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Abstract  

Neuron reconstruction can provide the quantitative data required for measuring the neuronal 

morphology and is crucial in the field of brain research. However, the difficulty in reconstructing 

packed neuritis, wherein massive labor is required for accurate reconstruction in most cases, has 

not been resolved. In this work, we provide a fundamental pathway for solving this challenge by 

proposing the use of the super-resolution segmentation network (SRSNet) that builds the 

mapping of the neurites in the original neuronal images and their segmentation in a 

higher-resolution space. SRSNet focuses on enlarging the distances between the boundaries of 

the packed neurites producing the high-resolution segmentation images. Thus, in the 

construction of the training datasets, only the traced skeletons of neurites are required, which 

vastly increase the usability of SRSNet. From the results of the experiments conducted in this 

work, it has been observed that SRSNet achieves accurate reconstruction of packed neurites 

where the other state-of-the-art methods fail. 

 

Introduction 

A neuron cell is the basic structural unit in neuronal circuits [1]. Observing and measuring 

the neuronal morphology plays a vital role in the field of brain research [2]. A series of advances 

in the optical imaging and molecular labeling techniques have enabled us to observe an almost 

complete neuronal morphology with sub-cellular resolution and have pushed the understanding 

of neuronal anatomy to a new level [3-5]. However, improvements to the measurements of the 

observed structure can still be done. This is because the difficulties that occur in reconstructing 

dense neurites, which is an indispensable ingredient in the measurement of neuronal 

morphology, has not been resolved satisfactorily, and many reconstruction errors require manual 

revision.  

The procedure of reconstructing dense neurites is an open question in the subject of 

neuronal image analysis. Its challenge originates from the following facts: A neurite and its 

nearest neighbors have a small distance between their boundaries and their structure thus 

creates confusion when using the currently available reconstruction methods. The crossover 

neurites form a variety of potential link patterns whose number increases exponentially with the 

number of neurites. This makes it difficult to identify the correct links in the crossover region. 

Furthermore, the effect of the point spread function, the variations in the image intensity and 
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radius along the length of each neurite, and the inhomogeneous background worsen the 

reconstruction accuracy of dense neurites. 

Several methods have been proposed for this reconstruction process. The common 

characteristic among these methods is their focus on identifying the false links between the 

traced neurites. Graph partition or machine learning based methods are generally employed to 

search for the optimal links between the traced neurites which makes the morphological features 

of the reconstructed neurites to be consistent with certain summarized rules [6-11]. However, 

the dense distribution of neurites and a low image quality usually result in numerous and 

complicated false links. The real links are difficult to extract and find using the algorithms. Even if 

the different scales of the morphological features and the positions of somas are fully considered, 

a substantial part of the neurites cannot be correctly assigned to their own neurons, especially 

for ones deviating from somas. The fundamental pathway to resolving this problem of 

reconstructing dense neurites is to improve the neuronal image resolution to be able to separate 

the densely packed neurites. Developing the optical system or super-resolution image 

reconstruction methods in principle is feasible, but these methods are expensive.  

In this work, we propose a super-resolution segmentation network (SRSNet) for the 

reconstruction of dense neurites. This network inherits the advantages of the super-resolution 

image reconstruction network, enlarges the distances between the boundaries of the neurites 

and directly outputs the segmentation of the dense neurites in a high-resolution (HR) image 

space. The proposed network does not require massive three-dimensional (3D) registrations of 

high-resolution images, which are necessary for super-resolution image reconstruction network, 

but which are difficult to obtain in practice. Compared to the original image stack, the total voxel 

of its super-resolution segmentation image stack has a 16-fold improvement, and approximately 

50 % decrease is achieved in the radius of the neurites. We demonstrate the vast enhancement 

that SRSNet provides in the reconstruction accuracy of dense neurites. For some testing datasets 

that the current methods fail to reconstruct, the reconstruction precision achieved by employing 

SRSNet ranges from 0.77 to 0.99. Overall, SRSNet essentially reduces the complexity of neuronal 

images and provides a completely new pathway for solving the problem of reconstructing dense 

neurites.  

