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Abstract 
 
1. Operational satellite remote sensing products are transforming rangeland management and 
science. Advancements in computation, data storage, and processing have removed barriers 
that previously blocked or hindered the development and use of remote sensing products. When 
combined with local data and knowledge, remote sensing products can inform decision making 
at multiple scales. 
 
2. We used temporal convolutional networks to produce a fractional cover product that spans 
western United States rangelands. We trained the model with 52,012 on-the-ground vegetation 
plots to simultaneously predict fractional cover for annual forbs and grasses, perennial forbs and 
grasses, shrubs, trees, litter, and bare ground. To assist interpretation and to provide a measure 
of prediction confidence, we also produced spatiotemporal-explicit, pixel-level estimates of 
uncertainty. We evaluated the model with 5,780 on-the-ground vegetation plots removed from 
the training data. 
 
3. Model evaluation averaged 6.3% mean absolute error and 9.6% root mean squared error. 
Evaluation with additional datasets that were not part of the training dataset,and that varied in 
geographic range, method of collection, scope, and size, revealed similar metrics. Model 
performance increased across all functional groups compared to the previously produced 
fractional product. 
 
4. The advancements achieved with the new rangeland fractional cover product expand the 
management toolbox with improved predictions of fractional cover and pixel-level uncertainty. 
The new product is available on the Rangeland Analysis Platform (https://rangelands.app/), an 
interactive web application that tracks rangeland vegetation through time. This product is 
intended to be used alongside local on-the-ground data, expert knowledge, land use history, 
scientific literature, and other sources of information when making interpretations. When being 
used to inform decision-making, remotely sensed products should be evaluated and utilized 
according to the context of the decision and not be used in isolation. 
 
Keywords 
conservation, convolutional neural network, grassland, machine learning, monitoring, rangeland 
management, remote sensing, temporal convolutional network 
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1 Introduction 
 
The ability to monitor rangeland vegetation and to quantify changes in cover with satellite 
remote sensing is revolutionary to the rangeland management discipline. Whereas 
on-the-ground data collection and monitoring is constrained logistically, satellite remote sensing 
scales easily, measuring the landscape across space and through time. Satellite measurements 
are modeled to predict rangeland indicators, providing key information for land managers and 
practitioners globally (Hill & Guerschman, 2020). Chief among these indicators is vegetation 
cover at species or functional group levels. Historically, cover was broadly categorical or 
thematic, and occurred at local, regional, or national levels (Homer et al., 2015). More recently, 
fractional cover is used to preserve the inherent complexity and heterogeneity of the landscape, 
estimating the proportion of an area covered by vegetation or land cover type (Xian, Homer, 
Rigge, Shi, & Meyer, 2015). Fractional cover predictions, combined with local data and 
knowledge, can inform decision making at multiple scales, providing land managers flexibility 
that is absent with categorical classifications and severely lacking with on-the-ground 
observations (Kennedy et al., 2014).  
 
Fractional cover products are widely available for United States rangelands (Jones et al., 2018; 
Zhang, Okin, & Zhou, 2019; Rigge et al., 2020). To produce such products, on-the-ground data 
is correlated to remotely sensed measurements using regression tree approaches, with models 
developed and predictions performed individually for each desired component. Although robust, 
univariate regression trees do not capitalize on the ability to learn from shared representation 
among dependent variables. That is, relationships among functional groups are not learned and 
therefore may not be reflected in predictions. A learned multitask model, however, examines all 
output variables together and learns from inherent interactions and relationships present in the 
data, improving learning efficiency and prediction accuracy (Caruana, 1997). Variables that 
covary will be reflected in the model, e.g., functional groups or species that are mutually 
exclusive or inversely related. 
 
