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Abstract 

A network of acetylcholinergic (ACh) cell groups in the basal forebrain innerve the forebrain and 

are proposed to contribute to a variety of functions including attention, and cortical plasticity. This 

study examined the contribution of the ACh-nucleus basalis projection to the sensorimotor cortex 

on recovery on a skilled reach-to-eat task following photothrombotic stroke in the forelimb region 

of the somatosensory cortex. Mice were trained to perform a single-pellet skilled reaching task and 

their pre and poststroke performance, from Day 4 to Day 28 poststroke, was assessed frame-by-

frame by video analysis with end point, movement and sensorimotor integration measures. 

Somatosensory forelimb lesions produced impairments in endpoint and movement component 

measures of reaching and increased the incidence of fictive eating, a sensory impairment in 

mistaking a missed reach for a successful reach. Upregulated ACh activity, as measured by 

electroencephalogram (EEG) recording, elicited via optogenetic stimulation of the nucleus basalis 

improved recovery of reaching and improved movement scores but did not affect a sensorimotor 

integration impairment poststroke. The results show that the mouse cortical forelimb 

somatosensory region contributes to forelimb motor behavior and suggest that basal forebrain ACh 

upregulation could serve as an adjunct to behavioral therapy for the acute treatment of stroke.  

 

Key Words: cholinergic upregulation, optogenetic stimulation of nucleus basalis, 

photothrombotic stroke, sensory neglect, skilled reaching task in mice 
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Introduction 

Stroke is a major cause of death and disability that results from a transient or permanent 

reduction in cerebral blood flow 1. During stroke, neuronal structure and function are rapidly 

damaged 2, but can in part recover during reperfusion 3 or following treatment agents that interrupt 

the events leading to cell death 4, 5 or induce hypothermia 6. Although neuronal structure can 

recover after intervention, balance of excitation and inhibition is altered 7, 8 and brain activity is 

depressed 9 which actively impede post stroke functional reorganization 10-12. The cellular and 

biochemical changes related to recovery following cortical stroke include changes in ionic balance, 

alterations in the properties of the cell membrane, changes in second messenger and mRNA 

production resulting in protein production and inflammatory response, and alterations in 

neurotransmitter function 13-16. Included in the alterations in neurotransmitter function, research 

suggests that acetylcholine (ACh) innervation in the neocortex may be important for recovery 

because evidence suggests that ACh is related to cortical plasticity 17-23, including the plastic 

changes that mediate recovery/compensation in the acute period after cerebral stroke 24. 

Accordingly, the acute poststroke period has been the target of a number of attempts to enhance 

behavioral recovery in the mouse using treatments that directly or indirectly enhance ACh activity 

25-28. Despite the success of these treatments, the contribution and specificity of ACh to recovery 

has not been clarified, but one explanation is that ascending basal forebrain cholinergic system is 

involved 29. Previous findings show that, direct and indirect activation of excitatory neurons within 

peri-infarct circuits using optogenetic stimulation can promote functional recovery 30, 31. To further 

study the role of ACh in recovery/plasticity following cortical stroke, the cholinergic nucleus 

basalis (NB) neurons, the source of cholinergic projections to the sensorimotor region of the 

neocortex 32, 33 were ontogenetically stimulated daily during a portion of the acute recovery period 
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(poststroke day 4 till day 14). Stroke in the forelimb region of the somatosensory cortex was 

induced by photothrombosis, a noninvasive method to produce a focal infarct that is consistent in 

terms of size and location. Because an acute recovery from stroke has been a target of study in 

experiments of recovery of function of mice performing skilled reaching tasks, the present study 

examined performance during poststroke period in mice trained on the single pellet reaching task. 

Endpoint measures of success, movement component scores, and sensorimotor integration were 

obtained for daily reaching tests. The analyses indicate that optogenetic stimulation of nucleus 

basalis cholinergic neurons during the poststroke period improved some measures of recovery on 

end point measures and movement but was without effect on measures of sensory integration 

 

Material and Methods 

Animals. Twenty-seven adult ChAT-Cre/Ai32(ChR2-YFP), referred to hereafter as ChAT-

Cre/Ai3 (16 male, 11 female) mice (3-4 months of age), weighing 20-30 g, raised at the Canadian 

Centre for Behavioral Neuroscience vivarium at the University of Lethbridge, were used. The 

ChAT-Cre/Ai32 line was generated by crossing ChAT-Cre (B6;129S6-Chattm1(cre)Lowl/J; Jax stock 

number 006410) mouse line with Cre-dependent reporter lines Ai32 (129S-

Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J; Jax stock number 012569) 34. This crossing is 

expected to produce expression of ChR2 in cholinergic neurons 35. The animals were housed in 

littermate quads after weaning on a 12h:12h light/dark cycle with light starting at 7:30am and 

temperature set at 22 °C. After fiber optic and LFP electrode implantation, the mice were housed 

singly. Testing and training were performed during the light phase of the cycle in the morning each 

day. Procedures were approved by the University of Lethbridge Animal Care Committee in 

accordance with the guidelines of Canadian Council on Animal Care. Mice were randomly 
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assigned in three groups: stroke + stimulation (n = 9; 5M, 4F), stroke + no stimulation (n = 8; 5M, 

3F), and sham stroke + no stimulation (n = 10; 6M ,4F). All the mice underwent identical handling 

and behaviour and stimulation procedures such that even animals in the No Stim and Sham Groups 

were brought to the stimulation room and were attached to the laser cable for the same duration as 

the Stim Group but did not receive laser stimulation. 

