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ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic has affected African American populations disproportionately in regards
to both morbidity and mortality. A multitude of factors likely account for this discrepancy. Gene expression represents the
interaction of genetics and environment. To elucidate whether levels of expression of genes implicated in COVID-19 vary in
African Americans as compared to European Americans, we re-mine The Cancer Genome Atlas (TCGA) and Genotype-Tissue
Expression (GTEx) RNA-Seq data. Multiple genes integral to infection, inflammation and immunity are differentially regulated
across the two populations. Most notably, F8A2 and F8A3, which encode the HAP40 protein that mediates early endosome
movement in Huntington’s Disease, are more highly expressed by up to 24-fold in African Americans. Such differences in
gene expression can establish prognostic signatures and have critical implications for precision treatment of diseases such as
COVID-19. We advocate routine inclusion of information such as postal code, education level, and profession (as a proxies
for socioeconomic condition) and race in the metadata about each individual sampled for sequencing studies. This relatively
simple change would enable large-scale data-driven approaches to dissect relationships among race, socio-economic factors,
and disease.

Introduction
As of June 1, 2020, the COVID-19 pandemic has infected over 6.3 million people and killed over 370,000 worldwide
(https://coronavirus.jhu.edu/map.html). Its causative agent, the novel SARS-CoV-2, is an enveloped single stranded RNA virus
that infects tissues including lung alveoli1, 2, renal tubules3, 4, the central nervous system5, ileum, colon and tonsils6–8, and
myocardium9, 10.

The complex combinations of symptoms and disease caused by SARS-CoV-2 include fever, cough, fatigue, dyspnea,
diarrhea, stroke, acute respiratory failure, renal failure, cardiac failure, potentially leading to death9, 11–14. Symptoms are
induced by direct cellular infection and proinflammatory repercussions from infection in other regions of the body13–15. A body
of evidence indicates that long-term health implications can follow SARS-CoV-2 infection16, 17. The attributes of the human
host that impact COVID-19 morbidity and mortality are not well understood6, 13, 14, 18–23.

Risk factors for complications of COVID-19 include 65+ years, obesity, and comorbidities such as diabetes, hypertension
and heart disease24. Heritable factors in the human host influence COVID-19 symptoms25. However, to date, only a few of the
genetic determinants of COVID-19 severity have been even partially elucidated. Genetic variants of Angiotensin-Converting
Enzyme2 (ACE2), the major human host receptor for the SARS-CoV-2 spike protein, may be linked to increased infection
by COVID-1926–29. Human Leukocyte Antigen (HLA) gene alleles have been associated with susceptibility to diabetes and
SARS-CoV-230. The genetic propensity in southern European populations for mutations in the pyrin-encoding Mediterranean
Fever gene (MEFV) may elevate levels of pro-inflammatory molecules, leading to a cytokine storm31 and greater severity of
COVID-1932–35. Identifying those individuals most at-risk for severe COVID-19 infection, and determining the molecular and
physiological basis for this risk, would enable more informed public health decisions and interventions.

COVID-19 cases and deaths are disproportionately higher among African Americans. One cause of this disparity are
complex socio-economic factors15, 36, 37. A number of studies have shown differences in genes expression among races38–41.
Gene expression reflects the interaction between environmental, physiological, and genetic influences. This study specifically
investigates whether the expression of genes that are implicated in the severity of COVID-19 infection varies with race.
Understanding differences in expression at the population level could help predict risk factors and identify more personalized,
treatments for COVID-19.

Here, we re-mine existing RNA-Seq data and reveal significant differences in expression between European Americans
and African American of multiple genes potentially involved in COVID-19-associated inflammation and immunomodulatory
reponse.
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Results

We evaluated differential expression by re-mining an aggregated dataset of 7,142 RNA-Seq samples42 modified from the
normalized and batch-corrected data from the GTEx and TCGA projects43. The Genotype-Tissue Expression (GTEx) project
provides data representing “non-diseased” conditions from diverse tissues. The well-curated TCGA project is the largest project
available with easily accessible metadata on the races of the individuals who contributed samples representing diseased tissues
(tumors) of multiple origins. These large data provide a unique opportunity to evaluate differences in gene expression across
populations in multiple tissues in diseased and normal states.

