1 High resilience of the mycorrhizal community to prescribed seasonal burnings in

2 a Mediterranean woodland

- 3 Stav Livne-Luzon^{1^{\dagger}}, Hagai Shemesh², Yagil Osem³, Yohay Carmel⁴, Hen Migael²,
- 4 Yael Avidan⁵, Anat Tsafrir⁶, Sydney I. Glassman⁷, Thomas D. Bruns⁸, & Ofer
- 5 Ovadia^{6†}
- ¹ Weizmann Institute of Science, Department of Plant & Environmental Sciences,
- 7 Rehovot 76100, Israel
- ⁸ ²Tel-Hai College, Department of Environmental Sciences, Kiryat Shmona 1220800,
- 9 Israel
- ³Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet
- 11 Dagan.
- ⁴Faculty of Civil and Environmental Engineering, Technion Israel Institute of
- 13 Technology, Haifa.
- ⁵Ben-Gurion University of the Negev, Mitrani Department of Desert Ecology, Swiss
- 15 Institute for Dryland Environmental and Energy Research, The Jacob Blaustein
- 16 Institutes for Desert Research, Sede Boqer Campus, 84990, Israel
- ⁶Ben-Gurion University of the Negev, Department of Life Sciences, POB 653, Beer
- 18 Sheva 84105, Israel
- ⁷UC Riverside, Department of Microbiology and Plant Pathology, Riverside, CA,
- 20 92521, USA
- ⁸UC Berkeley, Department of Plant and Microbial Biology, Berkeley, CA 94720-
- 22 3102, USA
- [†] **Corresponding author**: Stav Livne-Luzon Weizmann Institute of Science, Department
- 24 of Plant & Environmental Sciences, Rehovot 76100, Israel. E-mail:
- 25 <u>stavl@weizmann.ac.il</u>

26 Abstract

27	Fire effects on ecosystems range from destruction of aboveground vegetation
28	to direct and indirect effects on belowground microorganisms. Although variation in
29	such effects is expected to be related to fire severity, another potentially important and
30	poorly understood factor is the effects of fire seasonality on soil microorganisms. We
31	carried out a large-scale field experiment examining the effects of spring versus
32	autumn burns on the community composition of soil fungi in a typical Mediterranean
33	woodland. Although the intensity and severity of our prescribed burns were largely
34	consistent between the two burning seasons, we detected differential fire season
35	effects on the composition of the soil fungal community, driven by changes in the
36	saprotrophic fungal guild. The community composition of ectomycorrhizal fungi,
37	assayed both in pine seedling bioassays and from soil sequencing, appeared to be
38	resilient to the variation inflicted by seasonal fires. Since changes in the soil
39	saprotrophic fungal community can directly influence carbon emission and
40	decomposition rates, we suggest that regardless of their intensity and severity,
41	seasonal fires may cause changes in ecosystem functioning.
42	Keywords: Cistus, ecosystem resilience, ectomycorrhizal fungi, fungal richness,
43	Illumina MiSeq, Mediterranean, <i>Pinus halepensis</i> , prescribed burns, seasonality.
44	

45 **Declarations**

46 Funding

47 This research was co-supported by the United States-Israel Binational Science
48 Foundation (BSF Grant 2012081) and Tel-Hai College.

49 Conflicts of interest/Competing interests

- 50 We declare no conflicts of interest and that this material has not been
- 51 submitted for publication elsewhere.
- 52 **Ethics approval** Not applicable
- 53 **Consent to participate** Not applicable
- 54 **Consent for publication** Not applicable
- 55 Availability of data and material
- 56 Sequences were submitted to the National Center for Biotechnology
- 57 Information Sequence Read Archive under accession numbers SRRXXX SRRXXX.
- 58 Code availability Not applicable

59 Authors' contributions

60 OO HS TB YO YC conceived and designed the experiment. SSL YA HM AT

61 performed the experiment. SIG provided the pipeline scripts, and guidance in

62 bioinformatics work and analyses. SLL OO HS wrote the paper and analyzed the

63 data, and all authors contributed substantially to revisions.

64 Acknowledgements

65 This research was co-supported by the United States-Israel Binational Science

66 Foundation (BSF Grant 2012081) and Tel-Hai College. We would like to thank the

- 67 local forester, Mr. Yehezkel Binyamini, and the professional crew of the Jewish
- 68 National Fund (JNF; Israel's forest service) who managed the prescribed burnings.
- 69 We would like to thank Tal Shay and Hadas Ner-Gaon for providing technical support
- required to install software and packages on the computer cluster and for their help in

- 71 debugging the pipeline scripts. We also wish to thank Judy Chung and Constantine
- 72 Klimovitz for their technical help with the plant harvesting and setting-up the
- raisequencing library, and Uri Yogev for his help with the soil properties analyses.

75 Introduction

76	Fire is one of the most common natural and anthropogenic disturbances
77	leading to secondary succession of both plant and fungal communities (Marlon et al.
78	2009). Exploring the effects of fire on ecosystem functioning is of high priority,
79	especially due to the increase in fire risk associated with climate change (Moriondo et
80	al. 2006; Pechony and Shindell 2010; Westerling et al. 2006). The extent of damage
81	fires inflict on plant communities is manifested not only through the destruction of
82	plant tissues, but also in destruction of symbiotic soil microbes, which may be
83	necessary to buffer against fire effects, thus increasing plant community resilience
84	(Johnstone et al. 2010; Kipfer et al. 2011). Most of the temperate and boreal trees
85	around the globe are obligately symbiotic with ectomycorrhizal fungi (EMF),
86	meaning that their establishment is dependent upon the occurrence of an appropriate
87	symbiont community (Miller et al. 1998). Therefore, fire effects on the belowground
88	biota may be far-reaching with regard to vegetation regeneration and growth during
89	the first few post-fire years (Neary et al. 1999). For example, a fire study based on
90	chrono-sequence found that fire temporarily shifted the fungal community structure
91	and function by increasing the abundance of saprotrophic fungi (Sun et al. 2015).
92	Eventually the community returned to its pre-fire state, but at a very slow rate (Sun et
93	al. 2015). Such a community shift towards saprotrophic fungi may have a detrimental
94	effect on ecosystem functioning because it may shift the balance between obligate
95	symbiotic EMF, associated with tree roots, and saprotrophic fungi. Besides the clear
96	negative outcome of reduced symbionts available for plants (Collier and Bidartondo
97	2009), competition between these two fungal guilds can suppress decomposition rates
98	(i.e., the Gadgil effect, Fernandez and Kennedy 2016; Gadgil and Gadgil 1975;
99	Gadgil and Gadgil 1971).

100	Various studies have demonstrated both direct and indirect effects of fire on
101	the EMF community while consequently influencing the post-fire regeneration of the
102	plant community (Buscardo et al. 2010; Glassman et al. 2016b; Johnson 1995;
103	Marlon et al. 2009; Miller and Urban 1999; Taudière et al. 2017; Veen et al. 2008).
104	Although such effects are expected to be related to fire severity, which often varies
105	during the year, less is known about the specific effect of fire season on the EMF
106	community. The aboveground importance of fire season is well established.
107	Specifically, compared with spring fires, autumn fires consume greater portions of the
108	landscape area, standing plant biomass and other organic material (Knapp et al. 2005),
109	while having more profound negative effects on the understory vegetation richness
110	(see Knapp et al. 2009 for a thorough review). However, less attention has been given
111	to the effect of fire season on the subterranean part of the ecosystem (but see, de
112	Roman and de Miguel 2005; Smith et al. 2004).