Animal surgery. To implant the fiber optic and LFP electrode (Figure 1A), animals were 

anesthetized with isoflurane (1-2%), and stereotaxic surgery was conducted using aseptic methods. 

The mice were placed in a stereotactic frame (Kopf Instruments) on a 37-38 °C heating pad. The 

animal’s eyes were covered with a thick layer of lubricating ointment (Refresh, Alergan Inc.). 

Using scissors, a flap of skin about 1 cm2 in area was retracted from the skull and the gelatinous 

periosteum was removed with a small scissors. The skull was cleaned and dried with sterile cotton 

swab. Prior to the implantation, the fiber optic ferrule and electrode pins were disinfected with 

70% isopropyl alcohol and allowed to air dry. Coordinates for fiber optic and LFP electrode 

placement were (AP = -0.2 mm, ML = +1.35 mm, DV = 4.0 mm) (AP = 2.0 mm, ML = 1.0 mm, 

DV = 0.2 mm) respectively. A custom made headplate was directly affixed with a thin layer of 

C&B Metabond (Parkell) such that it covered the whole skull and the surrounding area of the 

ferrules and the electrode pin were fixed with Krazy glue. An electrode was glued on the surface 

of the skull over the cerebellum as a reference for LFP recording. The skull and the head-plate 

were secured with a thin layer of Metabond (C&B Metabond) and a layer of dental cement except 

the stroke area. 

Optogenetic stimulation and LFP recording. The fiber optics were prepared in house following 

guidance from ThorLabs Manual (FN96A). Briefly, fiber optic cores (Part # FT400UMT, Thor 

Labs) were cut to 16 mm lengths, inserted into ceramic ferrules (Part # CF440-10, Thor Labs) and 
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cemented in place with epoxy (Part # T120-023-C2, Thor Labs). After allowing the epoxy to set 

for 24 hours, the “bare” end was cut to 5.0 mm in length with a diamond cutter (Part # S90R, Thor 

Labs). This “bare” end eventually implanted into the brain. The other end of the fiber optic core 

was trimmed and polished until flush with the ceramic ferrule and showed an appearance of 

“polished glass” under a dissecting microscope at 10x power. Before implantation, the ferrules 

were tested for light transmittance with an optical power meter (Part # PM100D, Thor Labs) by 

attaching the polished end to a 473 nm laser (Shanghai Dreams Lasers Technology, SDL-473-

100T). All fiber optic implanted in nucleus basalis had an average measured output of ~5.5mW. 

Teflon coated 50 µm stainless steel wires (A-M Systems) were used for neocortical LFP 

recordings. The tip of the electrode was placed in the superficial layers of motor cortex. The local 

field potential signal was amplified (x1000) and filtered (0.1-10 KHz) using a Grass A.C. pre-

amplifier Model P511 (Artisan Technology Group ®, IL) and digitized using a Digidata 1440 

(Molecular Device Inc., CA) data acquisition system at 2 KHz sampling rate.  

Analysis of LFPs. Analysis of LFP traces was performed using custom-written code in MATLAB 

(Mathworks, Natick, MA). LFP signals were down-sampled to 2 kHz, and frequency components 

of the traces were then extracted by multitaper spectral analysis using the Chronux toolbox 36 

(http://chronux.org). To measure cortical desynchronization, as a measure of ACh release, the 

frequency components in 1.5 s time windows that overlapped by 0.1 s were calculated. Normalized 

power in the 0.1-6 Hz band was calculated by dividing power by the mean 0.1-6 Hz power before 

the stimulus. Mice were included if desynchronization was observed by optogenetic stimulation 

of nucleus basalis cholinergic neurons. For each animal we determined whether there was 

desynchronization by comparing, for 20 trials, the mean 0.1-6-Hz power 0.5–2.6 s after stimulus 

onset with the mean power 2 s before the stimulus, using a paired t-test with a P < 0.05 criterion. 
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Effective stimulation was defined by desynchronization of cortical activity as previously described 

37. On the basis of these experiments (Figure 1B-D), optogenetic stimulation (5 mW, 20 Hz with 

25ms on and 25ms off) consisting of five stimulations was selected for the experiments. A series 

of 1-minute laser stimulation on, at 3-minutes off was given daily from day 4 to day 14 poststroke 

3-hr before behavioural testing (Figure 1D). 