 

Methods  

Image resolution is a key factor in determining the reconstruction accuracy of densely 

distributed neurites. Limited by the imaging system in practice, the image resolution is not 

sufficiently high to separate the densely distributed neurites in the observed image stacks. This 

also hinders the improvement of image resolution with deep convolution networks, which 

require massive HR images for constructing the training datasets. SRSNet breaks the rule that an 

HR imaging system is necessary for dense neurite reconstruction, and transforms the neuronal 

images into a segmentation image in a higher-resolution space in which the densely distributed 

neurites are separated. To illustrate this point, we introduce the SRSNet structure, the training 

datasets construction, and some related materials.  

In general, for an optical imaging system, the observed image can be approached by 

convoluting an HR image with the point spread function (PSF) and then downsampling the 

convoluted image. The PSF is determined by the optical system and keeps stable. Thus, the 

different radii of neurites can be identified in the HR image, which are, in general, difficult to 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.09.143347doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.143347


estimate in practice. In the design of SRSNet, we assume that the convolution of the neurites 

with a fixed radius and a population of PSFs also approach the observed image (Fig. 1(a)). This 

assumption is based on the basic property of the convolution operation and makes it easy to 

generate an HR image corresponding to its observed image. The generated HR image consists of a 

series of cylinders that connect with each other and the center-point curves of which are the 

traced skeletons of neurites in the observed image. In this way, we build the mapping of the 

observed image and its corresponding HR image. 

 

 

Fig. 1. Block diagram showing the structure of SRSNet. (a) The imaging model describes the 

mapping of an HR image and its observed image, which supports the design of the SRSNet. For 

the observed image stacks, its low resolution results in the error in neurite reconstruction. (b) 

The transformation from the observed image stack to its HR segmentation image stack obtained 

by SRSNet in which the two densely distributed neurites are separated. (c) The SRSNet includes 

three subnetworks. The two former subnetworks are used for extracting HR feature image stacks. 

The final subnetwork is used for segmenting the HR feature image stacks.  

 

For capturing the specific mapping as described above, SRSNet is designed to have a cascade 

of super-resolution head, upsampling, and segmentation networks (Figs. 1(b) and 1(c)). The 

super-resolution head network [12] is used to extract the feature map of the observed image and 

its corresponding HR image. Its structure is a small residual neural network (ResNet) [13] and 

consists of one convolution layer and four linear low-rank layers [12]. The upsampling network 

consists of two upsampling layers. One layer is the pixel shuffle 3D [14] used for increasing the 

voxels of the feature image stack generated by the super-resolution head network. As the 

resolution of z-axis of real neuronal images is higher than that of x- and y-axis, all the feature 

image stacks are enlarged by 2x, 2x, and 4x along the x-, y-, and z-axis respectively. The other 

layer performs an operation of upsampling the original image stack using the trilinear method 

and convolutes the upsampled image with 128 template kernels, which indicates 128 feature 

image stacks. All the feature image stacks generated using these two upsampling networks are 

summed as the input to the segmentation network which ensures that the final output image 

stacks coincide with the training set in which the HR-image stack generated with its 

corresponding observed image stack is binary. Its structure is common and contains four ResNet 

layers, a convolution layer, and a sigmoid layer.  

The training dataset is generated as follows: In a given image stack, the neurites are traced 
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and the traced skeletons are optimized for further approaching the center-lines of the neurites. 

The positions of these skeletons are mapped in the HR image stack which is generated by dividing 

each voxel equally in the original image into 2 × 2 × 4 voxels. In the HR image stack, the traced 

skeletons are resampled to make the distance between any two neighboring skeleton points 

equal to one voxel size and the 26 neighboring regions of each resampled skeleton point are 

labeled. The labeled region is regarded as the segmentation of neurites in the HR image stack. 

Using the above procedure, we obtained sample pairs consisting of a neuronal image stack and 

its HR segmentation image stack. We used 87 image stacks which included crossover neurites and 

their HR segmentation image stacks to construct the training datasets. Each image stack and its 

HR segmentation image stack have 48 × 48 × 24 and 96 × 96 × 96 voxels respectively.  