Re-mining existing RNA-Seq data and metadata has several caveats. Because race assignments are self-reported, many
of the individuals sampled will be from admixed populations41, 44. We are terming those self-reporting as “Black or African
American” as “African Americans” and “White” as “European Americans”. The ancestry of the preponderance of African
Americans is Western Africa44, thus our results for African Americans would mostly reflect more specifically Western Africans.
Those self-reporting as White are presumed to be predominantly European Americans, but this group also would include
individuals of other populations, including Indians and admixed Hispanic individuals, depending on how these individuals
chose to self-report.

Also, we were limited to comparison of differences between gene expression in African American and European American
populations, because even in these large studies, the sample numbers for the other three major population groups (Asian, Native
American, and Pacific Islanders)45 were too low for robust statistical assessment. Even between these two populations, not all
conditions (cancers or “non-diseased” tissues) had sufficient samplings of African Americans for robust statistical assessment
(Table 1; Supplementary Table S1).

Finally, although the GTEx project analyzes non-diseased tissues, many of the individuals who donated tissues were
severely ill or postmortem from varied causes, which would likely effect gene expression in these tissues.

We analyzed the data and metadata with MetaOmGraph (MOG), software that supports interactive exploratory analysis of
large, aggregated data42. Exploratory data analysis uses statistical and graphical methods to gain insight into data by revealing
complex associations, patterns or anomalies within that data at different resolutions46.

Differentially expressed (DE) genes among samples from European Americans and African Americans were identified in a
tumor-specific or tissue-specific manner using MOG (Mann-Whitney U test). Of the tumor types in the TCGA data, BRCA,
COAD, KIRC, KIRP, LUAD, LUSC, THCA, and UCEC had sufficient numbers of samples for DE analysis (Table 1). GTEx
normal tissues analyzed were: breast, colon, esophagus, lung, liver, prostate, stomach, thyroid, and uterus (Table 1). We define
a gene as DE between two groups if it meets each of the following criteria:

1. Estimated fold-change in expression of 2-fold or more (log fold change, |logFC| ě 1 where logFC is calculated as in
limma47.)

2. Mann-–Whitney U test is significant between the two groups (BH corrected p-value ă 0.05)

Supplementary Tables S2-S25 contains the full list of DE genes between African American and European American populations
for each condition. The numbers of DE genes vary depending on the condition the samples were obtained from. Many genes
follow a similar DE trend in diseased as in non-diseased tissues, however, in each case, the fold-change difference of expression
among the DE genes was larger in the cancers than in the corresponding non-diseased tissues.

We investigate the distribution of the gene expression values with two additional statistical analyses. We performed the two-
sample Kolmogorov–Smirnov test (KS test) to assess whether there is a significant difference in distribution of gene expression
between African Americans and European Americans. Hartigans’ dip test was used to test whether a given distribution shows
bi or multi-modality. Bi- or multi-modal distributions indicate there may be hidden or unknown covariates affecting the gene
expression. Within a race, this could imply presence of sub-population structure. These analyses indicate the not only are genes
differentially expressed between the two populations, but the overall distribution in expression values often differed between
the populations, for an obvious example, GSTM1 expression in KIRC (Figure 4. Also, in many cases, one or both populations
have a bimodal distribution, for example, GSTM1 expression in BRCA has a bimdodal distribution in European Americans but
not in African Americans (Figure 4).

GO terms related to the biological processes of infection, inflammation and immunity are overrepresented among the genes
differentially expressed between African Americans and European Americans. Table 2 lists these GO terms. Supplementary
Table S29 provides the overrepresented Gene Ontology (GO) terms among DE genes for each diseased or non-diseased tissue.