Photothrombotic stroke. To induce a forelimb sensory cortex stroke, animals were anesthetized 

with isoflurane (1-2%), placed on on a 37-38 °C heating pad, and the animal’s head-plate was 

secured with plastic forks on a custom-made surgical plate. The animal’s eyes were covered with 

a thick layer of lubricating ointment (Refresh, Alergan Inc.). To facilitate photoactivation, a round 

circle with 1.0mm in diameter on the skull was thinned to ~ 50% of its original thickness. The 

center of the circular region was AP = 0.5 mm and ML = 2.5 mm from the Bregma. 

Photothrombotic stroke was induced by injecting 10 mg/ml of Rose Bengal intraperitoneally 5 

minutes prior to 20 minutes green laser (532 nm wavelength at power 10 mW) illumination at the 

thinned region as previously described 38-40. The thinned area was covered with dental cement. The 

control mice went through the same procedure except that they received intraperitoneal saline 

injection rather than Rose Bengal. After the surgery, mice were kept in the recovery room for two 

days before being returned to their home cage. 

Video recording. Reach behavior filmed from a frontal view with a Panasonic HDC-SDT750 

camera at 60 frames per second at an exposure rate of 1ms. Illumination for filming was obtained 

by using a two-arm cold light source (Nicon Inc.), with the arms positioned to illuminate the 

reaching target area from a frontolateral location on each side of the reaching apparatus. Video 

was replayed frame-by-frame on a personal computer using QuickTime player (10.5 © 2009-2018, 

Apple Inc) for scoring.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.09.143354doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.143354


Reaching apparatus and training and assessment. The reaching box was made of clear 

plexiglass (19.5-cm long, 8-cm wide, and 20-cm high) with a slit (1-cm wide) located in the center 

of the front well 41, 42. On the outside of the front wall, a shelf 3.8 cm wide was mounted 1 cm 

above the floor. Two divots were located on the shelf, one centered on the edge of each side of the 

slit at a distance of 1 cm from the slit. Food items that the mice reached for were 10-mg food 

pellets (Catalogue # 1811213, TestDiet) placed singly in a divot. At this location, it is difficult for 

the mice to obtain food with their tongue, but food can readily be obtained with the contralateral 

hand because mice pronate their hands with a lateral-to-medial movement that brings the palmar 

surface of the hand over the divot. 

Food restricted animals, maintained at 85% body weight by once daily feeding, were 

habituated to the reaching apparatus by placing them in the box for 10-min/day for ten days. Pellets 

were initially available on the reaching box floor and within tongue distance on the shelf. Pellets 

were gradually removed from the floor and placed further away on the shelf until the mice were 

forced to use their hands to retrieve the food pellet. The pellets were placed in the right divot, so 

that the mice were required to reach with the left hand to obtain them. Once reaching, mice 

received twenty pellets in each training/testing session and each pellet presentation defined a trial. 

Training was considered complete once each mouse’s success rates reached asymptotic level on 

three consecutive days of training. Mice were habituated to the laser cable in their home cages 

during the last 5 days of training. 

The reach behavior of mice was subjected to analysis of three measures: success score, 

movement components, and sensorimotor integration.  

(1) Success. Three measures of success were used on each trial: (A) Success was defined 

as a reach in which the mouse successfully grasped the food and brought the food to the mouth for 
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eating (Supplemental Video 1). (B) First trial success was the percent of trials on which a mouse 

successfully grasped the food on the first attempt and brought the food to the mouth. (C) Attempts 

were defined as any reach on which a mouse inserted a paw through the aperture but failed to grasp 

a food pellet or knocked it away (Supplemental Video 2).  

(2) Movement components. Movement components were scored frame-by-frame from the 

video using a previously described scoring system 41-43. Three scorers (BM, RA, AG), who 

produced highly correlated ratings (r=>90), acquires the scores, from the first three successful 

reaches from each mouse. Ttwelve components of a reach; hindfeet, front feet, sniff, lift, elbow in, 

advance, pronation, grasp, supination I, supination II, release, and replace were rated on a three-

point scale. A score of 0 was given to a normal movement, a score of 0.5 was given to a movement 

that is recognizable but incomplete or misplaced, and a score of 1 was given to unidentified or 

absent movements (for details see 41). 

(3) Sensorimotor integration. Once control mice grasp a food pellet, they indicate that they 

are successful by bringing the food to the mouth for eating. Three measures of bringing the food 

to the mouth was used as a measure of sensorimotor integration; did a grasp occurred at the end of 

the hand advance to the food, did the hand remained closed as it was withdrawn, and was the 

closed hand then brought to the mouth (Supplemental Video 2). After each failed reach, the 

movements were scored: if a mouse’s hand was closed, it received a score of “1”; if it the hand 

was open, it received a score of “0” for the grasp and withdraw movements; in addition, if the hand 

was brought to the mouth a score of “1” was given and if it was not a score of “0” was given. 