Examining the effects of prescribed burns on the EMF community in a natural 113 114 setting of ponderosa pine stands in eastern Oregon, Smith et al. (2004) found that 115 autumn fires had long lasting, devastating effects on the mycorrhizal community, with 116 a reduction of 80% in molecular species richness. Spring fires, however, did not differ 117 from the unburned control. Smith et al. (2004) suggested that observed differences in 118 the EMF community composition were the result of inter-season variation in fire 119 severity. Specifically, the low moisture content in the fuel and in the soil during late 120 season, resulted in higher soil temperatures and increased microbial mortality. Such 121 extreme soil temperatures may damage the mycorrhizal community directly by 122 destroying the mycelia, or indirectly by host death, both can lead to a long lasting 123 negative effect on the EMF community (Klopatek et al. 1994). On the contrary, 124 spring fires usually occur after the wet season when soil moisture is high and heat

125	transfer is highly efficient, compensating for the increase in soil temperature caused
126	by these fires, and thus having a weaker detrimental effect on the soil biota. Seasonal
127	fire effects can be also related the phenological stages of both plants and fungi,
128	resulting in a differential effect on their community composition. For example, in
129	many fungal species characterizing Mediterranean habitats, the amount of mycelium
130	decreases in summer, probably due to hot and dry conditions, whereas in autumn it
131	increases again (De la Varga et al. 2013). Furthermore, during the hot dry
132	Mediterranean summer selection may favor fungal species which can better cope with
133	these extreme conditions, resulting in a seasonal shift in the composition of the fungal
134	community. Clearly, these shifts should be more pronounced in open canopy gaps
135	created by spring fires, where the soil is more exposed to direct sun radiation. All of
136	the above imply that fire timing can play a major role in shaping the soil fungal
137	community in general and the EMF community in particular, which in turn can
138	determine species-specific plant establishment and growth (Klironomos et al. 2010;
139	Livne-Luzon et al. 2017b), and plant species' richness (Klironomos 2002). We thus
140	hypothesized that fire season should have a differential effect on the composition of
141	the soil fungal community, shifting the balance between obligate symbiotic EMF,
142	associated with tree roots, and saprotrophic fungi.

Most studies on the post-fire dynamics of the EMF community have been performed in conifer forests (Dove and Hart 2017), located in temperate and boreal areas. In comparison, much less is known about the effect of fire on the EMF community in fire-prone Mediterranean ecosystems. Notably, a few recent studies have brought new attention to fire effects on EMF communities in Mediterranean habitats dominated by *Quercus* or *Cistus* sp. (Buscardo et al. 2015; Buscardo et al. 2010; de Roman and de Miguel 2005; Hernández-Rodríguez et al. 2013), emphasizing

150	the need to explore these more neglected habitats. Our research aimed to study the
151	effects of fire season on the soil fungal community and specifically on the EMF
152	community in a Cistus dominated eastern Mediterranean ecosystem. We manipulated
153	fire seasonality using early and late season prescribed burns, and examined the
154	various effects of fire season on the soil- and ectomycorrhizal fungal communities
155	through both sequencing and pine seedling bioassays.
156	Succession in Mediterranean woodlands often begins with a pioneer stage of
157	Cistus salviifolius followed by Pinus halepensis colonization (Ne'eman 1997; Sheffer
158	2012). Cistus is considered an early 'pioneer' species that increases in density,
159	especially after fire disturbance (Ne'eman and Izhaki 1999). Pinus halepensis is a

dominant tree species in natural (Liphschitz and Biger 2001) and planted (Osem et al.

161 2008) forests in Israel, known for its adaptive post-fire regeneration (Ne'eman 1997;

162 Ne'eman et al. 2004). Since at early successional stages *Cistus* shrubs are the main

163 EMF hosts, we hypothesized that *P. halepensis* colonization should be facilitated by

the EMF community characterizing *Cistus*. We therefore compared the pine-

associated EMF community under *Cistus* shrubs with that of adjacent open canopy

166 gaps using pine bioassays. Doing so allowed us to examine the soil fungal spore bank,

167 essential for the post-fire regeneration of pines in this ecosystem (Glassman et al.

168 2016b).

169 Materials and Methods

170 *The study area*

The study site was located in Har Yaaran in the Judean lowlands of Israel (600
m ASL, Fig. S1). The climate is Mediterranean, with an average annual precipitation
of 500-600 mm; between May and October it hardly rains, while solar radiation is

174	very high (Goldreich 2003). The soil is clayish and shallow due to large limestone
175	plates. The vegetation cover is of a Mediterranean shrubland (garrigue), with patches
176	of small multi-stem trees (e.g., Quercus calliprinos and Rhamnus lycioides), shrubs
177	(1-1.5 m high; e.g., Pistacia lentiscus, Rhamnus lycioide and Calicotome villosa),
178	dwarf-shrubs (≤1 m; e.g., Cistus salviifolius, Cistus creticus and Teucrium
179	divaricatum), and patches of herbaceous vegetation. The main ectomycorrhizal hosts
180	in the study area are (by order of dominance) C. salviifolius, Q. calliprinos and C.
181	creticus. There is an adjacent planted pine (P. halepensis and P. brutia) forest uphill
182	of the study area, but there were no mature pine trees and only a few pine seedlings
183	were found in the research plots.
184	Experimental design

The experimental system consisted of twelve 50×30 m plots, each divided into eight 5×5 m sampling subplots (Fig. S1). Plots were randomly assigned to one of the three following fire treatments (four plots per treatment): 1) spring burns (due to exceptionally late rains, spring burnings were conducted on the 1st of June 2014), 2) autumn burns (11th September 2014), and 3) unburned control plots.

190 Soil sampling

Soil samples were collected at four different sampling periods: 1) Pre-fire soil
samples (i.e., March 2014), 2) Post-Spring fire (two weeks after the spring burns, i.e.,
June 2014), 3) Post-Autumn fire (two weeks after the autumn burns, i.e., Oct- 2014),
and 4) Post-fires (~1 year after the collection of pre-fire samples, i.e., June 2015).
This experimental design and sampling scheme (Fig.1), enabled us to quantify the net
effects of spring and autumn burns on the soil fungal community composition,
conveying the actual effects of seasonal fires in typical Mediterranean woodlands.

198	All samples were collected using the following protocol: three soil cores (10
199	cm depth, ~ $0.5L$) were collected from each of the eight subplots located within each
200	experimental plot. Since the field site is characterized by several rocky patches, each
201	soil core was collected from wherever possible within the 5×5 m subplot, staying
202	within 0.5 m from a Cistus shrub (the dominant EMF host in the study area). Each soil
203	core was bagged separately, and all tools were sterilized with 70% ethanol when
204	moving among different subplots to avoid cross-sample contamination. Upon
205	returning to the lab, the three soil cores of each subplot were sieved (2 mm) and
206	homogenized. Then 0.25 g of soil from each sample was directly added to Powersoil
207	DNA tubes (MoBio, Carlsbad, CA USA), and stored in 4°C up to one week before
208	DNA extraction. The remaining soil from the Pre-fire (March 2014) and Post-fires
209	(June 2015) was kept (4°C) in a zip-lock bag for later soil property analysis.
210	Greenhouse bioassays
211	Fungal DNA extracted from the soil may originate from active hyphae or from
212	the soil EMF spore bank (Lindahl et al. 2013; Taylor and Bruns 1999). To assess the

213 inoculation potential of the post-fire EMF community, we bioassayed the soils

collected from the study area with *P. halepensis* using standard protocols (Glassmanet al. 2016a).