We drew from in silico studies48 and experimental analyses especially human responses to infection by SARS-CoV-2
and other coronaviruses49–52 to identify ten genes implicated in cellular responses to SARS-CoV-2 infection that are among
those differentially expressed in African American and European American populations. Molecular functions of these genes
include receptor kinases, cytokines, other signal transduction molecules, and antioxidants. These genes are integral to central
cellular processes that affect pathogenesis by SARS-CoV-2, including endosomal development, autophagy, immunity and
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Project Condition #AA #EA #Upregulated #Downregulated
TCGA Breast invasive carcinoma (BRCA) 142 674 83 164
TCGA Colon adenocarcinoma (COAD) 54 188 30 21
TCGA Kidney renal clear cell carcinoma (KIRC) 46 410 68 94
TCGA Kidney renal papillary cell carcinoma (KIRP) 49 166 19 13
TCGA Lung adenocarcinoma (LUAD) 48 368 16 5
TCGA Lung squamous cell carcinoma (LUSC) 28 337 2 0
TCGA Thyroid carcinoma (THCA) 25 292 3 3
TCGA Uterine Corpus Endometrial Carcinoma (UCEC) 54 70 28 5
GTEx Breast 12 75 0 0
GTEx Colon 41 292 13 9
GTEx Esophagus 80 564 19 11
GTEx Liver 15 97 0 0
GTEx Lung 39 269 45 20
GTEx Prostate 13 89 0 0
GTEx Stomach 29 159 4 6
GTEx Thyroid 43 267 25 30
GTEx Uterus 13 68 0 0

Table 1. Number of DE genes in African Americans compared to European Americans in eight cancer types and nine
non-diseased tissue types. Criteria for DE, ą2-fold difference in expression, Mann-–Whitney U test is significant with
BH-corrected p-value ă 0.05.

Tissue GO Term Fold Enrichment FDR
COAD humoral immune response 17 0.003
KIRC positive regulation of fibrinolysis 76 0.001
LUSC immune response mediated by microbial peptide 11 0.04
THCA regulation of T-Cell migration 23 0.03
THCA killing of cells of other organisms 14 0.03
THCA antimicrobial humoral response 10 0.03
THCA receptor-mediated endocytosis 8 0.06
Lung glutathione derivative biosynthasis) 71 0.001
Esophagus cellular detoxification of nitrogen) >100 0.04

Table 2. GO terms related to infection, inflammation and immunity that are most enriched among genes that are DE
in African Americans compared to European Americans in cancers and non-diseased tissue types.
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Figure 1. Expression of the IL6ST interleukin signal transducer gene in African Americans and European Americans across
eight cancer conditions. Violin plots summarizing the expression over each tumor sample in the two populations. AA, African
American; EA, European American. Horizontal lines represent mean log expression. ˚, Hartigans’ dip test significant (p-value
ă 0.05); ˚, KS test significant (p-value ă 0.05); ˚, Mann-–Whitney U test significant (BH corrected p-value ă 0.05).

inflammation6, 51, 53. Molecular functions of these genes include receptor kinases, cytokines, other signal transduction molecules,
and antioxidants.

Cytokines and the storm
A number of genes of the immune response are differentially expressed between African American and European American
populations. Expression of IL6ST, a component of the cytokine receptor complex that acts as signal transducer for cytokine
interleukins IL6 and IL7, is 2-fold lower in African Americans than European Americans in BRCA (Figure 1).

Circulating chemokines CXCL9 and CXCL10 are also differentially expressed in African Americans as compared to
European Americans in several cancers. CXCL9 expression is 2-fold greater in KIRP and over 2-fold lower in COAD and
KIRC; CXCL10 expression is 1.5-fold higher in BRCA, and over 2-fold lower in COAD, KIRC and TCHA (Figure 2).

The small inducible chemokine CCL3L3 is upregulated in African Americans by 2-to 3-fold in BRCA, COAD, and KIRP
(Figure 3) and in several non-diseased tissues (Supplementary Table S16-S25).

Carcinoembryonic Antigen-related Cell Adhesion Molecules CEACAM5 and CEACAM6 are both downregulated 2 to
3-fold in BRCA in African Americans. (Supplementary Table 2).

Reactive Oxygen Species
Expression of GSTM1, a key enzyme involved in oxidative stress, differs between African Americans and European Americans.
Expression is up to to 6-fold higher in African Americans in the cancers we evaluated (Figure 4). Distribution of expression in
European Americans, but not African Americans is bimodal. GSTM1 expression is also DE in non-diseased esophagus and
thyroid gland (Supplementary Table S18, S24).