In the training phase, we randomly clipped the image stack with 24 × 24 × 16 voxels and 

its corresponding HR segmentation image stack with 48 × 48 × 64 from the training datasets 

and then flipped the image pairs along the x, y or z direction. These argumentation images were 

used for training the SRSNet. The Adam optimizer [15] was used with a learning rate of 2 × 10−4. 

Assuming that the input image stack with 24 × 24 × 16 voxels occupies 4.3 GB video memory 

in the training phase, the batch size was set to 1. The training required approximately 17 h on a 

computing platform having Windows 10 operating system, Intel CPU i5 8300H, 8 GB memory, and 

GTX 1060 (6 GB). SRSNet was constructed using Pytorch.  

In the prediction phase, we divided an image stack into sub-image stacks, all with 32 ×

32 × 32 voxels. It occupied 3.3 GB video memory. In this work, any two neighboring sub-image 

stacks had an overlap region of 16 voxels. To acquire the best segmentation, the image part that 

was 8 voxels away from boundary was replaced by the corresponding image part in the 

neighboring sub-image stacks. The central part of the predicted image, which was 1/8th of the 

total volume, was taken to be valid. The overlap region could be smaller in other works. After 

prediction, these sub HR segmentation parts were merged into a whole HR segmentation image 

block and the overlap region was processed using non-maximum suppression. The prediction of a 

128 × 128 × 64 voxels image stack requires approximately 380 s, i.e., 2.2 × 104 voxels per 

second, considering the overlap region. The computing platform was the same as in the training 

phase, i.e., GTX 1060 (6 GB).  

The total loss function of SRSNet consists of focal loss and soft dice loss. The soft dice loss is 

defined as  

| ' |
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| | | ' |
SoftDice
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                            (1) 

 where y denotes the predicted super-resolution segmentation and y’ denotes the segmentation 

ground truth. Both the numerator and denominator are added with 1 to avoid the all-zero 

exception. The focal loss is defined as  

( , ') ( ) 'log( ) ( ) ( ')log( )focalL y y y y y y y y        2 2
1 1 1 1                 (2) 

Similar to the study by Lin, et al. [16] we have set the power of the predicted segmentation 

item to the recommended value of 2 as this will enhance the learning of hard samples. The 

parameter 𝛼 has been used to balance the positive and negative samples. In the training phase, 

an important key point was to set 𝛼 in the interval [0.8,0.95]. The value of 𝛼 could be 

decreased to 0.7 gradually. If its initial value was lower than 0.5, it would result in poor 

segmentation results. The total loss is defined as 
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( , ') ( , ') ( , ')total focal SoftDiceL y y L y y L y y                           (3)  

Because of the small portion of positive signals in the neuronal images, the value of the 

focal loss was small. In contrast, the proportion of positive and negative sample had little 

influence on the soft dice loss. We have introduced the parameter 𝜆 for balancing the two loss 

functions in the total loss. In this work, the value of 𝜆 has been set to 50. 

We have introduced a new neurite tracing evaluation index for evaluating the accuracy of 

the neurite skeleton extraction and the relationship of the neurite connection after tracing. On 

the basis of the connection relationship of the neurites, we clustered the connected neurites into 

a single cluster, called the neurite cluster. One neuronal image contained several neurite clusters. 

For the single neurite cluster ground truth, we matched each of the neurite clusters, which were 

traced by automatic tracing methods. The evaluation metrics, namely, precision and recall, were 

calculated by comparing the best matched neurite cluster skeleton and the neurite cluster 

ground truth. The length of the neurite clusters was calculated and normalized. We multiplied 

the values of precision and recall by the normalized length and summed them to obtain the total 

value of precision and recall. The total precision and recall of all neurite clusters in a neuronal 

image can evaluate the processes of neurite skeleton extraction and neurite connection 

relationship simultaneously. 

 

Results 

We have carried on three experiments to evaluate the segmentation performance of SRSNet. 

In the first experiment, we applied SRSNet on synthetic data to produce super-resolution 

segmentation and compared the tracing accuracy of previous automatic tracing methods on 

synthetic data which have dense network of neurites. In the last two experiment, we obtained 

the qualitative tracing analysis of super-resolution segmentation from mouse neuronal images 

acquired by fMOST [3].  