Histology. Mice were anesthetized and perfused through the heart with 1x phosphate buffered 

saline followed by 4% paraformaldehyde in 1x phosphate buffered saline. Brains were removed 

and post-fixed in 4% paraformaldehyde overnight and then cryoprotected in 30% sucrose in 1x 
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phosphate buffered saline and 0.02% sodium azide. The brains were sectioned at 40m on 

Blockface and every third section was mounted on charged Superfrost Plus Micro Slide (VWR), 

stained with Cresyl violet (Nissl staining), and cover slipped using Permount (Fisher-Scientific). 

Slides were imaged using 20X objective lens with Nanozoomer (2.0RS, Hamamatsu) and stroke 

size computed as the area of stroke region for each brain slice was measured. Using the freehand 

tool in NDP.view2 software and then multiplied by the distance between brain slices to estimate 

the stroke volume. To confirm the expression of light sensitive channels tagged with YFP in the 

cholinergic nuclei, brain slices were subjected to immunohistochemistry for ChAT. Brain sections 

were fixed on a charged Superfrost Plus Micro Slide (VWR), washed in Tris-buffered Saline 

(TBS), and blocked in a solution containing 3% goat serum and 0.3% Triton-X in TBS for 2 hours. 

The slides were incubated in primary antibody, rabbit anti-ChAT (monoclonal, ab178850, Abcam, 

1:5000), and TBS with 0.3% Triton-X at room temperature in a dark humid chamber overnight. 

After the first incubation, the slides were given three 10-minute washes and then incubated with 

secondary antibody, anti-rabbit-alexa-594 (IgG [H + L]) and TBS with 0.3% Triton-X for 5 hours. 

After that, the slides were given two 10-minute washes, air dried, covered with coverslips with 

Vectashield H-1000 (Vector Laboratory), and imaged in Nanozoomer (2.0RS, Hamamatsu). 

Statistical analysis. Behavioural scores were subjected to Analysis of Variance (ANOVA) with 

repeated measures on the dependent measures using SPSS (v.24.0.0.1). A p-value < 0.05 was 

considered significant. For local field potential analysis, spectrogram of each trial was calculated 

on the 3-sec long sliding window using custom written program in MATLAB (MathWorks). 

Spectrograms were averaged across the trials and divided by the baseline calculated from 6 seconds 

before the optogenetic stimulation. For the stroke size, the mean area of stroke region for the Stim 
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and No Stim groups was subjected to an independent t-test using SPSS (v.24.0.0.1). A p-value of 

less than 0.05 was considered significant. 

 

Results 

Optical stimulation of nucleus basalis cholinergic neurons can activate peri-infarct areas  

To examine if repeated cholinergic stimulation could activate plasticity-associated 

mechanisms and functional recovery, a repeated neuronal stimulation paradigm at poststroke days 

4–14 (see experimental timeline, Figure 1E) were implemented. A photothrombotic stroke was 

used to generate infarct in the forelimb somatosensory cortex (S1). Three groups of ChAT-

Cre/Ai32 (ChR2-YFP) transgenic mice, were used: sham stroke + no stim, stroke + no stim, and 

stroke + stim. Staining for ChAT-immuno responses and its overlap with ChAT-Ai32-EYPF of 

the region are shown in Figure 2A, indicated high levels of ChR2 in cholinergic neurons. An 

optical fiber was stereotaxically implanted within nucleus basalis. The placement of the fiber optic 

implant in the mice was confirmed by examining the location of the end of the implant in the Nissl 

stained brain sections in relation to the Paxinos mouse brain atlas 44 and showed that the fiber 

optics were in nucleus basalis (Figure 2B). We first examined if reliable cortical activation could 

be achieved by optical stimulation paradigm consisting of 5 successive 1-min laser stimulations, 

separated by 3-min rest intervals (Figure 1 D). In vivo electrophysiological LFP electrode 

recording from primary motor cortex (M1) in isoflurane-anesthetized mice indicated that this 

stimulation paradigm could generate reliable and consistent cortical desynchronization in all 5 

stimulations. The normalized power spectrogram of LFP signal reveals that the decrease in power 

following the stimulus (Figure 1B; dark blue regions). Higher level of cortical desynchronization 

was observed when laser intensity increased from 1 to 10 mW (Figure 1C). Stroke site for the mice 
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were confirmed after brain sectioning and staining with Cresyl violet (Figure 2C). The stroke sites 

consisted of damage to the primary somatosensory forelimb area within cortical layers I to VI, 

above the external capsule. There was no statistically significant difference in the area of stroke 

for Stim vs No stim groups (t(15) = 0.582, p > 0.05; Figure2D).  