We used the same protocol described above to collect soil samples for the greenhouse bioassay from each of the twelve experimental plots, while distinguishing between two different microhabitats: 1) under a *Cistus* shrub, and 2) an open area without any perennial shrub cover (12 plots \times 8 subplots \times 2 microhabitats = 192 soil samples). Soil sampling occurred in October 2014, two weeks after the autumn burns and ~4 months after the spring burns, i.e., before the rainy season when most fungi

222	retains activity. Soil samples were air-dried to kill active vegetative fungal hyphae
223	before assaying for resistant propagules (Glassman et al. 2015). Pinus halepensis
224	seeds were soaked in water for 48 h, after which they germinated in inert growing
225	media – vermiculite, under controlled conditions in a growth chamber (22 °C, 80% rh,
226	17 days), and were then planted in the dried soil from each of the 192 bioassay soil
227	samples. Pine seedlings were planted in 200 mL containers using a 1:1 ratio of dried
228	soil and autoclaved sand (121 °C for 20 min \times 2), to improve drainage. We controlled
229	for the presence of airborne fungal spores in the greenhouse by adding fifteen
230	replicates of pots containing pine seedlings planted in autoclaved sand. Plants were
231	watered daily and grown in the greenhouse under semi-controlled conditions without
232	fertilizer for approximately six months before harvesting. Treatments were
233	randomized among trays upon initial planting. In total, 207 seedlings were planted (12
234	plots \times 8 subplots \times 2 microhabitats = 192 soil samples + 15 controls). After six
235	months, due to harsh summer conditions, only 119 seedlings had survived (8-14
236	seedlings per plot). Upon harvesting, plants were removed intact from the pots and
237	washed under tap water. Then, roots were thoroughly scanned under a dissecting
238	microscope for colonized root tips. All colonized root tips were removed using
239	sterilized forceps (70% ethanol), inserted into a 1.5 ml Eppendorf tube, and
240	immediately stored in a -20°C freezer. The tubes were immersed in liquid nitrogen at
241	the end of the day, and stored in a -80°C freezer until DNA extraction.
242	Molecular identification of species and bioinformatics
243	Molecular identification of species followed the methods of Glassman et al.

Molecular identification of species followed the methods of Glassman et al. (2016b) with minor modifications during the DNA extraction stage. Generally, the ITS1 region was PCR targeted, barcoded and sequenced using Illumina MiSeq technology. For full description of the molecular identification of species and the

247	respective bioinformatic analyses see Supplement S1 and Table S1 in online resource
248	1. Illumina data were processed using a combination of the UPARSE (Edgar 2013)
249	and QIIME (Caporaso et al. 2010) pipelines following the methods of Smith and Peay
250	(Smith and Peay 2014), and Glassman et al. (Glassman et al. 2016b) with minor
251	modifications related to software updates. Taxonomic assignments were made in
252	QIIME based on the UNITE database (Koljalg et al. 2005). FUNguild was then used
253	to parse OTUs into ecological guilds (Nguyen et al. 2016).
254	In the greenhouse bioassay, we had ten control pots containing only potting
254 255	In the greenhouse bioassay, we had ten control pots containing only potting material and plants (no added experimental soil). These root tip samples had low
255	material and plants (no added experimental soil). These root tip samples had low
255 256	material and plants (no added experimental soil). These root tip samples had low colonization resulting in a total of 48 fungal OTU's (for all of the controls) with low
255 256 257	material and plants (no added experimental soil). These root tip samples had low colonization resulting in a total of 48 fungal OTU's (for all of the controls) with low read abundance (55.08 ± 1.23 ; mean ±1 SE), we thus subtracted these read abundances

260 Statistical analyses

261 Multivariate analyses were performed in PRIMER v.6 of the Plymouth Marine 262 Laboratory (Clarke and Warwick 1994). Relative abundances were fourth-root 263 transformed (Clarke and Warwick 1994; Clarke et al. 2008). A permutational 264 MANOVA (PERMANOVA) based on Bray-Curtis similarity matrix (Anderson et al. 265 2001) followed by non-metric multi-dimensional scaling (nMDS) ordination was 266 performed to test for the combined effect of fire season (whole plot) and sampling 267 treatments (within plot) on the entire fungal community composition (and on the EMF 268 community) using a split-plot experimental design. A similar analysis was used to 269 examine the combined effects of fire season (whole plot treatment) and microhabitat 270 (Cistus vs. Open; within plot treatment) on the fungal community composition

271	associated with pine roots (greenhouse bioassay experiment). We examined the same
272	effects on the relative abundance of each fungal OTU in order to search for specific
273	fungal species that were differentially expressed among these bioassay treatments, the
274	p-values obtained from these tests were than corrected for multiple testing using the
275	false discovery rate correction (Benjamini and Hochberg 1995) implemented in the
276	p.adjust function of the R Stats Package (R Development Core Team 2010). To
277	identify the percentage contribution of different fungal OTU's to observed differences
278	in community composition, we used a similarity percentages routine (SIMPER)
279	(Anderson et al. 2001). In all cases, qualitative similar results were obtained when a
280	square-root or no transformation were applied, as well as when using a Jaccard
281	similarity matrix (Clarke and Warwick 1994) based on presence/absence data (Clarke
282	and Warwick 1994), so unless otherwise mentioned all results refer to the fourth-root
283	Bray-Curtis similarity matrix. To test for the combined effect of fire season and
284	sampling period on the ratio of saprotrophic to EM fungi ((saprotrophic/EM)/total
285	OUT's) and on the bioassay OTU richness (and several other diversity indexes), we
286	used split-plot ANOVAs with fire season as the whole-plot factor and sampling
287	period as the within-plot factor. These analyses were performed using STATISTICA
288	v.12 (StatSoft, Inc., Tulsa, OK, USA).

289 **Results**

Fire intensity and severity were largely consistent between spring and autumn burns (Table S2). Notably, the amount of variation in fire intensity and severity among experimental plots was higher during spring than during autumn burns (Fig. S2). For full description of the environmental conditions monitored pre- and during the burns, proxies of fire intensity and severity measured during and post the burns, and analyses of these variables see Supplement S2 in online resource 1. Monthly

296 precipitation, daily precipitation, number of rainy days and ambient temperature

297 during the sampling periods are presented in Fig. S3.

298 Soil properties including phosphate, nitrite, nitrate, total ammonia-nitrogen,

soil organic matter content, and pH were all consistent among fire seasons (Table S3).

- 300 For full description of these variables and their respective analyses, see Supplement
- 301 S3 in online resource 1.

302 Soil fungal community

303 *Time and seasonal fire effects on soil fungal richness and diversity*

304 OTU richness and diversity of soil fungi varied significantly among sampling 305 periods (Tables S4-S6 for the entire soil fungal, EMF and saprotrophic fungal 306 communities, respectively; for the most abundant EMF and saprotrophic fungal taxa 307 see Table S7). The effect of fire season was inconsistent among sampling periods 308 (i.e., Fire season × Sampling period interaction). However, this pattern was significant 309 only when examining the entire fungal community, irrespective of the diversity index 310 used (Tables S4-S6). There were no significant differences in OTU richness and 311 diversity among fire treatments in all sampling periods (March 2014, October 2014 312 and June 2015), except for the post-spring fire period (June 2014; Fig. S4). 313 Immediately after the spring burns, there was a significant reduction in OTU richness 314 and diversity in burned compared to unburned control plots. Approximately one year 315 after the spring burns these differences diminished (Fig. S4). 316 Time and seasonal fire effects on soil fungal Community composition

317 Community composition of soil fungi varied significantly by season

318 (PERMANOVA: $F_{3,25.81}$ = 12.75, P = 0.0001; Table S8; Fig. S5a), but both fire season

