷ ︸
Current stimulus posterior

=
P (on,≤T |sn)

P (on,≤T )︸ ︷︷ ︸
Stimulus side inference

P (sn|s≤n−1, o≤n−1,≤T )︸ ︷︷ ︸
Block side inference

where ·≤m denotes all indices from 1 to m, inclusive. We consider two Bayesian baselines. The Bayesian
actor performs the task independently from the RNN, but using the same action rule (i.e. an action taken
when its stimulus posterior passes the action threshold). The Bayesian observer receives the same observations
as the RNN, but cannot decide when to act; the RNN therefore determines how long a trial lasts. The
Bayesian actor tells us what ceiling performance is, while the Bayesian observer tells us how well the RNN
could do given when the RNN chooses to act.

Other than this difference, the Bayesian actor and the Bayesian observer are identical. Both assume perfect
knowledge of the task structure and task parameters, and both are comprised of two separate submodels
performing inference. The first submodel performs stimulus side inference given the block side, while the
other submodel infers block changepoints given the history of true stimuli sides. True stimuli sides can be
determined after receiving feedback because the selected action and the ensuing feedback signal (correct or
wrong) together fully specify the true stimulus side.

Stimulus side inference occurs at the timescale of a single trial. Since observations within a trial are
sampled i.i.d., the observations are conditionally independent given the trial stimulus strength µn. The
likelihood is therefore:

P (on,≤T |sn) =
∑
µn

P (on,≤T |µn)P (µn|sn) =
∑
µn

( T∏
t=1

P (on,t|µn)
)
P (µn|sn)

Block side inference occurs at the timescale of blocks, based on knowledge of the history of true stimuli
sides. Our Bayesian baselines assume that the block transitions are Markov (instead of semi-Markov). Both
baselines perform Bayesian filtering [25] to compute the block side posterior by alternating between a joint
and a conditional, and normalizing after each trial:

P (bn, sn|s≤n−1) =
∑
bn−1

P (sn|bn)P (bn|bn−1)P (bn−1|s≤n−1)

P (bn|s≤n) =
P (bn, sn|s≤n−1)∑
bn
P (bn, sn|s≤n−1)
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3 Results

3.1 RNN Behavior
3.1.1 RNN behavior matches ideal Bayesian observer behavior

Figure 2: (a) RNN fraction of correct action almost matches Bayesian observer and Bayesian actor. (b) RNN
chronometric curves show longer integration time on low contrast trials. (c) Bayesian actor chronometric
curves show the actor responds significantly more slowly on low contrast trials than the RNN. RNN curves
from (b) have been added for comparison.

We start by quantifying the performance of the RNN. Strikingly, the RNN achieves performance nearly
matching the Bayesian observer (Fig. 2a); all three agents display similar accuracy as a function of trial
stimulus strength µn: the fraction of correct actions is highest for strong stimulus contrast and lowest for weak
stimulus contrast. Furthermore, the performance of all three agents is well above chance for zero-contrast
trials, meaning all three exploit the block structure of the task.

Chronometric curves, which quantify how quickly the agents select an action as a function of trial stimulus
strength, show that both the RNN and the Bayesian actor respond faster on concordant trials (when the
stimulus side matches the block side, a higher probability event) than discordant trials (Figs. 2ab). While
both the RNN and the Bayesian agents act more slowly for low trial stimulus contrast, the RNN acts
significantly faster than the Bayesian actor on trials with low trial stimulus strength (Figs. 2ab. This
suboptimal integration of within-trial evidence by the RNN partly explains its slightly worse performance
than the Bayesian actor.

3.1.2 RNN leverages block prior when selecting actions

Figure 3: (a) Psychometric curves for RNN and Bayesian actor closely match. Low stimulus contrast values
and discordant trial curves indicate the RNN disproportionally weights the likelihood. (b) RNN fraction of
correct trials rapidly increases following a block change-point, closely matching the Bayesian observer. (c)
The reward rate of the RNN nearly matches the reward rate of the Bayesian observer, but falls short of the
Bayesian actor.
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We next explored to what extent the RNN leverages the block prior to select actions. The RNN and
the Bayesian actor both perform much better on concordant trials than discordant trials (Fig. 3a), but the
discrepancy shrinks for large stimulus contrast values. Additionally, in both agents, the gap in stimulus side
inference for concordant versus discordant trials is greater for low-contrast trials than for high-contrast trials
(Fig. 3a), meaning that when the contrast strength is low, the prior dominates the likelihood, while at high
contrasts, the likelihood dominates the prior. The RNN’s behavior approaches that of the Bayesian actor,
suggesting that the RNN weighs the stimulus side likelihood with the block prior near-optimally.