As these fractional cover products are the predictions of models, error and uncertainty are 
always present (Foody & Atkinson, 2003). Prediction error is most commonly calculated as the 
difference between a single on-the-ground measurement and its predicted value, a calculation 
that can be done with certainty. Multiple errors can then be averaged to produce a generalized 
accuracy of the model, e.g., root mean square error. Prediction uncertainty, however, differs 
from error in that it represents prediction confidence, or an expression of what is not known 
(Kendall & Gal, 2017). Consider the widely used example of a model that predicts whether an 
object in an image is a cat or dog, and is trained using only cat and dog data: if given cat or dog 
data, prediction confidence should be high; if given penguin data, prediction confidence should 
be low, as the model is unfamiliar with penguin data. While prediction error can only be 
calculated using individual on-the-ground measurements–and then averaged to obtain a 
generalized model accuracy–uncertainty can be calculated with every prediction, increasing its 
spatiotemporal utility. For the practitioner, uncertainty information can be used to assess 
prediction confidence, reliability, or use. 
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We describe a new rangeland fractional cover product that spans the western United States. 
We build upon previous advancements (Jones et al., 2018) by 1) utilizing a learned multitask 
approach to model the dynamic interactions of functional groups; and 2) generating pixel-level 
estimates of prediction uncertainty. We produce the fractional cover product annually from 1984 
to 2019 at a moderate resolution of 30m. It is made available for analysis, download, and 
visualization through the Rangeland Analysis Platform (https://rangelands.app/) web application. 
 
 
2 Materials and Methods 
 
2.1 Data 
 
2.1.1. Rangeland Analysis Platform - fractional cover datasets 
 
Jones et al. (2018) (hereafter referred to as fractional cover version 1.0) described the initial 
model and product released on the Rangeland Analysis Platform in 2018. The new model and 
subsequent product described in this paper (hereafter referred to as fractional cover version 2.0) 
supersedes the initial version. 
 
2.1.2 Vegetation field data 
 
We used 57,792 vegetation field data plots collected by the Bureau of Land Management 
Assessment, Inventory, and Monitoring and Landscape Monitoring Framework, and the Natural 
Resources Conservation Service National Resources Inventory programs (Nusser & Goebel, 
1997; Toevs et al., 2011). Plots were collected from 2004 to 2018 across uncultivated, 
undeveloped, privately and publicly owned rangelands across 17 western US states. We 
followed methods outlined in Jones et al. (2018), who aggregated species into the following 
functional groups: annual forbs and grasses, perennial forbs and grasses, shrubs, trees, litter, 
and bare ground. We randomly (stratified by state) divided the vegetation field data into training 
(90%, 52,012 field plots) and validation (10%, 5,780 field plots) datasets. 
 
2.1.3 Landsat imagery 
 
We used Landsat 5 TM, 7 ETM+, and 8 OLI surface reflectance products for predictors of 
fractional cover. We masked pixels identified as clouds, cloud shadow, snow, and saturated 
surface reflectance to calculate 64-day means throughout a given year for surface reflectance 
bands 2-7. The 64-day periods resulted in six measurements per year, with start dates occurring 
on day of year 001, 065, 129, 193, 257, and 321. To supplement surface reflectance 
measurements, we calculated normalized difference vegetation index (NDVI) and normalized 
burn ratio two (NBR2) for each 64-day period. These indices represent vegetation domains that 
have been successful in modeling rangeland fractional cover (Jones et al., 2018). We 
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reprojected and bilinearly resampled all Landsat imagery to a geographic coordinate system of 
approximately 30m resolution. 
 
2.2 Model 
 
We used Landsat surface reflectance measurements, vegetation indices, and spatial location 
(XY coordinates) as covariates to predict rangeland fractional cover. To generate a multivariate 
response, we used a temporal convolutional network to learn and predict cover for each 
functional group simultaneously. We used a temporal convolution (i.e., one dimensional 
convolution) as features associated with each vegetation field data plot varied sequentially 
through time, but not space. Temporal convolutions work well for satellite time series 
classification (Pelletier, Webb, & Petitjean, 2019; Zhong, Hu, & Zhou, 2019) and may also 
outperform standard recurrent neural networks such as long short-term memory (Bai, Zico 
Kolter, & Koltun, 2018).  
 
We combined temporal convolutions with dropout, pooling layers, and fully connected layers 
(Figure 1). We used an Adam optimizer with a learning rate of 0.0001, a batch size of 32, a 
convolutional kernel width of three, and a dropout rate of 20% (Srivastava, Hinton, Krizhevsky, 
Sutskever, & Salakhutdinov, 2014); the number of filters increased from 32 to 128 over three 
layers, and the dilation rate increased from one to four. We utilized average pooling with a 
pooling size of 12 to reduce temporal sequences to a single value. We performed convolutions 
on Landsat surface reflectances and vegetation indices separately due to the differing domains 
they represent, concatenating layers prior to a fully connected layer (Figure 1). The final layer 
contained six units, corresponding to the six functional groups. To produce uncertainty 
estimates, we implemented dropout during prediction (Gal & Ghahramani, 2015), utilizing a 10% 
dropout rate before the fully connected layer. We repeated predictions four times, averaged 
results to obtain the predictive output, and calculated variance to estimate uncertainty.  
 