319	$(F_{2,10.53} = 0.85, P = 0.621)$ and the interaction between fire season and sampling period
320	$(F_{5,23.62} = 0.67, P = 0.921)$ were not significant. However, there was higher variation
321	in fungal community composition among plots subjected to spring burns ($F_{10,249} =$
322	3.42, $P = 0.0001$). Similar patterns were observed when examining the EMF and
323	saprotrophic fungal community composition (Tables S9 & S10; Fig. S5).
324	PERMANOVA pair-wise comparisons (Table 1) indicated that there were no
325	significant differences in community composition of the soil fungi among fire seasons
326	during the pre-fire sampling period (<i>i.e.</i> , March 2014), and the same holds true when
327	examining the pre-fire EMF and saprotrophic fungal communities. After spring burns
328	(<i>i.e.</i> , June 2014), community composition of the entire and saprotrophic fungal
329	communities varied significantly between the control and spring burned plots
330	$(t_{11.1}=1.52, p=0.024 \text{ and } t_{11.1}=1.59, p=0.020, \text{ for the entire and saprotrophic fungal}$
331	communities, respectively). However, after autumn burns (i.e., October 2014), these
332	differences disappeared ($t_{6.14}$ =1.04, p=0.409), probably due to the large difference in
333	community composition between the control and recently burned autumn plots
334	$(t_{6.14}=1.67, p=0.006, t_{6.14}=1.53, p=0.007 \text{ and } t_{6.14}=1.40, p=0.025, \text{ for the entire, EM}$
335	and saprotrophic fungal communities, respectively). This strong effect of autumn
336	burns on the entire soil fungal community translated into nearly-significant
337	differences between the autumn and spring burned plots ($t_{6.05}$ =1.24, p=0.058). In the
338	post-fires sampling period (i.e., June 2015), we observed a significant difference
339	between the control and autumn burned plots ($t_{6.06}$ =1.39, p=0.031), but only when
340	examining the entire fungal community. In addition, there was a minor nearly
341	significant difference between the control and spring burned plots ($t_{6.08}$ =1.25,
342	p=0.058), but not between autumn and spring burned plots ($t_{6.1}$ =1.02, p=0.406).When
343	examining a subset of the data including only the post-fire sampling period (i.e., June

344	2015), there were significant differences in species composition of soil fungi among
345	the three fire treatments (PERMANOVA: $F_{2,9.93}$ = 1.49, P= 0.008; Table S11; Fig. 2a;
346	this effect was weaker when examining subsets of the EM and saprotrophic fungal
347	communities: Tables S12 & S13; Figs. S6). In particular, the soil fungal communities
348	varied between the autumn burned and unburned control plots (PERMANOVA pair-
349	wise contrast: $t_{6.05} = 1.38$, P= 0.030; Table S14). SIMPER analysis (Fig. 2b) illustrated
350	that numerous OUT's generated 90% of the dissimilarity among fire treatments and
351	the contribution of each one of them was ~1%. Putative EMF taxa such as <i>Tuber</i> and
352	Inocybe contributed ~14% to this dissimilarity, while putative saprotrophic fungi
353	generated 22-25% of the dissimilarity among fire treatments. These saprotrophic
354	fungi were attributed to various functional guilds such as wood and dung saprotrophs,
355	but most of these were unidentified to a level allowing for the assessment of their
356	exact function (for the most abundant EMF and SAP taxa in the various soil samples
357	see Table S7). Nevertheless, the ratio of saprotrophic to EM fungi
358	((saprotrophic/EMF)/total OUT's) varied among both sampling periods (split plot
359	ANOVA: F _{3,22} =41.58 p<0.001; Table S15; Fig.3) and fire season treatments
360	($F_{2,10}$ =8.26 p=0.008). Prior to the burns there were no significant differences between
361	experimental plots (t=0.39, p=0.415). Spring burns led to a reduction in the ratio of
362	saprotrophic fungi, but this pattern was not significant (t=-0.64, p=0.520). Autumn
363	burns led to a significant reduction in the ratio of saprotrophic fungi compared to that
364	of unburned control plots (t=3.12, p=0.002), and this reduction resulted in a
365	significant difference between the autumn and spring burned plots (t= 2.66, p=0.008).
366	Approximately one year after the spring burns (i.e., June 2015), the differences among
367	the control and burned plots disappeared (t=1.12, p=0.259). However, there were still
368	significant differences between the autumn and spring burned plots (t=2.14, p=0.032).

369 *Greenhouse bioassay EMF community*

370	Consistent with the results of the soil EMF community, OTU richness and
371	diversity did not vary among fire treatments, nor between microhabitats (Table S16).
372	Community composition of the bioassay samples did not vary among fire
373	treatments (PERMANOVA: $F_{2,9}$ = 0.84, P = 0.605; Table S16; Fig. S6c). Also, there
374	was no significant effect of microhabitat (PERMANOVA: $F_{1,9} = 1.76$, $P = 0.138$), nor
375	was there a significant fire treatment by microhabitat interaction (PERMANOVA:
376	$F_{2,9} = 0.45, P = 0.916$).

377 Description of the bioassay EMF community

378	Regardless of fire season and microhabitat, pine roots in the bioassay were
379	dominated by three major fungal species: Tuber oligospermum (21-58%), Tomentella
380	sp.1 (27-51%) and Suillus collintus sp.1 (10-27%). Other fungal species belonging to
381	EMF genera (e.g. other Tuber spp., Inocybe etc.) accounted for 1-24% of the EMF
382	community (Fig. 4a). These three dominant species were differentially abundant
383	between the Cistus and the open microhabitat: Tuber oligospermum had higher
384	abundance under Cistus shrubs than in the open gaps, while S. collintus and Terfezia
385	had higher abundance in the open microhabitat (Fig. 4b). Differential expression
386	analysis demonstrated that this pattern was only significant (p<0.01) for Tuber
387	oligospermum.

388 Discussion

We report here the results of the first comprehensive field experiment quantifying the effects of seasonal fires on the soil fungal community in the eastern Mediterranean basin. Fire season caused differential effects on the community 392 composition of soil fungi (Fig.2), driven by alterations within the saprotrophic fungal

community (Fig. 3), with the EMF community demonstrating high resilience.

394 Differential fire season effects on soil fungi

395	Our spring and autumn burns did not differ in their intensity and severity,
396	probably due to the specific environmental conditions required for prescribed burns
397	(Allen et al. 1968). Yet, they led to differential modifications in the soil fungal
398	community. Specifically, spring burns caused reductions in soil OTU richness and
399	diversity. But, ~one year after the burns these differences disappeared. Moreover, fire
400	season induced changes in the community composition of soil fungi, which were
401	mostly driven by alterations within the saprotrophic fungal guild (Fig. 2, Fig. 3).

402	The most parsimonious explanation for the variation in fungal community
403	composition between burning seasons is the time passed since the fires (i.e., areas
404	subjected to spring burns had a longer time to recover before the soil sampling).
405	Another possible explanation is related to fire timing effects. Specifically, seasonal
406	fires occur at different phenological stages of the fungi, potentially resulting in a
407	differential effect on their community composition. For example, fire occurring
408	during the fruiting season might inflict a greater damage than fires occurring during
409	dormancy. Nevertheless, variation in fire intensity and severity among our
410	experimental plots was higher during spring than during autumn burns.
411	Correspondingly, also the variation in community composition of soil fungi was
412	higher during spring, suggesting that fire intensity or severity, regardless of fire
413	season, can lead to changes in the soil fungal community.