Second, we demonstrate the tracing performance of super-resolution segmentation on the 

synthesized chaotic images, which have dense neurites network (Fig. 2). The size of the 

simulation image is 256 × 256 × 128 voxels and its resolution ratio is set as 0.2 × 0.2 × 1 μm. 

The size of the super-resolution segmentation is 512 × 512 × 512 voxels. We have synthesized 

five groups of chaotic neurite images. There are three images in each groups. The simulation 

images have been sorted according to the density of neurites. The minimum and maximum 

average densities of the five groups are 3.44 m/mm3 and 54.61 m/mm3 respectively. The 

simulation image in Fig. 2(a) refer to image group 3 in Fig. 2(b). The density of image group 3 is 

equal to the maximum density of real neuronal images in the following experiment. It means that 

the simulation image in Fig. 2(a) can be regarded as the densest image from our real neuronal 

dataset. The corresponding traced super-resolution image and the tracing result obtained have 

also been shown in the figure. The tracing precision of the super-resolution segmentation in Fig. 

2(a) is 0.82, while its tracing recall is 0.94. The other four tracing methods have been applied on 

the original images. The tracing recall values of Neutube [17], Snake [18], PHDF [19], and 

NeuroGPS-Tree [8] methods are 0.86, 0.90, 0.99, and 0.97 respectively. In Fig. 2(b), the tracing 

precision of super-resolution segmentation images is always higher than four other methods, and 

achieve precision value of 0.56 in group fifth, while that of four other methods is about 0.1. 

These tracing methods connect most of the neurites into one cluster, resulting in poor precision. 
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In Fig. 2(c), all of methods achieve high recall value. It means that almost all of the skeleton of 

neurites are traced, although the other four methods cannot extract connection relationship 

correctly. In the case of the dense chaotic neurite image, these four tracing methods cannot be 

applied to tracing packed neurites. 

  

Fig. 2. Super-resolution segmentation net (SRSNet) improves the reconstruction accuracy of 

packed neurites. (a) A synthesized chaotic image from group 3, the corresponding 

super-resolution image and the trace results obtained from super-resolution segmentation as 

well as that of four other automatic tracing methods from original image. The size of the 

simulation image is 256 × 256 × 128 voxels. (b) and (c) show the density and precision of 

neurites in five groups of synthesized chaotic images. The image groups are sorted according to 

the density of the neurites. 

 

We have evaluated the segmentation performance of SRSNet on mouse neuronal images. 

The testing images were acquired with fMOST [3]. The testing dataset includes 16 image stacks of 

dimensions 64 × 64 × 64 voxels. The resolution of neuronal images is 0.2 × 0.2 × 1 μm. The 

neurites in the image stacks are mainly axons and have a wide range of image intensities. The 

image stack and its segmentation results (Figs. 3(a)) derived from ResNet and SRSNet have been 

presented in Fig. 3. In ResNet, we have used the feature extracting network that contains four 

ResNet layers with 64 convolution kernel to replace the super-resolution head and the 

upsampling networks. The size of the convolution kernel is 3. This structure has been proposed 

for the voxel-wise residual network and has been widely applied in the segmentation of 

bio-images [20]. Compared to the segmentation done using ResNet, SRSNet maps the segmented 

neurites in a higher-resolution space and reduces the radius of the segmented neurites (Figs. 

3(b)). We note that the segmented neurites driven from ResNet are thicker than in reality in most 

cases, which is partially due to the sharp changes in the image intensities. For quantifying the 

evaluation, the neurites have been manually traced and their traced skeleton points have been 

optimized. The skeleton points that were covered in the segmented regions generated with 

ResNet and SRSNet have been counted and the count rate has been plotted in Fig. 3(c). The rate 

of the covered points was 0.96±0.02 for SRSNet and 0.99±0.01 for ResNet. Despite the existence 
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of these slight differences, SRSNet still provides accurate segmentation. We have calculated the 

radii of the neurites along their manually traced skeletons in the original image stacks and their 

segmentation images. The calculated radii were sorted increasingly and normalized (Fig. 3(d)). 

From the results, we conclude that SRSNet can significantly reduce the effects of the point spread 

function and thus enlarge the distances between the boundaries of the neurites.  