F8As, endocytosis, and autophagy
Endocytosis and autophagy are intimately interrelated with Covid-1954. One little-studied player implicated in early endosome
motility55 and hence the endocytotic pathway and autophagy, is the seven tetratricopeptide-like repeat F8A/HAP40 (HAP40)
protein56. In human genomes, three genes, F8A1, F8A2, and F8A3, encode the HAP40 protein56. The F8A genes are located
on the X chromosome. F8A1 is within intron 22 of the coagulation factor VIII gene, which has a high frequency of mutations57;
F8A2, and F8A3 are located further upstream.

F8A1, F8A2 and F8A3 are each differentially expressed in African Americans versus European Americans. F8A1 is more
highly expressed by about 2-fold in European Americans in every cancer analyzed (Figure 5) and by 2-fold in non-tumor colon
(Supplementary Table S17). Conversely, F8A2 and F8A3 are more highly expressed in African Americans in all cancer types.
Expression of F8A2 in African Americans is up to 24-fold greater; expression of F8A3 is up to 6.6-fold greater. In LUSC,
F8A2 and F8A3 are the only DE genes (Supplementary Table S7). F8A2 and F8A3 follow a similar trend in non-diseased
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Figure 2. Expression of the CXCL9 and CXCL10 circulating chemokine genes in African Americans and European
Americans across eight cancer conditions. Violin plots summarize the expression over each tumor sample in the two
populations. AA, African American; EA, European American. Horizontal lines represent mean log expression. ˚, Hartigans’
dip test significant (p-value ă 0.05); ˚, KS test significant (p-value ă 0.05); ˚, Mann-–Whitney U test significant (BH
corrected p-value ă 0.05).
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Figure 3. Expression of the CCL3L3 chemokine gene in African Americans and European Americans across eight cancer
conditions. AA, African American; EA, European American. Horizontal lines represent mean log expression. ˚, Hartigans’
dip test significant (p-value ă 0.05); ˚, KS test significant (p-value ă 0.05); ˚, Mann-–Whitney U test significant (BH
corrected p-value ă 0.05).

Figure 4. Expression of the mitochondrial glutathione-S-transferase gene, GSTM1 in African Americans and European
Americans across eight cancer conditions. GSTM1 is a key player in metabolism of ROS. Violin plots summarize GSTM1
expression over each tumor sample in the two populations. AA, African American; EA, European American. Horizontal lines
represent mean log expression. ˚, Hartigans’ dip test significant (p-value ă 0.05); ˚, KS test significant (p-value ă 0.05); ˚,
Mann-–Whitney U test significant (BH corrected p-value ă 0.05).
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tissues, being more highly expressed in African Americans by up to 4-fold in colon, esophagus, and thyroid (Supplementary
Table S17-S18). Distribution of F8A2 and F8A3 expression is bimodal in European Americans for most cancers. Thus, part of
the difference in levels of F8A2 and F8A3 expression between the two populations is due to their distribution, with low levels
of expression in a subset of the European American population.

Because of the paucity of literature on HAP4058 and because, to our knowledge, the relationships among F8A1, F8A2, and
F8A3 genes have not been described, we investigated further the sequences, sequence variants, and the expression patterns of
these genes.

The sequences of the HAP40 proteins of F8A1, F8A2, and F8A3 are identical to each other in human reference genome
GRCh38.p13 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39). Allele variants of HAP40
proteins encoded by F8A1, F8A2, and F8A3 were mined from The Genome Aggregation Database (gnomAD)59, a open
database, which contains sequences of over 140,000 exomes and genomes from individuals of diverse populations as categorized
by clustering of genetic features (rather than being self-reported). Individuals are assigned to one of the five major populations
and to sub-populations within these. The search of gnomAD identified no variants in the HAP40s encoded by F8A2 or F8A3,
and a single very rare variant (<1/1000) of F8A1 found only in European (non-Finnish) populations. The variant encodes a
missense mutation (https://gnomad.broadinstitute.org/gene/ENSG00000197932?dataset=gnomad_
r2_1). No structural variants were identified for HAP40 of F8A1 or F8A3; F8A2 has a rare duplication of 54 aa.