We evaluated model performance by calculating mean absolute error (MAE), root mean square 
error (RMSE), residual standard error, (RSE), and the coefficient of determination (r​2​) of the 
validation dataset. We compare evaluation metrics to fractional cover version 1.0. In addition to 
evaluation with the validation dataset, we also evaluated the model with datasets that were not 
part of the training process and that varied in geographic range, method of collection, scope, 
and size (Table 1). We developed the model using the Keras library within Tensorflow and 
performed all image processing and predictions in Google Earth Engine (Gorelick et al., 2017) 
and Google Cloud AI Platform (AI Platform, 2020), respectively. 
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Figure 1. Model architecture to predict cover of rangeland functional groups. Inputs include 
Landsat surface reflectances, Landsat vegetation indices, and spatial location. Landsat surface 
reflectances and indices are temporal sequences across twelve 64-day timesteps. The final 
layer outputs percent cover of the six rangeland functional groups. 
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Table 1. Additional datasets used in evaluation. These datasets varied in geographic range, 
method of collection, scope, and size. 

Name Location Years n Description 

Restore New Mexico 
Collaborative 
Monitoring Program 
(RestoreNM) 

southwest New 
Mexico 

2007-2017 788 Plots contained paired 
parallel 50m transects 20m 
apart. Transect-level cover 
used for evaluation. 

Sagebrush Steppe 
Treatment 
Evaluation Project 
(SageSTEP) 

sagebrush 
steppe 

2006-2014 227 Plots contained 15-24 
subplots; five line transects 
in each subplot. Plot-level 
cover used for evaluation. 

Eastern Oregon 
Agricultural 
Research Center 
(EOARC) 

eastern Oregon 2016 198 Plots contained three 20m 
transects. Plot-level cover 
used for evaluation. 

USGS/NPS Colorado 
Plateau 

2007-2019 3,405 Plots contained two to 
three 50m transects. 
Plot-level cover used for 
evaluation. See 
Supporting Information for 
more information. 

University of Idaho 
(UI) 

central Idaho 2018-2019 60 Plots contained three 25m 
transects. Plot-level cover 
used for evaluation. 

 
 
3 Results 
 
3.1 Model evaluation 
 
Model results and evaluation metrics suggest strong relationships between predicted and 
on-the-ground measurements (Table 2 and Figure 2). Evaluation metrics of the validation 
dataset averaged 6.3 and 9.6% (MAE and RMSE, respectively) across rangeland functional 
groups. Residual standard errors of predicted and on-the-ground measurements varied from 4.6 
to 12.7% among functional groups (Table 2). Coefficient of determination values ranged from 
0.57 to 0.77 for most functional groups (Table 2). Evaluation metrics calculated with additional 
datasets that were not part of the training dataset also revealed similar metrics (Table 3). Model 
performance increased compared to fractional cover version 1.0 (Jones et al., 2018; Table 2), 
and is comparable to other US rangeland fractional products available over disparate 
geographies (Zhang et al., 2019; Rigge et al., 2020).  
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Table 2. Model evaluation metrics (mean absolute error, MAE; root mean square error, RMSE; 
residual standard error, RSE; and coefficient of determination, r​2​) calculated using the 
respective validation dataset for fractional cover versions 1.0 and 2.0. 

 Annual 
Forb & 
Grass 

Perennial 
Forb & 
Grass 

Shrub Tree Litter Bare ground Average 

fractional cover version 2.0 ​(this paper) 

MAE 7.0 10.3 5.8 2.8 5.7 6.7 6.3 

RMSE 11.0 14.0 8.3 6.8 7.9 9.8 9.6 

RSE 8.8 12.7 6.6 5.9 4.6 7.9 - 

r​2 0.58 0.77 0.57 0.65 0.37 0.73 - 

fractional cover version 1.0​ (Jones et al., 2018) 

MAE 7.8 11.1 6.9 4.7 - 7.3 7.56 

RMSE 11.8 14.9 9.9 8.5 - 10.6 11.14 

RSE - - - - - - - 

r​2 0.43 0.71 0.43 0.52 - 0.71 - 
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Table 3. Model evaluation metrics (mean absolute error, MAE; root mean square error, RMSE; 
and coefficient of determination, r​2​) calculated using additional datasets described in Table 1. 