Finally, we demonstrate that SRSNet essentially boosts the reconstruction accuracy of real 

packed neurites (Fig. 4). The testing dataset includes a stack of 16 images having dimensions of 

128 × 128 × 64 voxels. One half is from the cortex region and the other half is from the 

hippocampus region. These image stacks include many densely distributed neurites. Their images 

intensities range from 7.36 m/mm3  to 27.03 m/mm3 . The reconstruction tools such as 

Neutube, Snake, PHDF, and NeuroGPS-Tree have been used for illustrating the merits of SRSNet 

above these tools. Two image stacks have been shown and the reconstruction of neurites from 

them have also been presented in the figure. The results suggest that these tools can extract the 

skeletons of the neurites satisfactorily, but fail to build the links between the traced neurites. The 

false links sharply increase in a fixed space for these reconstruction tools as the number of 

neurites increase, as is indicated by arrows in Fig. 1(a). In contrast, SRSNet significantly reduces 

the false links and generates accurate reconstructions in the case where the other reconstruction 

tools are powerless. We furthermore present the quantifying results. In the hippocampus 

datasets, the precision rate of SRSNet is 0.91±0.07, while it is 0.66±0.10 for NeuroGPS-Tree which 

provides the best reconstruction among these selected tools. SRSNet also attains a reasonable 

level of recall rate. On the other hand, both Neutube and PHDF tools generate the reconstruction 

with a high recall rate, however their precision in reconstruction is low. From these results, it can 

be understood that the skeleton of the traced neurites can be satisfactorily extracted and many 

traced neurites was falsely linked to each other, which is consistent with the two reconstruction 

examples. Similar results obtained for the reconstruction in the case of the cortex datasets (Fig. 

4(d) and 4(e)) also suggest that SRSNet can achieve an accurate reconstruction of the packed 

neurites.  
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Fig. 3. Comparison of the segmentation results obtained using SRSNet and ResNet-based 

method. (a) The neuronal image stacks has 64 × 64 × 64 voxels. (b) Segmentation obtained 

using a ResNet-based method which is widely applied in biomedical images. (c) Segmentation 

obtained using SRSNet. (d) The enlarged view of the subblocks and their segmentations indicated 

by yellow boxes 1-3 in (a). (e) The rates of the manually traced skeleton points of neurites 

dropping in the segmented region derived from SRSNet and ResNet-based method. (f) Results of 

the radii of the neuritis, with their centers at the manually traced skeleton points, calculated in 

the original image stacks, their segmentation image stacks generated by SRSNet and a 

ResNet-based method. The radii have been sorted and normalized.  

 

Conclusions  

In this work, we have identified that the small distance between the packed neurite 

boundaries and the crossover neurites that form various potential link patterns, are important 

factors which cause difficulty in tracing the packed neurites using the existing automatic tracing 

methods. We have proposed a 3D super-resolution segmentation network, called SRSNet, to 

acquire high-resolution segmentation images. The super-resolution segmentation images allow 

the automatic tracing methods to work in 3D HR space, resulting in high accuracy tracing. SRSNet 

can enlarge the 3D segmentation image by 16-fold. Simultaneously, SRSNet reduces the radii of 

the neurites by half owing to its super-resolution property, resulting in the enlargement of the 

distance between the boundaries of the neurites. In other words, it essentially improves the 

resolution of the neurites in an image. We have demonstrated the use of SRSNet in simulating 

cross neurites and parallel neurites and images of real dense neurites. The neighboring neurites 

are observed to be separated correctly in the super-resolution segmentation images. The 

precision of the tracing results on the super-resolution images has been found to be better than 

that of the automatic tracing methods applied on the original images. The 3D super-resolution 
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segmentation method provides a new and effective way to solve the problem of dense neuron 

reconstruction.  

 

Fig. 4. The reconstruction performance of SRSNet and four other automatic methods. (a) The 

two image stacks and their automatic reconstructions. The manual reconstruction is regarded as 

the ground truth (the second column). False links in the reconstruction are marked by red crosses. 

(b) and (c) show the precision and recall rates in the automatic reconstructions from 8 image 

stacks in the hippocampus region. (d) and (e) show the quantified reconstructions from 8 image 

stacks in the cortex region. 
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