To our knowledge, F8A2 and F8A3 gene expression has not been described. We analyzed coexpression of the three F8A
genes in the context of the other 18,212 genes represented in the full TCGA-GTEx dataset, using the “Pearson correlation”
function in MOG. Although the F8A genes are proximately located on the X chromosome, the genes are not highly coexpressed
with each other (|Pearson Corr.| ă 0.46). Furthermore, no F8A gene is coexpressed with any other of the 18,212 genes
represented in the dataset (|Pearson Corr.| ă 0.46) (Supplementary Table S30). Of the 18,212 genes, the expression of F8A1 is
most negatively (anti-) correlated with those of F8A2 and F8A3, with Pearson Correlations of ´0.45 and ´0.24, respectively
(Supplementary Table S30). Mutual information (MI) can detect linear as well as complex non-linear associations, whereas
Pearson’s correlation measure quantifies linear dependencies. Using the MI function in MOG, we found that F8A2 and F8A3
genes are most associated with F8A1 (Supplementary Table S30), indicating that there may be a negative interaction among
these genes.

Discussion

Genetics of human populations contribute to the propensity and severity of diseases37, 39, 41, 41, 45, 60–65. Sometimes the contri-
bution is straightforward; a single allele variation found in Ashkenazi Jews, causes the vast majority of Tay-Sachs disease66.
Sometimes it is more complex; for example, hypertension, which more prevalent in African American than European American
populations60 in part due to detrimental APOL1 mutations that are more frequent in West African populations62. Despite the
paucity of studies focused on Western African populations, the propensity and severity of several other diseases among this
population have been attributed to genetics41, 62, 67.

The individual’s immune system is key to fighting viral infections. However, conversely, many COVID-19 deaths have been
attributed to a cyclic over-excitement of the innate immune system. This latter process, often termed a cytokine storm, results in
a massive production of cytokines and the body attacking itself, rather than specifically destroying the pathogen-containing
cells14. Thus, people with comorbidities, the elderly, and immunosuppressed individuals, may be at a greater risk for COVID-19
morbidity and mortality because they may not respond to infection with sufficient immune response50 and/or because they
may be more likely to develop a cytokine storm14. We focused on ten genes that are differentially expressed between African
Americans and European Americans are implicated in these biological processes.

The most dramatic differences in gene expression were in expression of the F8A genes, F8A1 being upregulated in European
Americans, and F8A2 and F8A3 being upregulated in African Americans. Each F8A gene encodes an identical HAP40 protein.
F8A1, F8A2 and F8A3 genes each have a very distinct pattern of expression across the thousands of samples of tissues and
cancers in the TCGA/GTEx dataset.

HAP40 function has been researched only in the context of its critical role in early endosome maturation in Huntington’s
disease56. In Huntington’s, HAP40 forms a bridge between the huntingtin protein and the regulatory small guanosine
triphosphatase, RAB5; formation of this complex reduces endosomal motility by shifting endosomal trafficking from the
microtubule to the actin cytoskeleton55. High F8A1 expression has been reported in several conditions: Huntington’s68; a SNP
variant for type 1 diabetes risk69; cytotrophoblast-enriched placental tissues from women with severe preeclampsia70; and
mesenchymal bone marrow cells as women age71. Although its non-disease biology has been little explored, because of its role
in early endosome motility in Huntington’s, HAP40 is considered a potential molecular target in therapy of autophagy-related
disorders72.

Endosome motility and development play an important but complex role in the innate immune response, which can either
promote or hinder the battle between SARS-CoV-2 and its human host51, 54, 73, 74. Coronaviruses including SARS-CoV-2
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Figure 5. Expression of the HAP40 putative early endosome trafficking genes: F8A1, F8A2 and F8A3 in African Americans
and European Americans across eight cancer conditions. Although the function of HAP40 has not been investigated in normal
individuals, this protein is a key component of Huntington’s Disease; in Huntington’s, HAP40 shifts endosomal trafficking
from the microtubules to actin55. Violin plots summarize the expression over each tumor sample in the two populations. AA,
African American; EA, European American. Horizontal lines represent mean log expression. ˚, Hartigans’ dip test significant
(p-value ă 0.05); ˚, KS test significant (p-value ă 0.05); ˚, Mann-–Whitney U test significant (BH corrected p-value ă 0.05).
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mainly enter host cells via binding to the ACE2 receptor followed by endocytosis20, 29, 51. Nascent early endosomes are moved
along the microtubule cytoskeleton, fusing with other vesicles; varied molecules can be incorporated into the membrane
or the interior51, 54, 73, 74. This regulated development enables diverse fates. For example, in the context of SARS-CoV-2,
endosomes might release viral RNA or particles; they might merge with lysosomes and digest their viral cargo; or might
fuse with autophagosomes (autophagy) and subsequently with lysosomes that digest the cargo51, 54, 73, 74. SARS-CoV-2 might
reprogram cellular metabolism, suppressing autophagy and promoting viral replication,75. The cell might modify autophagy
machinery to decorate viral invaders with ubiquitin for eventual destruction, activate the immune system by displaying parts of
the virus, or catabolize excess pro-cytokines. Autophagy might induce cytokine signaling, which could promote protective
immune response or engender a destructive storm of cytokines, inflammation and tissue damage54.