 Annual 
Forb & 
Grass 

Perennial 
Forb & 
Grass 

Shrub Tree Litter Bare ground 

RestoreNM 

MAE 5.7 9.7 6.5 - - - 

RMSE 11.2 13.1 8.1 - - - 

r​2 0.29 0.22 0.08 - - - 

SageSTEP 

MAE 9.0 13.2 8.3 - - 8.9 

RMSE 13.3 18.1 9.8 - - 11.8 

r​2 0.19 0.25 0.27 - - 0.49 

EOARC 

MAE 6.6 9.5 5.8 - - - 

RMSE 9.6 11.8 7.6 - - - 

r​2 0.43 0.37 0.57 - - - 

USGS/NPS 

MAE 4.2 8.5 7.6 5.3 7.41 8.1 

RMSE 7.8 11.7 10.32 9.6 11.2 11.1 

r​2 0.49 0.39 0.56 0.54 0.31 0.71 

UI 

MAE 8.0 10.5 9.8 - - 3.2 

RMSE 10.6 13.3 12.1 - - 4.3 

r​2 0.56 0.28 0.30 - - 0.31 
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Figure 2. Predictions of fractional cover relative to observed on-the-ground measurements, 
separated by rangeland functional group. Diagonal dashed black line represents a 1:1 
relationship; solid blue line is the linear fit between predicted and observed values. Coefficient of 
determination (r​2​) and residual standard error (RSE) are reported in Table 2. 
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4 Discussion 
 
We provide next generation predictions of annual, fractional cover of rangeland functional 
groups by implementing a multitask learning approach across the western US (Figures 3 and 4). 
We improved upon our previous efforts (Jones et al., 2018) by 1) utilizing a neural network that 
models the dynamic interactions of functional groups; 2) reducing errors and improving model 
fit; and 3) providing spatiotemporal-explicit, pixel-level estimates of uncertainty alongside 
predictions. We deliver these data via the Rangeland Analysis Platform 
(https://rangelands.app/), an online and interactive web application that tracks rangeland 
vegetation through time. 
 

 
Figure 3. Fractional cover predictions of annual forbs and grasses (AFG), perennial forbs and 
grasses (PFG), shrubs, trees, litter, and bare ground for 2019. White areas are non-rangeland 
as identified by Reeves and Mitchell (2011). 
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Figure 4. Fractional cover uncertainty of annual forbs and grasses (AFG), perennial forbs and 
grasses (PFG), shrubs, trees, litter, and bare ground for 2019. White areas are non-rangeland 
as identified by Reeves and Mitchell (2011). Uncertainty was relativized to the fractional cover 
prediction. 
 
 
The fractional cover of functional groups and cover types in rangelands reflect numerous 
ecosystem processes and ecosystem services. Changes in one functional group has 
predictable ecological impacts on other groups and the services they provide (Uden et al., 
2019). For example, woody plant encroachment into grasslands constrains herbaceous grass 
cover and diminishes forage production and wildlife habitat (Archer et al., 2017), whereas 
annual grass invasion reduces perennial herbaceous plants and shrubs (Davies, 2008). ​While 
previous univariate modeling methods of fractional cover disregard this inherent covariation, a 
multitask model exploits it (Caruana, 1997). The underlying relationships among rangeland 
functional groups are learned and incorporated into the model, increasing accuracy (Figure 5). 
Although univariate predictions can be constrained or restricted post hoc to correct for or reduce 
such errors (Henderson, Bell, & Gregory, 2019), the goal of multitask learning is to learn and 
predict variables simultaneously. Furthermore, the shared representation of multitask learning 
allows for covariance dynamics and interactions to be defined by the data, eliminating the need 
for predetermined conditions, rules, or thresholds. 
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Figure 5. Univariate (top) and multivariate (bottom) predictions of perennial forb/grass and tree 
fractional cover for a single validation plot in an area with woody encroachment. Plot data was 
collected in 2014 and recorded 0 and 96% cover (triangular points) for perennial forb/grass and 
tree, respectively. Due to shared representation, multitask models and predictions better 
represent functional group dynamics. Fractional cover version 1.0 produced by Jones et al. 
(2018). Shaded lines represent locally estimated scatterplot smoothing. 
 