Experiencing no significant change due to disturbance (i.e., resistance) and
being capable of returning to their pre-disturbance composition (i.e., resilience) are

416	two important features of healthy ecosystems (Shade et al. 2012). Similar to findings
417	from high severity wildfires in CA conifer forests (Glassman et al. 2016b), and in
418	various conifer wildfires in the west-Mediterranean basin (Buscardo et al. 2012;
419	Buscardo et al. 2015; Buscardo et al. 2010), the EMF community represented by both
420	soil samples and pine seedling bioassays appeared to be both resistant and resilient to
421	seasonal fire effects. First, we could not detect a significant effect of fire on EMF
422	richness or diversity. This result is in contrast to most studies of prescribed burns,
423	illustrating a negative effect of fire on EMF richness (Taudière et al. 2017). Second,
424	autumn burns affected EMF community composition, but these differences between
425	the control and autumn burned plots faded quickly and disappeared by the next
426	sampling period (Table 1). Numerous studies have demonstrated that prescribed burns
427	induce changes in the soil fungal community composition (Anderson et al. 2007;
428	Bastias et al. 2006; Hernández-Rodríguez et al. 2015). However, we could not detect
429	a significant effect of fire season on the EMF community composition, neither in soil
430	samples, nor in pine seedling root tips examined in the bioassay experiment (Fig. 2),
431	suggesting high resilience of the EMF spore bank community to fires. This was
432	somewhat surprising, since we are aware of only one other study that did not detect a
433	significant effect of prescribed burns on the soil EMF community composition or
434	richness (Southworth et al. 2011). However, examining the EMF spore bank
435	community after a high-intensity wildfire, Glassman et al. (2016b) also demonstrated
436	high resilience of the EMF community in greenhouse bioassays. The ability of the
437	EMF community to survive fire perturbations should contribute to ecosystem
438	stability, since changes in the EMF community can result in structural and functional
439	changes in the respective plant community (Bever et al. 2010).

- *Temporal shift in soil fungi*

Fungal seasonality has recently been identified as a key feature of natural fungal communities (Averill et al. 2019). Notably, our field experiment lends support to this idea. While examining the soil fungal community, we observed high temporal variation in the soil fungi among sampling periods regardless of fire treatment (i.e., differences appeared also in the unburned control plots). Such variation among sampling periods suggest that fires occurring at different seasons are impacting different pre-fire fungal communities.

448 Furthermore, EM and saprotrophic fungi compete for limiting resources held 449 within the soil organic matter (Gadgil and Gadgil 1975). These groups have 450 complementary roles in the cycling of nutrients through soil organic matter (Talbot et 451 al. 2014). The observed temporal differences in community composition were mostly 452 related to changes in the relative abundance of saprotrophic fungi among sampling 453 periods (Fig. 2b, Fig.3), which can be related to temporal variation in precipitation 454 attributes. Even though there were no differences in the amount of rain, the number of 455 rainy days marginally varied among sampling periods and was lowest prior to autumn 456 burns (0.8±0.89, mean±1SE; Fig. S3). Conversely, Bell et al. (Bell et al. 2009) 457 showed that the saprophytic community of a desert grassland was unaffected by 458 precipitation frequency, however, they suggested that soil temperature, rather than 459 soil moisture strongly influenced fungal carbon use and community structure, and 460 function dynamics. This makes sense, since temperature (i.e., evapotranspiration) 461 affects how much of the soil water will remain available for both plants and fungi. As 462 expected, ambient temperature was higher before autumn burns $(25.00\pm0.91 \text{ before})$ 463 autumn vs. 17.35 ± 1.64 before spring burns, mean ±1 SE). Even though soil moisture 464 was only slightly lower during autumn $(3.3\pm0.22, \text{mean}\pm1\text{SE})$ than during spring 465 burns (7.69 \pm 0.39, mean \pm 1SE), plant water content during autumn burns (0.18 \pm 0.01)

was half of that measured during spring burns (0.28±0.02, mean±1SE). This suggests
that both temperature and precipitation can influence water availability, thus playing
an important role in shaping fungal communities in the semi-arid Mediterranean
ecosystem.

470 The EMF community of Cistus-dominated East-Mediterranean ecosystem

471 In the eastern Mediterranean ecosystem *Cistus* shrubs are often the main EMF 472 hosts at early successional stages, followed by later successional species such as Pinus halepensis. Our data represent the first comprehensive description of the EMF 473 474 community associated with the understudied Cistus-dominated eastern Mediterranean 475 ecosystem. We hypothesized that *P. halepensis* colonization should be facilitated by 476 the EMF community characterizing *Cistus*. We observed high abundance of *Tuber* 477 oligospermum associating with pines grown on soils collected underneath Cistus 478 shrubs (Fig. 4), suggesting a newly described link between T. oligospermum, P. 479 halepensis and the local Cistus shrubs (C. salviifolius, C. creticus). This finding is in 480 concurrence with other studies of *Cistus* dominated ecosystems in the western 481 Mediterranean basin (Comandini et al. 2006), describing the association between 482 *Cistus* and various *Tuber* species. Similarly, but in a conifer-dominated ecosystem, 483 Buscardo et al. (2012) and Glassman et al. (2016b) found Rhizopogon (a Pinaceae 484 specific truffle) increasing in abundance after fire, possibly indicating a pre-485 adaptation of these hypogeous fungi to fire survival. Since mycorrhizal interactions 486 are often not species-specific (e.g., a mature tree facilitating the establishment of 487 seedlings of a different tree species; Bai et al. 2009; Dickie et al. 2002; Grau et al. 488 2010; Henry et al. 2015; Kennedy et al. 2003; Kennedy et al. 2012; Richard et al. 489 2009), these newly described association suggests that interspecific mycorrhizal 490 facilitation is one possible mechanism of facilitation between *Cistus* and *pines*. Such

491	facilitation processes can play an important role in shaping plant community
492	dynamics, vegetation structure and ecosystem functioning (Hayward et al. 2015;
493	Horton et al. 1999). However, the mechanisms governing such facilitation processes
494	are yet to be unravel.
495	Open canopy gaps were mostly dominated by Suillus spores (Fig. 4b). Suillus
496	is known for its long-lived (Nguyen et al. 2012), long dispersal distance spores
497	(Glassman et al. 2017; Glassman et al. 2015; Peay et al. 2012) and are known for
498	dominating open microhabitats spore banks. Another dominant fungal genus was
499	Tomentella, colonizing pine seedlings grown on soil collected from all fire treatment
500	plots. Similarly, Buscardo et al. (Buscardo et al. 2012) reported that Tomentella ellisii
501	colonized both pine and oak seedling grown in soil obtained from a short fire return
502	interval site dominated by Cistus ladanifer. Interestingly, in a previous study from
503	northern Israel, the genus Tomentella also dominated pine seedlings grown in soils
504	collected from a mixed forest site (Livne-Luzon et al. 2017a).