Cytokines and other immunomodulatory molecules, including CCL3L3, CXCL9, CXCL10, CEACAM5 and CEACAM6,
were differentially expressed between African Americans and European Americans. CCL3L3 is a member of the functionally-
diverse C-C motif chemokine family. It encodes CCL3, which acts as ligand for CCR1, CCR3 and CCR5 recruits and
activates granulocytes; it also inhibits HIV-1-infection76. CCL3L3 is upregulated in younger and impoverished white males77.
Circulating chemokines CXCL9 and CXCL10 initiate human defenses, and potentially instigate autoimmune and inflammatory
diseases, by activating G protein-coupled receptor CXCR378–80. CEACAM5 and CEACAM6 are members of the C-Type Lectin
Domain Family. This gene family encodes a diverse group of calcium (Ca2+)-dependent carbohydrate binding proteins, several
of which, including CEACAM5 and CEACAM6 have been implicated as having specific cell adhesion, pathogen-binding and
immunomodulatory functions81. CEACAM5, a driver of breast cancer82 and modulator of inflammation in Crohns Disease83,
and CEACAM6, an inhibitor of breast cancer when coexpressed with CEACAM884, are both downregulated 2 to 3-fold in
BRCA in African Americans.

Reactive Oxygen Species (ROS) generated in the mitochondria promote the expression of proinflammatory cytokines and
chemokines, thus playing a key role in modulating innate immune responses against RNA viruses85–89. Mitochondrially-targeted
glutathione S-transferase, GSTM1, which was more highly expressed in African Americans than European Americans, is a
key enzyme in the metabolism of ROS, as well as xenobiotics including pharmaceuticals88. GSTM1 is induced by nuclear
factor erythroid 2-related factor 2 (Nrf2), a transcription factor that integrates cellular stress signals90–93. Low expression of
GSTM1 can lead to increased mitochondrial ROS, which may ultimately result in a cytokine storm that triggers inflammation
and/or autoimmune disease. Conversely, if GSTM1 is too highly expressed, pharmaceuticals may be metabolized and thus
rendered inactive, and ROS may be metabolized too rapidly to maintain a sufficient signaling role in the immune system. Allele
frequencies of GSTM1 vary among Asian, African and European populations94; the biological significance of these alleles is
being investigated95, 96.

CEACAM5 and CEACAM6, both downregulated 2 to 3-fold in BRCA in African Americans, are members of the C-Type
Lectin Domain Family. This gene family encodes a diverse group of calcium (Ca2+)-dependent carbohydrate binding proteins;
CEACAM5 and CEACAM6 have been implicated as having specific cell adhesion, pathogen-binding and immunomodulatory
functions81. CEACAM5 is a driver of breast cancer82 and modulator of inflammation in Crohns Disease83, and CEACAM6 is
an inhibitor of breast cancer when coexpressed with CEACAM884.

By revealing differential expression of genes implicated in COVID-19 morbidity and mortality between African Americans
and European Americans, we emphasize the importance of integrating gene expression data into the mix of factors considered
in studying this pandemic. Our study indicates that, under both diseased and non-diseased conditions, many genes involved in
infection, inflammation, or immunity are differentially expressed between African Americans and European Americans. One
contributing explanation of the finding that disease-related genes are overrepresented among DE genes is that the selection
pressure due to disease is very strong on both (ancestral) regions, but these regions have very different complements of
pathogens. Humans living in Europe and those living in Western Africa would have had to evolve the ability to resist the
prevalent local pathogens.