There are, however, two small quantitative difference indicating the RNN underweighs the prior. First,
the concordant-discordant gap is smaller in the RNN than the Bayesian actor. Second, for zero-contrast
stimuli, the Bayesian actor’s accuracy directly reflects the block prior (0.2/0.8), while the RNN’s accuracy is
slightly contracted towards chance performance (.5/.5). This is likely not due to deficiencies with inferring the
block prior, as the RNN’s fraction of correct answers rapidly climbs following a block change-point (Fig. 3b),
closely matching the Bayesian observer and the Bayesian actor, and therefore indicating that change-point
detection in the RNN is near-optimal.

3.2 RNN Representations
3.2.1 RNN learns 2D dynamics to encode stimulus side and block side

Figure 4: (a) Logistic regression classifies block side from RNN activity with 82.6% accuracy on 33% test
data. The block readout and stimulus readout directions are non-orthogonal. (b-c) Example RNN state-space
trajectories in a left block and a right block. Color: trial number within block (blue=early, red=late). The
RNN activity moves quickly over the stimulus decision boundary and moves slowly along the block readout
direction.

We next sought to characterize how the RNN’s dynamics subserve inference. The first two principal
components (PCs) of RNN activity explain 88.74% of the variance, suggesting it has learnt a low-dimensional
solution. The RNN readout matrix W out converts the hidden states hn,t into actions an,t, explicitly giving
us the direction along which the RNN encodes its stimulus side belief; we term this the stimulus readout
vector. 93.39% of the stimulus readout’s length lies in the 2D PCA plane.

To identify how block side is encoded in RNN activity, we trained a logistic classifier to predict block
side. This classifier had 82.6% accuracy on 33% heldout test data. A separate classifier for block side trained
from only the 2-dimensional PCA plane of RNN activity reached 82.5% accuracy (Fig. 4a). In short, the
RNN’s PCA plane encompasses the two latent variables being inferred: these two dimensions are sufficient
to decipher how the network solves the task. Importantly, the (right-side) block and (right-side) stimulus
readouts are non-orthogonal (subtending an angle of 73◦ to each other in the high-dimensional RNN space,
and 68◦ in the PCA plane). This deviation from orthogonality is modest but critical to how the network
performs hierarchical inference (as we will explain below).

State-space trajectories (Fig. 4bc) in the PCA plane (trajectories indicate how the RNN state evolves
across trials in a block starting at a block change, showing a time-point per trial) show that the state jumps
across the stimulus decision boundary on the timescale of trials whereas state evolves slowly and relatively
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steadily along the block readout, moving from the wrong block side at the start of a block (encoding the
block just before the change-point) to the correct block side.

3.2.2 Observations are integrated to infer stimulus side and block side

Figure 5: (a-b) Observations push the RNN state along the right trial readout and right block readout
directions with two different amplitudes. (c) Instantaneous effects of observations are integrated along the
block readout direction to encode the block side.

Based on state-space trajectories, we hypothesized that the RNN infers both the stimulus side and block
side by integrating observations at different rates (faster for stimulus inference, slower for block inference).
We confirmed this by plotting the change of RNN state along the (right-side) stimulus and (right-side) block
directions, as a function of the difference in the right and left observation values dn,t = oRn,t − oLn,t (Fig. 5ab).
Both had positive slopes (0.84 for stimulus, 0.18 for block) with p < 1e− 5, confirming that evidence moves
the state appropriately along the stimulus readout and block readout vectors. The respective magnitude of
these two slopes (the stimulus slope is ≈ 5 times the block slope) match our expectation that stimulus side
inference changes more rapidly with observations than the block side.