 

Repeated optogenetic stimulation of NB of cholinergic neurons improves Success  

To address whether repeated ipsilesional cholinergic system stimulations can promote 

functional recovery, we evaluated the behavioral performance of stroke mice on the single pellet 

skilled reaching task, a sensitive and reproducible sensory-motor behavior test used to detect 

neurological deficit after stroke 45, 46. Because the single pellet reaching task requires the use of 

one hand to reach for and grasp a food pellet and bring it to the mouth for consumption 41, 

performance was measured using endpoint scores of the affected hand, ratings of the movement 

components of reaching and sensorimotor integration assessment. Sensorimotor integration 

assessment measured successful recognition that there is or, is not, food in the hand after a reach 

by recording whether a mouse brought its hand to its mouth after a reach. In previous studies of 

rodents, these measures have provided a definitive measure of poststroke performance 47-49. The 

prestroke assessment of reaching, as assessed with measure of Overall Success, First Trial Success, 

and number of Attempts, showed that there was no Group difference on any of these measures, 

(Group F(2,26)=3.00, p> 0.69). On the poststroke recovery performance, the Stim group displayed 

better performance than the No Stim group, and on some measures the Stim group did not differ 

from the Sham group, as confirmed by the following statistical analyses.  

ANOVA on poststroke Success performance (Figure 3A) gave a significant effect of Days 

(F(4,96)=3.69, p=0.008), experimental Groups (F(2,24)=3.45, p=0.001) and Day by experimental 
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Group interaction (F(8.96)=3.78, p=0.001). Follow up statistical tests on the experimental Groups 

effect showed that the No Stim group was impaired relative to the Sham group (p<0.02), but the 

Sham and Stimulation groups did not differ. ANOVA on First Trial Success performance (Figure 

3B) gave no significant effect of Days (F(4,96)=1.877, p=0.13), experimental Groups 

(F(2,26)=2.16, p=0.14), and interaction of Day by experimental Groups (F(8,96)=1.27, p=0.27). 

ANOVA on Total Attempts (Figure 3C) gave a significant effect of Days (F(4,96)=5.57, p<0.001), 

no significant interaction of Day by experimental Groups (F(8,96)=0.39, p=0.92), but a significant 

effect of experimental Groups (F(2,24)=3.72, p=0.04). Follow-up tests on the experimental Groups 

effect indicated that the Stimulation and Sham groups did not differ, but both Groups made 

significantly fewer attempts than the No Stim group (p<0.01). 

Optogenetic stimulation of NB cholinergic neurons improves reach quality 

To assess the effect of stroke and NB optogenetic stimulation on the quality of reaches, 12 

components of movements were scored on a 0, 0.5, and 1 scale (good, impaired, and absent 

performance) from the first three success reaches. A higher score indicates inferior performance. 

The twelve movement components were then divided into three categories; Posture (symmetry of 

hind and front feet and sniffing to locate the food), Advance (limb lift, elbow in, advance pronation 

and grasp), and Withdraw (supination I, supination II, food release and hand replace on floor). 

There were no experimental Groups differences on any of the measures before stroke 

(F(2,24)<0.75, p>0.42). The analyses on poststroke performance revealed poorer performance of 

the stroke groups (combined Stim and No Stim experimental groups) relative to the Sham group 

and improvement in the performance of the stroke groups over days. The Advance measure 

indicated that the Stimulation group displayed faster recovery than the No Stim group. For Posture 
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and Withdraw, the stimulation group was better than the No Stim group. These results were 

confirmed by the following statistical analyses. 

After stroke, the Posture measure showed (Figure 4A) a significant effect of Days 

(F(4,96)=7.07, p<0.40), no significant interaction of Day by experimental Groups (F(8,96)=0.96, 

p=0.02), and no significant effect of experimental Groups (F(2,24)=2.72, p<0.08). For Advance 

(Figure 4B), there was a significant effect of Days (F(4,96)=8.66, p.007), significant interaction of 

Day by experimental Groups (F(8,96)=4.70, p=0.02), and a significant effect of experimental 

Groups, (F(1,24)=21.3, p<0.001). Follow-up tests indicated that the Sham group had lower scores 

than the No Stim and Stim groups, and the Stim group had lower scores than the No Stim group 

(p<0.05). On the Withdraw measure (Figure 4C), there was a significant effect of Days 

(F(4,96)=8.63, p.001), a significant interaction of Day by experimental Groups (F(8,96)=2.44, 

p=0.02), and a significant effect of experimental Groups (F(1,24)=24.5, p<0.001). Follow-up tests 

indicated that the Sham and Stimulation groups did not differ, but their scores were lower than the 

No Stim group (P<0.05).  