Archived expression data has tremendous value. However, studies such as this one are hampered by several factors. For exam-
ple, obtaining adequate sample sizes for statistical analysis of populations is very important but difficult or expensive to address.
Ethnic bias and practical factors (such as subject availability) often result in insufficient numbers of subjects from many popula-
tions to be represented in medical studies; this lack of representation prevents the development of precise prognosis or therapy
based on genetics39, 97. Similarly, diverse socioeconomic contexts may not be well represented among the individuals sampled.
Yet these are clearly a factor in disease98. The statistical predictor provided for the U.S. by the Robert Wood Johnson Foun-
dation (https://www.rwjf.org/en/library/interactives/whereyouliveaffectshowlongyoulive.
html) reflects the concept that "your zip code can be greater than your genetic code" (although unfortunately there is no
accompanying genetic information).

Another factor that would greatly increase the utility of archived expression data is improving and extending the metadata
for all (future) studies; this would be relatively simple to implement. Well-constructed metadata is key to the usefulness of data.
Among the vast body of human RNA-Seq data being deposited, fields for age and gender are typically represented and available

9/14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.09.143271doi: bioRxiv preprint 

https://www.rwjf.org/en/library/interactives/whereyouliveaffectshowlongyoulive.html
https://www.rwjf.org/en/library/interactives/whereyouliveaffectshowlongyoulive.html
https://doi.org/10.1101/2020.06.09.143271


in the metadata. However, except in specialized studies, metadata on the race and ethnic heritage of the sampled individuals are
often not included, or are very difficult to access. The same is even more true of fields that would provide socio-economic
information, such as postal code or risk factors such as occupation. Because of the absence of socioeconomic metadata, even in
GTEx and TCGA, the arguably most comprehensive RNA-Seq datasets to date, we were unable to distinguish genetic effects
from environmental causes of the differences in gene expression. Without routine inclusion of diverse metadata for human
’omics samples, data re-mining is hampered, and important information is lost.

Conclusion
Multiple genes implicated in COVID-19 are differentially expressed in African American and European American populations.
The differential expression is evident despite the fact that race is self-reported in and metadata, and that many Americans are
racially admixed41.

Gene expression represents the interaction of genetic and environmental factors. Routine inclusion of information on
ethnicity, race, postal code (as a proxy for socioeconomic condition), and profession in the metadata for each individual sampled
would empower large-scale data-driven approaches to dissect the relationships between race, socio-economic factors, and
disease.

By highlighting the wide-ranging differences in expression of several disease-related genes across populations, we
emphasize the importance of harvesting this information for medicine. Such research will establish prognostic signatures with
vast implications for precision treatment of diseases such as COVID-19.

Methods
The MOG tool was used to interactively explore, visualize and perform differential expression and correlation analysis of genes.
We downloaded the precompiled MOG project http://metnetweb.gdcb.iastate.edu/MetNet_MetaOmGraph.
htm42, created using the data processed by Wang et. al., in which expression values have been normalized and batch corrected
to enable comparison across samples43. This MOG_HumanCancerRNASeqProject contains expression values for 18,212 genes,
30 fields of metadata detailing each gene, across 7,142 samples representing 14 different cancer types and associated non-tumor
tissues (TCGA and GTEX samples) integrated with 23 fields of metadata describing each study and sample.

Since the data was normalized and batch corrected, we used Mann-Whitney U test, a non-parametric test, to identify
differentially expressed genes between two groups. An R script was written to perform KS and dip tests, and create the violin
plots and executed via MOG interactively.

Pearson correlation values were computed, after data was log2 transformed within MOG, in MOG’s statistical analysis
module.

Information on how to reproduce the results are available at https://github.com/urmi-21/COVID-DEA.

Data availability

We subscribe to FAIR data and software practices99. MOG is free and open source software published under the MIT
License. MOG software, user guide, and the MOG_HumanCancerRNASeqProject project datasets and metadata described in
this article are freely downloadable from http://metnetweb.gdcb.iastate.edu/MetNet_MetaOmGraph.htm.
MOG’s source code is available at https://github.com/urmi-21/MetaOmGraph/. Additional files are available at
https://github.com/urmi-21/COVID-DEA.
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Supplementary data are available at bioRxiv.
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