These instantaneous effects are integrated to infer the block side. The component of RNN activity along
the right block readout vector closely matches the average block side posterior estimate of the Bayesian
observer (Fig. 5c), up to an arbitrary scaling parameter that we determined through an ordinary least squares
fit between the magnitude of the RNN state along the block readout vector and the Bayesian observer’s block
posterior (the actor is identical to the observer in tracking the block side). This result reveals how the RNN
performs efficient change-point detection of the block side.

However, when we compared the RNN’s block side belief with the Bayesian observer’s block posterior on
a trial-by-trial basis, we observed a difference: The RNN block side belief, though matching the observer
when averaged across trials, fluctuates more on a trial-by-trial basis (Fig. 6a). These fluctuations are driven
by within-trial evidence: single right- (left-) sided trials move the RNN’s block belief to the right (left)
more strongly than they move the Bayesian observer’s block posterior (Fig. 6b). This discrepancy is due to
an induced dynamical coupling in the RNN between stimulus and block inference. Specifically, the RNN
must update its block and stimulus beliefs simultaneously at each step and therefore cannot decouple the
two inference problems, whereas both baselines decouple the two inference problems by controlling when
information is communicated.

3.3 RNN Mechanism
3.3.1 RNN dynamics and connectivity are consistent with bistable/line-attractor dynamics

Given our hypotheses for how the dynamics of the RNN perform inference, we turned our attention to
identifying the circuit mechanism(s). Ordering the hidden units using hierarchical clustering with Pearson
correlation as the similarity metric revealed two clear subpopulations (Fig. 7a). Units in one subpopulation
are strongly correlated with other units in the same subpopulation and strongly anticorrelated with units in
the other subpopulation. Applying the same ordering to the recurrent weight matrix revealed self-excitation
within each subpopulation and mutual inhibition between subpopulations (Fig. 7b).
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Figure 6: (a) RNN activity magnitude along the block readout closely matches Bayesian observer’s block
posterior and the true block side. (b) Significant jumps in RNN activity magnitude along the block readout
correspond to trials with large jumps in evidence, given by oRn,t − oLn,t.

Figure 7: (a) Ordering RNN units based on Pearson correlation reveals two anticorrelated subpopulations.
(b) Applying the same correlation-based ordering reveals self-excitatory, mutually-inhibitory connections
between subpopulations. (c) RNN vector fields (evolving over one timestep) under six input conditions.

This is strongly reminiscent of circuits in the brain capable of producing 1-dimensional line-attractor
dynamics or bistable attractor dynamics, depending on the strength of the excitatory and inhibitory recurrent
connections [26, 18, 32, 17, 7, 23, 21]. Circuits with these dynamics have been studied in tasks involving a
single variable, but not in tasks involving two (interacting) variables. We now explain how the same circuit
can perform hierarchical inference on two latent variables.

Visualizing the RNN vector fields (Fig. 7c) better reveals the behavior of the system. When the stimulus
is strong, the network exhibits one of two attractors, in the right-block right-stimulus quadrant or in the
left-block left-stimulus quadrant. When the stimulus is absent and there is no feedback, the network exhibits
a 1-dimensional line attractor. The line attractor is mainly aligned with the block readout, which allows
the RNN to preserve its block side belief across trials. The persistent representation of the block side must
be continuous even though the block side itself takes one of two discrete values, because the block belief is
continuous-valued. The line attractor has a small projection along the stimulus readout, which translates the
block belief into a stimulus prior for the next trial by biasing the RNN to select the concordant stimulus side
in its decision.