505 Conclusions

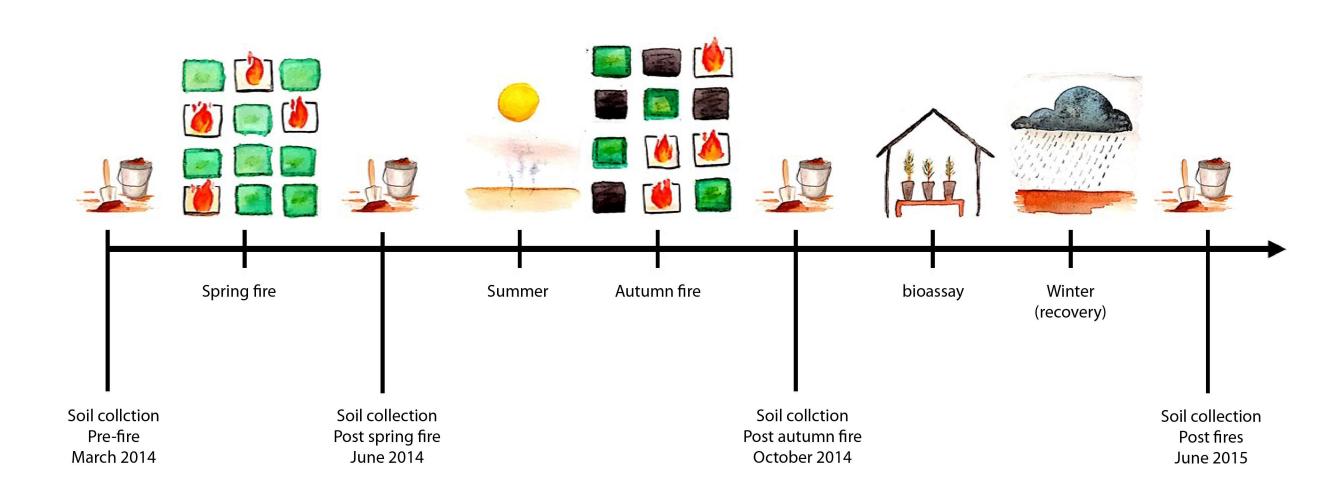
506 We observed largest differences due to fire season in the total soil fungal, 507 rather than in the EMF community, and this effect was largely driven by alternations 508 within the saprotrophic fungal guild. Most data on fungal response to fire comes from 509 northwestern USA (Taudière et al. 2017), where fires are typically of higher severity 510 than in the eastern Mediterranean basin. Such fires, as those attained in our study, are 511 less likely to lead to host death, or to inflict direct damage to soil microorganisms. 512 Therefore, Mediterranean fires might induce different selection pressure on the soil 513 biota. Even though the EMF community appeared to be resilient to fire, saprotrophic 514 and EM fungi were documented to compete over similar niche requirements in many

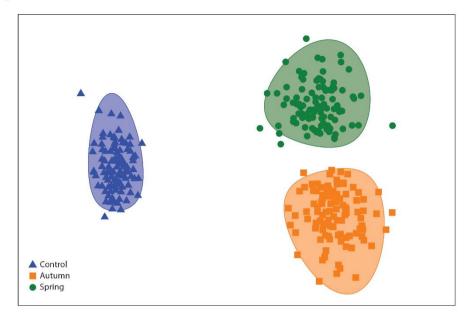
- 515 ecosystems (Leake et al. 2002). Therefore, these changes in the saprotrophic
- 516 community composition might have an additional indirect effect on the EMF
- 517 community composition. Since small-scale changes in carbon inputs can cascade to
- affect decomposition rates and carbon emissions (Hawlena et al. 2012; Schmitz et al.
- 519 2014), these small yet distinct differences in the soil fungal community composition
- 520 can further affect ecosystem functioning.
- 521

522 **References**

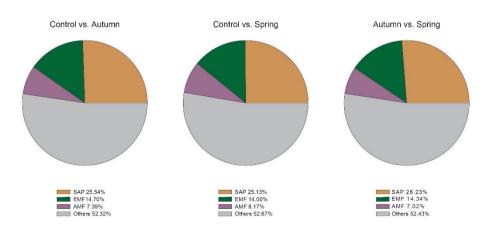
523	Allen M, Berry R, Gill D, Hayes G, Truesdell P, Zwolinksi M, Perovich J (1968)
524	Guide to prescribed fire in the Southwest Tucson, AZ: Southwest Interagency
525	Fire Council
526	Anderson IC, Bastias BA, Genney DR, Parkin PI, Cairney JW (2007) Basidiomycete
527	fungal communities in Australian sclerophyll forest soil are altered by
528	repeated prescribed burning MYCOLOGICAL RESEARCH 111:482-486
529	Anderson JB, Wickens C, Khan M, Cowen LE, Federspiel N, Jones T, Kohn LM
530	(2001) Infrequent genetic exchange and recombination in the mitochondrial
531	genome of Candida albicans Journal of Bacteriology 183:865-872
532	Averill C, Cates LL, Dietze MC, Bhatnagar JM (2019) Spatial vs. temporal controls
533	over soil fungal community similarity at continental and global scales The
534	ISME journal:1
535	Bai S-L, Li G-L, Liu Y, Dumroese RK, Lv R-H (2009) Ostryopsis davidiana
536	seedlings inoculated with ectomycorrhizal fungi facilitate formation of
537	mycorrhizae on Pinus tabulaeformis seedlings Mycorrhiza 19:425-434
538	Bastias BA, Huang ZQ, Blumfield T, Xu Z, Cairney JW (2006) Influence of repeated
539	prescribed burning on the soil fungal community in an eastern Australian wet
540	sclerophyll forest Soil Biology and Biochemistry 38:3492-3501
541	Bell CW, Acosta-Martinez V, McIntyre NE, Cox S, Tissue DT, Zak JC (2009)
542	Linking microbial community structure and function to seasonal differences in
543	soil moisture and temperature in a Chihuahuan desert grassland Microb Ecol
544	58:827-842
545	Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and
546	powerful approach to multiple testing Journal of the royal statistical society
547	Series B (Methodological):289-300
548	Bever JD et al. (2010) Rooting theories of plant community ecology in microbial
549	interactions Trends in Ecology & Evolution 25:468-478
550	doi:10.1016/j.tree.2010.05.004
551	Buscardo E et al. (2012) Is the potential for the formation of common mycorrhizal
552	networks influenced by fire frequency? Soil Biology and Biochemistry
553	46:136-144

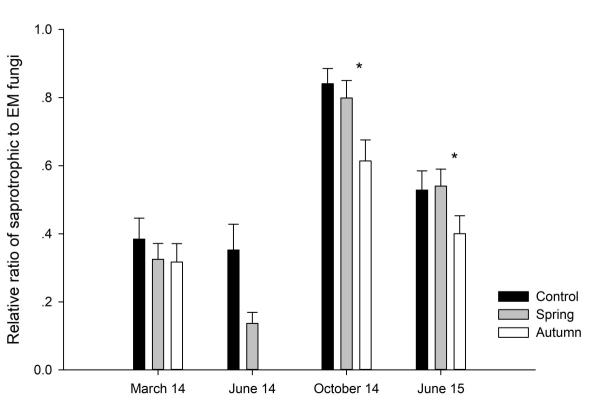
554 555	Buscardo E, Rodríguez-Echeverría S, Freitas H, De Angelis P, Pereira JS, Muller LA (2015) Contrasting soil fungal communities in Mediterranean pine forests
556	subjected to different wildfire frequencies Fungal Diversity 70:85-99
557	Buscardo E, Rodríguez-Echeverría S, Martín MP, De Angelis P, Pereira JS, Freitas H
558	(2010) Impact of wildfire return interval on the ectomycorrhizal resistant
559	propagules communities of a Mediterranean open forest Fungal Biology
560	114:628-636
	Caporaso JG et al. (2010) QIIME allows analysis of high-throughput community
561	
562	sequencing data Nature Methods 7:335-336
563	Clarke K, Warwick R (1994) Change in marine communities : an approach to
564	statistical analysis and interpretation. 2nd edn. Plymouth, U.K. : PRIMER-E
565	Ltd., 2001,
566	Clarke KR, Somerfield PJ, Gorley RN (2008) Testing of null hypotheses in
567	exploratory community analyses: similarity profiles and biota-environment
568	linkage Journal of Experimental Marine Biology and Ecology 366:56-69
569	Collier FA, Bidartondo MI (2009) Waiting for fungi: the ectomycorrhizal invasion of
570	lowland heathlands J Ecol 97:950-963
571	Comandini O, Contu M, Rinaldi A (2006) An overview of Cistus ectomycorrhizal
572	fungi Mycorrhiza 16:381-395
573	De la Varga H, Águeda B, Ágreda T, Martínez-Peña F, Parladé J, Pera J (2013)
574	Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical
575	mycelium in pine forests of central Spain Mycorrhiza 23:391-402
576	de Roman M, de Miguel AM (2005) Post-fire, seasonal and annual dynamics of the
577	ectomycorrhizal community in a Quercus ilex L. forest over a 3-year period
578	Mycorrhiza 15:471-482
579	Dickie IA, Koide RT, Steiner KC (2002) Influences of established trees on
580	mycorrhizas, nutrition, and growth of Quercus rubra seedlings Ecological
581	Monographs 72:505-521
582	Dove NC, Hart SC (2017) Fire reduces fungal species richness and in situ mycorrhizal
583	colonization: a meta-analysis Fire Ecology 13:37-65
584	Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon
585	reads Nat Methods 10:996-+ doi:10.1038/nmeth.2604
586	Fernandez CW, Kennedy PG (2016) Revisiting the 'Gadgil effect': do interguild
587	fungal interactions control carbon cycling in forest soils? New Phytol
588	209:1382-1394
589	Gadgil PD, Gadgil RL (1975) Suppression of litter decomposition by mycorrhizal
590	roots of Pinus radiata. New Zealand Forest Service,
591	Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition Nature 233:133
592	Glassman SI, Levine CR, DiRocco AM, Battles JJ, Bruns TD (2016a)
593	Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some
594	like it hot The ISME journal 10:1228
595	Glassman SI, Levine CR, DiRocco AM, Battles JJ, Bruns TD (2016b)
596	Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some
590 597	like it hot ISME J 10:1228-1239 doi:10.1038/ismej.2015.182
	•
598	Glassman SI, Lubetkin KC, Chung JA, Bruns TD (2017) The theory of island
599 600	biogeography applies to ectomycorrhizal fungi in subalpine tree "islands" at a fine scale Ecosphere 8:01677
600	fine scale Ecosphere 8:e01677
601	Glassman SI et al. (2015) A continental view of pine associated ectomycorrhizal
602	fungal spore banks: a quiescent functional guild with a strong biogeographic
603	pattern New Phytol 205:1619-1631