 
When developing remotely sensed products, the goal is often to maximize model performance 
to increase accuracy. Error, however, is always present and should be understood and 
integrated into the application of that product and the decision being informed. Common model 
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error metrics measure the average difference between predicted model output and individual 
on-the-ground measurements. This is generally calculated by withholding a portion (e.g., 
5-20%) of the model training dataset for validation (either entirely, or in a bootstrap aggregating 
approach). Error metrics therefore represent an average accuracy for the model given the 
validation dataset, but do not indicate any spatial or temporal variability of error. Attempts to 
visualize or aggregate errors across broad regions may appear helpful, but do little to 
characterize their spatial distribution or to help judge spatial accuracy (Jones et al., 2018; Zhang 
et al., 2019). Moreover, error is commonly calculated with only a minuscule fraction (<<0.1%) of 
known measurements relative to total predictions, e.g., the 5,780 known measurements used 
for validation (10% of the training dataset) in this exercise represents approximately 2e-8% of 
total predictions. 
 
The advantage of uncertainty information over error is its spatiotemporal utility: uncertainty is 
calculated with every prediction and therefore varies across space and time (Figure 6), while 
error does not (see discussion above). Uncertainty provides a measure of prediction confidence, 
i.e., how reasonable is this prediction given the data used to build the model? If the 
characteristics of a location are generally represented within the model training data, uncertainty 
may be low and the corresponding prediction reasonable. If not as well represented within the 
model training data (e.g, areas such as high alpine, lava flows, arid playas), uncertainty may be 
high and the corresponding prediction unreasonable. Due to the fact that uncertainty is 
spatiotemporally explicit, it can be helpful in determining how to use model predictions on a 
case-by-case basis. For example, if uncertainty is high in a particular area or time period of 
interest, a practitioner can choose to gather additional local data or information, do a more 
detailed analysis, discuss with colleagues, etc. in order to expand decision inputs. Uncertainty 
can be integrated into the context of the decision being made for a particular place or time. 
 
Operationalizing uncertainty information into decision making presents new opportunities to 
learn about this type of information. While users often simply want to know if a prediction is 
“right or wrong” or “how far off it is”, it is important to note that uncertainty does not provide this. 
Rather, uncertainty is a measure of model confidence (more specifically prediction variance), 
and should be thought about, processed, and utilized in the same way that other confidence-, 
odds-, or probability-type information is consumed, e.g., precipitation probabilities supplied with 
weather forecasts. As such, there are no defined rules, standardized practices, thresholds, etc. 
to immediately employ when using uncertainty information. Use of such methods will vary 
depending upon the context of the decision being made. We recognize that it may be difficult to 
immediately incorporate uncertainty information into decision making frameworks and 
workflows. We are confident, however, that with increased education, experience, and exposure 
to these types of information, such barriers will be lessened and removed. 
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Figure 6. Aerial imagery (left), cover estimates (middle), and uncertainty estimates (right) for 
2019 perennial forb and grass (top) and tree (bottom) functional group cover for a small region 
in the southern Great Plains. Light-to-dark values represent lower-to-higher values of cover and 
uncertainty. Greater uncertainty for perennial forb and grass estimates are present in areas 
dominated by trees and vice versa. 
 
 
5 Conclusions 
 
Innovations in remotely sensed mapping of rangeland cover continue to present new 
opportunities to improve assessment, management, and monitoring. We provide the latest 
advancement to expand the land management toolbox with improved predictions of fractional 
cover at a moderate resolution of 30m, along with spatiotemporal-explicit uncertainty estimates, 
that can be used at such resolution or aggregated to broader scales. This product is intended to 
be used in combination with local on-the-ground data, expert knowledge, land use history, 
scientific literature, and other sources of information when making interpretations. We 
emphasize that when being used to inform decision-making, remotely sensed products should 
be evaluated and utilized according to the context of the decision and not be used in isolation. 
Learning how to think about and use remotely sensed data, and suitably integrate them into 
decision frameworks and workflows, are next steps for improving the field of rangeland 
monitoring. 
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