Surprisingly, feedback about whether the selected action was correct has little effect (Fig. 7c). We
speculate this is because the RNN’s actions are typically correct, rendering feedback less useful, and because
combining feedback with the chosen action to determine the correct action requires more complex computation
that is harder to learn.
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3.3.2 Model compression by distillation of hidden unit representations

We would like to extract a low-dimensional, interpretable model of the RNN to reveal the RNN’s effective
circuit. To do so, we propose a variation of knowledge distillation [6, 4, 12] in which we train a small RNN with
output states ẑt to reproduce the hidden states of the original RNN. This differs from conventional distillation
in which the small network is trained on the output probabilities or logits of the original model (but a similar
technique was used in BERT Transformer networks for NLP [13, 11]). We call our approach Representation
and Dynamics Distillation (RADD). Specifically, we train the parameters A′, B′ of a small RNN to recapitulate
a low-dimensional projection of the original RNN’s hidden state dynamics ({zt ≡ Pht}Tt=1, starting from
initial condition ẑ1 = Ph1, where P is the M ×N -dimensional dimension-reducing projection matrix1. After
selecting a projection P , the distilled RNN is trained on the following L2 loss using conventional methods:

arg min
A′,B′

T∑
t=1

||zt − f(A′ẑt−1 +B′ot)||2.

3.3.3 Reduced model preserves RRN geometry and recovers meaningful parameters

The dynamics of the original RNN are well-captured by its first two principal components, suggesting that a
mere 2-unit distilled RNN might suffice to capture its dynamics. Indeed, a 2-unit distilled RNN (with rows
in P set to the block and trial side readout vectors; similar results are obtained with P set to the first two
principal components) emulates the original RNN well: The ∆-timestep decoherence in state is the same
across three systems, ||ht+∆−ht||, ||zt+∆− zt|| (Fig. 8a). States in the distilled RNN evolve in a qualitatively
similar way across the trial and block boundaries over multiple trials as the original RNN (Fig. 8b). Moreover,
depending on the magnitude of the distilled system’s readout vector (a free parameter), the distilled system
can slightly outperform the full RNN (distilled 86.87%, full 85.50%) on the task. The distilled 2-unit RNN
recognizes blocks in the same way as the original RNN, whereas a 2-unit RNN trained directly on the task
itself fails to recognize blocks (Fig. 8c) despite being trained for four times as many gradient steps.

Figure 8: (a) Distance decoheres at the same rate in the three state spaces: RNN, projected RNN, distilled
RNN. Projected RNN and distilled RNN have nearly identical values (horizontal displacement added to
make both visible). (b) Distilled RNN state space trajectories closely match projected RNN trajectories. (c)
Comparative performance of 50-unit original RNN, 2-unit distilled RNN, and 2-unit task-trained RNN.

The distilled RNN, whose units correspond to stimulus and block side beliefs, has sensible parameters:

ẑn,t =

[
Stimulus Beliefn,t
Block Beliefn,t

]
= tanh

([
0.54 0.31
0.19 0.84

]
ẑn,t−1 +

[
−0.19 0.20 0.005
−0.04 0.04 0.021

]oLn,toRn,t
rn,t

).
The recurrent weights show that the stimulus belief and block belief reinforce one another, and both decay

to 0 without input observations. The input weights show that observations drive the stimulus and block side
1We assume that the N-dimensional states of the original RNN lie in a D-dimensional linear subspace RD ⊂ RN . The

projection P can be selected such that D ≤ M ≤ N and such that its nullspace does not intersect this D-dimensional subspace.
A good choice for P are the top principal vectors of the original RNN states.
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beliefs in a common direction, but that the movement caused by a single observation is 5 times greater along
the stimulus direction than the block direction. The state space trajectories (Fig. 8b) visually agree with this
intuition: each left-to-right (stimulus side) movement corresponds to a small up-right (block side) movement.
Further, the feedback input receives negligible weighting, consistent with our earlier observation.

4 Discussion
In conclusion, RNNs attain near-optimal performance on a hierarchical inference task, as measured against
Bayesian observers and actors that have full knowledge of the task. We have characterized the representations,
dynamics, and mechanisms underlying inference in the RNN. In future work, we will leverage these models,
together with work being developed by others, to better understand mouse behavior and neural representations.
We expect it will be fruitful to explore RADD in the context of reinforcement learning [24, 9].
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5 Broader Impact
We appreciate NeurIPS asking researchers to evaluate the ethical dimensions of their work. We believe that
the bulk of this work, focused on understanding mechanisms of how neural networks solve basic inference
problems, does not have any direct or detrimental social ramifications. It is possible that RADD, as a
technique for more interpretable ANNs, could be used in other scenarios to better understand biases learned
in RNNs.
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