 

Optogenetic stimulation of NB cholinergic neurons does not improve recovery of 

sensorimotor integration 

Before stroke, there were no differences on measures of Grasp, Withdraw and Hand to 

Mouth among the experimental Groups (F(2,24), F<0.135, p>0.78). On successful reaches, mice 

grasped, retracted, and brought their hand to their mouth (Supplemental Video 1), while on 

unsuccessful reaches they did not do so (Figure 5A; Supplemental Video 2). After stroke, mice in 

the stroke groups were more likely to close their hands after a missed grasp, withdraw the closed 

hand and make a movement of bringing the hand to the mouth as if to take food from it (Figure 
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5B; Supplemental Video 2), a behavior termed fictive eating 50. The impairment was very similar 

in the No Stim and the Stim stroke groups. Only slight improvement during poststroke recovery 

days occurred in the stroke groups on the measure of bringing the hand to the mouth. Supplemental 

Video 2 illustrates the typical absence of grasping for a control mouse and the presence of fictive 

eating in a mouse in the Stimulation group. These results were confirmed by the following 

statistical analyses. 

After stroke for Grasp measure (Figure 6A), there was no effect of Days (F(4,96)=0.661, 

p=0.62), or a significant interaction of Day by experimental Groups (F(8,96)=0.48, p=0.89), but 

there were difference in experimental Groups (F(2,24)=26.43, p<0.001). The follow-up statistical 

tests indicating that the Sham group made fewer grasps than did the stroke groups (p<.001). For 

Retract close measure post stroke, there was no effect of Days (F(4,96)=1.55, p=0,19), and 

experimental Groups by Day (F(8,96)=.29, p=0.97), but there were difference in experimental 

Groups (F(2,24)=24.23, p<0.001) (Figure 6B). Follow-up tests indicate that the Sham group made 

fewer grasps compared to the stroke groups (p<.001). On Hand to mouth measure (Figure 6C), 

there was an effect of Days (F(4,96)=5.58, p=p<0.001), and experimental groups (F(2,24)=24.84, 

p<0.001), but no effect of experimental Groups by Day (F(8,96)=1.02, p=0.44) with follow-up 

tests indicating that the control group made fewer grasps than did the stroke groups (p<0.001). 

 

Discussion 

There is abundant evidence that the basal forebrain cholinergic system, as an essential 

component of the neuromodulatory system, plays an important role in cellular excitability, 

synaptic plasticity, improvement of sensory coding, control of behavior state and cognitive 

function. Cholinergic neurons project their axons to many areas of the brain and act on a variety 
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of receptors and target cells, therefore modulation of ACh receptors result in complex and often 

opposing influences on numerous biological processes including poststroke synaptic plasticity. In 

this study, using longitudinal repetitive optogenetic stimulation, in vivo electrophysiology, and 

animal behavior, we explored the role of cholinergic circuits in functional plasticity and behavioral 

recovery days and weeks after stroke. 

Selective photothrombotic stroke to the forelimb sensory region of the mouse neocortex 

produced transient impairments in end point measures and reach movements and a chronic 

impairment in sensory integration in mouse performance on the single pellet reaching task. 

Optogenetic stimulation of nucleus basalis cholinergic neurons during the poststroke period 

improved some measures of recovery on end point measures and movement but was without effect 

on measures of sensory integration. These results suggest that the upregulation of cholinergic tone 

can facilitate some aspects of behavioral recovery and confirm that cholinergic projections to the 

sensorimotor cortex play a role in behavioral plasticity. 

The design of the present study was based on Cheng et al 30, who report that optogenetic 

stimulation of ipsilesional motor cortex improved recovery from middle cerebral artery stroke on 

end point scores of a test of walking on a rotating rod. In the Cheng et al 30 study, stimulation 

increased cerebral blood flow, the neurovascular coupling response, and expression of activity-

dependent neurotrophins, including brain-derived neurotrophic factor, nerve growth factor, and 

neurotrophin. Thus, in the present experiment, similar dose and period of optogenetic stimulation 

were given to mice during the recovery period, except mice underwent selective stroke of the 

forelimb region of somatosensory cortex and stimulation was delivered to the cholinergic neurons 

within the nucleus basalis. The nucleus basalis contains cholinergic neurons that selectively project 

to the mouse sensorimotor cortex and this projection has been proposed to play a role in cortical 
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plasticity and recovery of function after stroke. Prior to stimulation, the effect of optogenetic 

stimulation was assessed for its effects on cortical LFP signal desynchronization 37, 51. In addition, 

the mice were tested in a more comprehensive behavioural test, a single pellet reaching task that 

evaluates end point measures as well as motor and sensory function. 