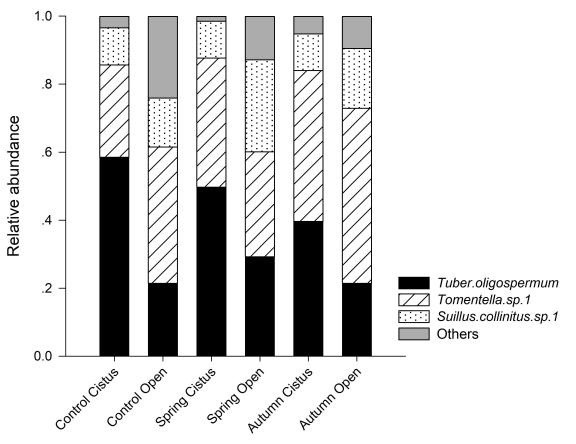

604	Goldreich Y (2003) The climate of Israel: observation, research and application.
605	Kluwer Academic/Plenum Publishers,
606	Grau O, Rautio P, Heikkinen J, Saravesi K, Kozlov MV, Markkola A (2010) An
607	ericoid shrub plays a dual role in recruiting both pines and their fungal
608	symbionts along primary succession gradients Oikos 119:1727-1734
609	Hawlena D, Strickland MS, Bradford MA, Schmitz OJ (2012) Fear of Predation
610	Slows Plant-Litter Decomposition Science 336:1434-1438
611	Hayward J, Horton TR, Pauchard A, Nunez MA (2015) A single ectomycorrhizal
612	fungal species can enable a Pinus invasion Ecology 96:1438-1444
613	Henry C, Raivoarisoa J-F, Razafimamonjy A, Ramanankierana H,
614	Andrianaivomahefa P, Selosse M-A, Ducousso M (2015) Asteropeia
615	mcphersonii, a potential mycorrhizal facilitator for ecological restoration in
616	Madagascar wet tropical rainforests For Ecol Manage 358:202-211
617	Hernández-Rodríguez M, Oria-de-Rueda JA, Martín-Pinto P (2013) Post-fire fungal
618	succession in a Mediterranean ecosystem dominated by Cistus ladanifer L
619	Forest Ecology And Management 289:48-57
620	Hernández-Rodríguez M, Oria-de-Rueda JA, Pando V, Martín-Pinto P (2015) Impact
621	of fuel reduction treatments on fungal sporocarp production and diversity
622	associated with Cistus ladanifer L. ecosystems Forest Ecology And
623	Management 353:10-20
	Horton TR, Bruns TD, Parker T (1999) Mycorrhizal fungi associated with
625	Arctostaphylos facilitate the establishment of Pseudotsuga menziesii during
626	succession. Can J Bot 77:93-102
627	Johnson CN (1995) Interactions between fire, mycophagous mammals, and dispersal
628	of ectomycorrhizal fungi in Eucalyptus forests Oecologia (Berlin) 104:467-
629	475
630	Johnstone JF, Chapin FS, Hollingsworth TN, Mack MC, Romanovsky V, Turetsky M
631	(2010) Fire, climate change, and forest resilience in interior Alaska Canadian
632	Journal Of Forest Research 40:1302-1312
633	Kennedy P, Izzo A, Bruns T (2003) There is high potential for the formation of
634	common mycorrhizal networks between understorey and canopy trees in a
635	mixed evergreen forest J Ecol 91:1071-1080
636	Kennedy PG, Smith DP, Horton TR, Molina RJ (2012) Arbutus menziesii (Ericaceae)
637	facilitates regeneration dynamics in mixed evergreen forests by promoting
638	mycorrhizal fungal diversity and host connectivity American Journal Of
639	Botany 99:1691-1701 Kiefer T. Masser P. Eali S. Wahls much T. Channel I. (2011) Estematemetica
640	Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J (2011) Ectomycorrhiza
641	succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps Oecologia 167:219 doi:10.1007/s00442-011-1981-5
642	1 0
643 644	Klironomos J et al. (2010) Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis New Phytol 189:366-370
645	Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and
645 646	invasiveness in communities Nature 417:67-70
646 647	Klopatek CC, Freise CF, Allen MF, Klopatek JM (1994) Comparisons of laboratory
648	and field burning experiments on mycorrhizae distribution, density and
649	diversity Journal of the American forestry Society 94:762-776
650	Knapp EE, Estes BL, Skinner CN (2009) Ecological Effects of Prescribed Fire
651	Season: A Literature Review and Synthesis for Managers. United States
652	Department of Agriculture - Forest Service,
332	Department of Agriculture - Forest bervice,

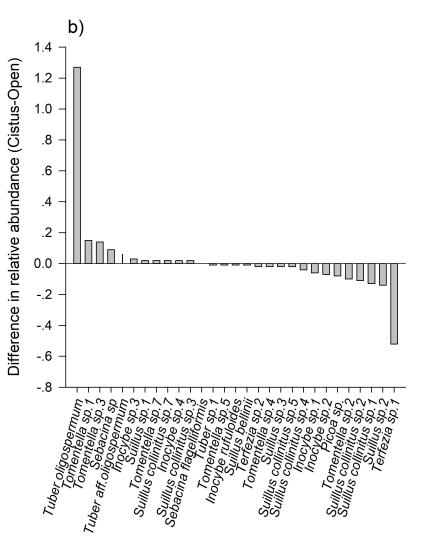

653 654 655 656	Knapp EE, Keeley JE, Ballenger EA, Brennan TJ (2005) Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest Forest Ecology and Management 208:383- 397
657 658 659	Koljalg U et al. (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi New Phytol 166:1063-1068Leake J, Donnelly D, Boddy L (2002) Interactions between ecto-mycorrhizal and
660	saprotrophic fungi. In: Mycorrhizal Ecology. Springer, pp 345-372
661	Lindahl BD et al. (2013) Fungal community analysis by high throughput sequencing
662	of amplified markers-a user's guide New Phytol 199:288-299
663	Liphschitz N, Biger G (2001) Past distribution of Aleppo pine (Pinus halepensis) in
664	the mountains of Israel (Palestine) The Holocene 11:427-436
665	Livne-Luzon S, Avidan Y, Weber G, Migael H, Bruns T, Ovadia O, Shemesh H
666	(2017a) Wild boars as spore dispersal agents of ectomycorrhizal fungi:
667 668	consequences for community composition at different habitat types Mycorrhiza 27:165-174
669	Livne-Luzon S et al. (2017b) Small-scale spatial variability in the distribution of
670	ectomycorrhizal fungi affects plant performance and fungal diversity Ecol Lett
671	20:1192-1202 doi:10.1111/ele.12816
672	Marlon JR et al. (2009) Wildfire responses to abrupt climate change in North America
673	Proceedings of the National Academy of Sciences 106:2519-2524
674	Miller C, Urban DL (1999) Interactions between forest heterogeneity and surface fire
675	regimes in the southern Sierra Nevada Canadian Journal of Forest Research
676	29:202-212
677	Miller SL, McClean TM, Stanton NL, Williams SE (1998) Mycorrhization,
678 670	physiognomy, and first-year survivability of conifer seedlings following natural fire in Grand Teton National Park Can J For Res-Rev Can Rech For
679 680	28:115-122
681	Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J (2006)
682	Potential impact of climate change on fire risk in the Mediterranean area
683	Climate Research 31:85-95
684	Ne'eman G (1997) Regeneration of natural pine forest-review of work done after the
685	1989 fire in Mount Carmel, Israel International Journal of Wildland Fire
686	7:295-306
687	Ne'eman G, Goubitz S, Nathan R (2004) Reproductive traits of Pinus halepensis in the
688	light of fire - a critical review Plant Ecology 171:69-79
689	Ne'eman G, Izhaki I (1999) The effect of stand age and microhabitat on soil seed
690	banks in Mediterranean Aleppo pine forests after fire Plant Ecology 144:115-
691 692	125 Nguyen NH, Hynson NA, Bruns TD (2012) Stayin' alive: survival of mycorrhizal
693	fungal propagules from 6-yr-old forest soil Fungal Ecology 5:741-746
694	doi:10.1016/j.funeco.2012.05.006
695	Nguyen NH et al. (2016) FUNGuild: an open annotation tool for parsing fungal
696	community datasets by ecological guild Fungal Ecology 20:241-248
697	Osem Y, Ginsberg P, Tauber I, Atzmon N, Perevolotsky A (2008) Sustainable
698	management of Mediterranean planted coniferous forests: an Israeli definition
699	Journal of Forestry 106:38-46
700	Peay KG, Schubert MG, Nguyen NH, Bruns TD (2012) Measuring ectomycorrhizal
701	fungal dispersal: macroecological patterns driven by microscopic propagules
702	Molecular Ecology 21:4122-4136 doi:10.1111/j.1365-294X.2012.05666.x

703 704	Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century Proceedings of the National
705	Academy of Sciences 107:19167-19170
706	R Development Core Team (2010) R: A Language and Environment for Statistical
707	Computing. R Foundation for Statistical Computing. http://www.R-
708	project.org.
709	Richard F, Selosse M-A, Gardes M (2009) Facilitated establishment of Quercus ilex
710	in shrub-dominated communities within a Mediterranean ecosystem: do
711	mycorrhizal partners matter? FEMS Microbiology Ecology 68:14-24
712	Schmitz OJ et al. (2014) Animating the carbon cycle Ecosystems 17:344-359
713	Shade A et al. (2012) Fundamentals of microbial community resistance and resilience
714	Frontiers in microbiology 3:417
715	Sheffer E (2012) A review of the development of Mediterranean pine–oak ecosystems
716	after land abandonment and afforestation: are they novel ecosystems? Annals
717	of Forest Science 69:429-443
718	Smith DP, Peay KG (2014) Sequence depth, not PCR replication, improves ecological
719	inference from next generation DNA sequencing Plos One 9:e90234
720	Smith JE, McKay D, Niwa CG, Thies WG, Brenner G, Spatafora JW (2004) Short-
721	term effects of seasonal prescribed burning on the ectomycorrhizal fungal
722	community and fine root biomass in ponderosa pine stands in the Blue
723	Mountains of Oregon Can J For Res-Rev Can Rech For 34:2477-2491
724	doi:10.1139/x04-124
725	Southworth D, Donohue J, Frank JL, Gibson J (2011) Mechanical mastication and
726	prescribed fire in conifer-hardwood chaparral: differing responses of
727	ectomycorrhizae and truffles International Journal of Wildland Fire 20:888-
728	896
729	Sun H et al. (2015) Fungal community shifts in structure and function across a boreal
730	forest fire chronosequence Applied and Environmental Microbiology 81:7869-
731	7880
732	Talbot JM et al. (2014) Endemism and functional convergence across the North
733	American soil mycobiome Proceedings of the National Academy of Sciences
734	111:6341-6346
735	Taudière A, Richard F, Carcaillet C (2017) Review on fire effects on ectomycorrhizal
736	symbiosis, an unachieved work for a scalding topic Forest Ecology And
737 720	Management 391:446-457 Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a
738 739	<i>Pinus muricata</i> forest: minimal overlap between the mature forest and
739	resistant propagule communities. Mol Ecol 8:1837-1850
741	Veen GF, Blair JM, Smith MD, Collins SL (2008) Influence of grazing and fire
741	frequency on small-scale plant community structure and resource variability in
743	native tallgrass prairie Oikos 117:859-866
744	Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier
745	spring increase western US forest wildfire activity Science 313:940-943
746	
747	


749 **Figure legends:**


750	Figure 1: Experimental timescale and sampling scheme. Soil samples were
751	collected from burned and unburned sites before and after spring and autumn
752	burns. Bioassay samples were collected just before the rainy season, reflecting the
753	soil spore bank that germinating plants encounter in the field. This sampling
754	scheme was designed to allow us to quantify the net effects of spring and autumn
755	burns on the soil fungal community composition, conveying the actual effects of
756	seasonal fires in typical Mediterranean woodlands
757	Figure 2: a) Non-metric multi-dimensional scaling (nMDS) ordination with
758	bootstrap of fire season averages, illustrating that soil fungi detected in the post-
759	fire sampling period (i.e., June 2015) vary significantly among fire treatments.
760	Circles represent 95% CI. b) Results of SIMPER analysis illustrating the relative
761	contribution of each of the major fungal functional groups (saprotrophic, EM and
762	AM fungi) to the dissimilarity (Bray-Curtis) among fire treatments. Data includes
763	unassigned fungal sequences and other fungal sequence assignments (e.g., plant
764	pathogen, animal pathogen endophytes etc., each accounted for less than 3% of
765	the dissimilarity).
766	Figure 3: The ratio between OUT's identified as putative saprotrophic to putative
767	EM fungi out of all OUT's identified ((saprotrophic/EMF)/total OUT's) in each
768	sample. $*$ denote significant differences (p<0.05) among the autumn and spring
769	burns within sampling periods.
770	Figure 4: (a) Relative sequence abundance of the root-associated EMF species in
771	each of the six treatment combinations of fire treatment and microhabitat. (b)
772	Differences in the relative read abundance of the various root-associated EMF
773	species between the two microhabitats (underneath Cistus shrubs and open gaps).
774	Positive values are indicative for higher sequence abundance in the Cistus
775	microhabitat and negative values indicate higher abundance in open gaps.




b)