Evidence from anatomical and electrophysiological studies of primates show that 

somatosensory and motor cortex have a shared role in the control of skilled movement. Electrical 

stimulation of both regions produces reach and grasp movement and there are rich anatomical 

interconnections between sensory and motor cortical regions 52, 53. There have been no similar 

studies on mouse sensorimotor cortex 54 but the present results show that selective stroke of the 

forelimb area of sensory cortex results in some of the same deficits as those described following 

selective stroke to the mouse forelimb region of motor cortex 41. The present sensory forelimb 

stroke transiently impaired end point measures on a reach-to-eat task and produces impairments in 

many of the movements of reaching, just as does forelimb stroke to motor cortex. The mice with 

forelimb sensory stroke also displayed an impairment in sensorimotor integration in that they were 

just as likely to bring their hand to their mouth, as if to transfer a grasped food pellet, on failed 

reach attempts as on successful reach attempts. A similar impairment in sensorimotor integration 

is not reported after motor cortex forelimb stroke in mice but has been previously reported after 

forelimb sensory cortex stroke in the rat 55, 56. Thus, consistent with findings from nonhuman 

primate and human studies of sensory cortex stroke, forelimb sensory cortex of the mouse 

contributes to both motor and sensory control of the forelimb in mice. The chronic impairment in 

sensorimotor integration is not surprising as previous research indicates that sensory function is 

unlikely to recover after somatosensory stroke 57-59. Thus, it can be concluded that the optogenetic 

stimulation of cholinergic system was effective because it enhanced function in the motor cortex, 
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the likely substrate of movement success and movement quality, which was left intact by the 

somatosensory forelimb stroke. 

The optogenetic stimulation of nucleus basalis was associated with enhanced recovery of 

reach success and attempts and some of the measures of motor performance, especially advancing 

the limb to grasp food, but had no effect on measures of sensorimotor integration. The finding 

supports the idea that cholinergic innervation of sensorimotor cortex is involved in cortical 

functional recovery and may be beneficial on the recovery of some aspects of behavior. There are 

two potential explanation for the effectiveness of optogenetic stimulation in improving end point 

measures of reach behavior. First, following stroke induction in the forelimb somatosensory area, 

the cholinergic terminals in the peri-infarct region of the cortex may be damaged/depressed 

resulting in reduction of ACh function in those regions of the cortex that mediated recovery of 

behavior as it was shown previously 29. Stimulation of the nucleus basalis may induce the 

remaining cholinergic terminals in the cortex release more ACh, thus facilitating plasticity in the 

motor cortex and peri-infarct region. Second, after stroke induction in the forelimb somatosensory 

area, the cholinergic cell in the nucleus basalis that are remote from the stroke site may undergo 

diaschisis 60, resulting in depression of ACh release from the axonal terminals in the cortex. In this 

respect it is interesting that a number of early studies report that after forebrain and brainstem 

lesions there is a transient depression in cholinergic related EEG activity 61, 62. Optogenetic 

stimulation of the nucleus basalis may reactive cholinergic neurons, thus dissipating diaschisis. 

There are caveats related to the present application of optogenetic stimulation relative to 

its effectiveness in improving recovery from stroke. First, stimulation was given before and 

separate from the behavioral assessments as the presence of stimulation during behavioural 

assessments could interfere with animal performance. The optimal time to begin rehabilitation 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.09.143354doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.143354


interventions post stroke is still not well established, and the behavioral changes in skilled reaching 

following stroke are complex 63. Accordingly, there are many potential paradigms for nucleus 

basalis stimulation delivery that could be explored, including whether stimulation is best if given 

before, during or immediately after the behavioural assessment tests. Second, cortical 

desynchronization was used to assess optogenetic stimulation effectiveness as based on previous 

work 37, 51, however, that is only an indirect measure of the ACh release and future work could 

make more direct measures 64. Importantly, however, the results of the present study did show that 

the stimulation was not harmful because on all behavioral measures the mice receiving stimulation 

were not impaired relative to the No Stim group. Third, some evidence suggests that therapy within 

24-48 hours of stroke in the mouse can be harmful 65 and so here optogenetic stimulation and 

behavioral recovery assessment began on Day 4 post stroke and the maximal benefit of optogenetic 

stimulation was obtained on Day 7 post stroke on the measure of reach success. This present 

finding suggests that in future work it would be worthwhile to initiate optogenetic stimulation of 

cholinergic neurons and behavioral assessment as early as the first day after stroke66. 

In conclusion, optical stimulation of nucleus basalis cholinergic neurons following focal ischemic 

stroke to the primary forelimb somatosensory area restored some but not all features of skilled 

reaching. There is evidence that some aspects of behavior depend upon the integrity of cortical 

circuits and although animals may use compensatory movements, the recovery of normal 

movement and sensory behavior will depend upon proper replacement of lost connections. 

Nevertheless, that upregulation of ACh improved behavior that depended upon intact motor cortex 

suggests one avenue for improving poststroke functional recovery.  
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Figure Captions 

 

 

Figure 1. Experimental procedure and stimulation paradigm. (A) Schematic of a mouse skull 

marked with the location of ischemic stroke, fiber optic and LFP electrode implantation. (B) 

Stimulation trace shows the onset of laser stimulation at about 6 second. Three examples of LFP 

recordings from M1 area. Shaded blue area indicates illumination of nucleus basalis with 25-ms 

light pulses at 20Hz for 2 sec. Normalized LFP power spectrogram indicates changes in power at 

each frequency averaged for twenty trials. (C) Difference in the activation level of the cortex 

following various laser powers measured by mean power ratio from 20 trials. Shaded error bars 

represent s.e.m. For each plot, y-axis represents normalized power. Dashed lines indicate the 

baseline prior to stimulation. (D) Stimulation Paradigm. Animals in Stimulation group received 

five 1-minute laser stimulations with 3-minutes of rest in between. Stimulation was a square pulse 

at 20 Hz with 25ms on and 25ms off. (E) Experimental timeline before and after stroke induction. 
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All mice were filmed in single pellet reaching task 2 days before stroke and on days 4, 7, 10, 14, 

and 28 poststroke. Optogenetic stimulation occurred daily from day 4 to day 14 poststroke and 

after behavioural assessments. F, food restriction; R, reaching task; LFP, local field potential 

recording; P, perfusion.   

 

Figure 2. No effect of optogenetic stimulation of Nucleus Basalis cholinergic neurons on infarct 

volume. (A) example of ChR2-EYFP fluorescence (left), ChAT immunoreactivity (middle), and 

merged image (right) in coronal sections of nucleus basalis. (B) Fiber optic implant site in the 

nucleus basalis. (C) Representative montage of cresyl violet stained coronal brain sections showing 

the anterior to posterior extent of photothrombotic stroke on the right hemisphere. Stroke site 

includes the primary somatosensory forelimb area. (D) Stroke volume for Stim (n=9) and No Stim 

(n=8) groups. 
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Figure 3. Recovery of endpoint measures is enhanced by optogenetic stimulation. Endpoint 

measures (Mean ± Standard Error) for Stim, No Stim, and Sham Groups on prestroke and 

poststroke days 4, 7, 10, 14, and 28. (A) Success percentage or hit percent. (B) Success percentage 

on first reach attempt. (C) Attempts. *p<0.05, **p<0.01, ***p<0.0001 indicates a significant 

difference between the Stim and Sham Groups. #<0.05, ##p<0.01, ###p<0.0001 indicates a 

significant difference between the No Stim and Sham Groups. $p<0.05, $$p<0.01, $$$p<0.0001 

indicates a significant difference between the Stim and No Stim Groups. 
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Figure 4. Quality of skilled reaching behaviour is improved by optogenetic stimulation of NB 

cholinergic neurons. Averaged mean score (Mean ± SEM) of the twelve movement components 

categorized as posture, advance, and withdraw for Stim, No Stim, and Sham Stroke Groups on 

prestroke and poststroke days 4, 7, 10, 14, and 28. Scores are in a scale of 0 to 1 where 0 indicates 

normal movement and 1 indicates impairment. *p<0.05, **p<0.01, ***p<0.0001 indicates a 

significant difference between the Stim and Sham Groups. #<0.05, ##p<0.01, ###p<0.0001 
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indicates a significant difference between the No Stim and Sham Groups. $p<0.05, $$p<0.01, 

$$$p<0.0001 indicates a significant difference between the Stim and No Stim Groups. 

 

Figure 5. Grasp, withdraw, and hand to mouth during (A) success and (B) miss Pre and Post stroke. 

In miss condition prestroke after reaching, the mouse does not close digits (left) and withdraws the 

hand without supinating (middle). Once the hand gets to the end of the opening, the mouse does 

not check the hand for food (right.). In miss condition post stroke after reaching, the mouse closes 

digits (left) and withdraws the hand while supinating (middle). Once the hand gets to the end of 

opening, the mouse sniffs the hand and checks it for food (right). 
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Figure 6. Stroke-impaired sensorimotor integration is not improved by optogenetic stimulation of 

NB cholinergic neurons. Occurrence (Mean ± SEM) of three behaviours Grasp, Retract Close, and 

Hand to Mouth for Stim, No Stim, and Sham Groups on prestroke and poststroke days 4, 7, 10, 

14, and 28 in Miss condition. *p<0.05, **p<0.01, ***p<0.0001 indicates a significant difference 

between the Stim and Sham Groups. #<0.05, ##p<0.01, ###p<0.0001 indicates a significant 

difference between the No Stim and Sham Groups. $p<0.05, $$p<0.01, $$$p<0.0001 indicates a 

significant difference between the Stim and No Stim Groups. 
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Video Captions 

 

Video 1. Successful reach of a mouse in prestroke and poststroke day 4. The video is slow 

motioned to 10% of its original speed. 

Video 2. Attempt in a miss condition prestroke and poststroke day 4 highlighting three measures 

of sensorimotor integration: grasp, retract close, and hand to mouth. The video is slow motioned 

to 10% of its original speed. 
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