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Abstract 

Autoimmune diseases are heterogeneous pathologies with difficult diagnosis and few 

therapeutic options. In the last decade, several omics studies have provided significant 

insights into the molecular mechanisms of these diseases. Nevertheless, data from 

different cohorts and pathologies are stored independently in public repositories and a 

unified resource is imperative to assist researchers in this field.  Here, we present ADEx 

(https://adex.genyo.es), a database that integrates 82 curated transcriptomics and 

methylation studies covering 5609 samples for some of the most common autoimmune 

diseases. The database provides, in an easy-to-use environment, advanced data analysis 

and statistical methods for exploring omics datasets, including meta-analysis, differential 

expression or pathway analysis. 
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Background 

Autoimmune diseases (ADs) are a group of complex and heterogeneous disorders 

characterized by immune responses to self-antigens leading to tissue damage and 

dysfunction in several organs. The pathogenesis of ADs is not fully understood, but both 

environmental and genetic factors have been linked to their development [1]. Although 

these disorders cause damage to different organs and their clinical outcomes vary between 

them, they share many risk factors and molecular mechanisms [2]. Some examples of 

ADs are systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren’s 

syndrome (SjS), systemic sclerosis (SSc), considered systemic autoimmune diseases 

(SADs) and type 1 diabetes (T1D), which is considered an organ-specific autoimmune 

disease. Most of these diseases are classified as rare given their prevalence, but altogether 

ADs affect up to 3 % of the population considering conservative estimates [3]. 

In ADs patients, the pathology is developed during several years but it is only detected 

when tissue damage is significant. For that reason, early diagnosis is important and 

complicated. Additionally, some ADs often show a non-linear outcome that alternates 

between active and remission stages thus making their study even more difficult. Despite 

huge efforts have been made to develop ADs biomarkers and therapies, these do not fit 

for every patient and their clinical responses differ greatly [4]. 

During the past decade, the use of omics technologies has provided new insights into the 

molecular mechanisms associated with the development of ADs, opening new scenarios 

for biomarkers and treatments discovery [5]. In this context, it is remarkable the 

characterization of the type I interferon (IFN) gene expression signature as a key factor 

in the pathology of some SADs, especially in SLE and SjS [6], which has improved our 

knowledge of the underlying molecular mechanisms and has opened new therapeutic 

strategies based on blocking the pathways related to this signature. 

Regardless of the large amount of omics studies describing new biomarkers and 

therapeutic strategies in ADs [7–10], in most cases these biomarkers are not consistent 

across different studies or have not fully accomplished their diagnostic goals. Indeed, the 

widely studied IFN signature is highly variable between patients [11] and it is associated 

with differences in response to treatments which target it, as has been reported for 

example in the phase-II results of Sifalimumab clinical trial for SLE patients [12]. In 
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addition, in most of the cases, biomarkers are defined from the analysis of a single type 

of omic data (commonly gene expression), but multi-omics data integration can provide 

a more complete understanding of molecular mechanisms and more robust and 

biologically relevant biomarkers. 

Most of the omics datasets generated from different cohorts and studies in ADs published 

to date have been deposited and are available in public repositories such as Gene 

Expression Omnibus (GEO) [13] or ArrayExpress [14]. Although all these valuable data 

can be used in retrospective analyses in order to generate new knowledge and accelerate 

drug discovery and diagnosis, it is not easy to compare neither to integrate available data 

because they are generated from different platforms and/or processed with different 

analytic pipelines. In this context, there are great efforts from the bioinformatics 

community to develop standardized data analysis workflows and resources that facilitate 

data integration and reproducible analysis. For example, Lachmann et al. [15] have 

recently reprocessed a large collection of raw human and mouse RNA-Seq data from 

GEO and Sequence Read Archive (SRA) using a unified pipeline and they have 

developed the ARCHS4 as a resource to provide direct access to these data through a 

web-based user interface. Other singular projects such as The Cancer Genome Atlas 

(TCGA) [16] or the Genotype-Tissue Expression project (GTEx) [17] provide also large 

and homogeneously processed datasets for tumor samples and human tissues 

respectively. These unprecedented resources motivate the development of applications 

and data portals to help researchers gather information with the aim of improving 

diagnosis and treatment in multiple diseases, most notably in cancer research, where such 

information is actually being used in the clinical practice [18]. 

Despite such enormous potential, in the context of ADs there is a lack of a centralized 

and dedicated resource that facilitates the exploration, comparison and integration of 

available omics datasets. This is indeed an area in which this type of application would 

be tremendously beneficial, given that the low prevalence of each individual disease 

makes difficult the recruitment of large patients cohorts [4]. 

To bridge this gap, in this work we have compiled and curated most of the publicly 

available gene expression and methylation datasets for five ADs: SLE, RA, SjS, SSc and 

T1D. To this end, we have developed and applied homogeneous pipelines from raw data 

and we developed ADEx (Autoimmune Disease Explorer), a data portal where these 
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processed data can be downloaded and exploited through multiple exploratory and 

statistical analyses. ADEx facilitates data integration and analysis to potentially improve 

diagnosis and treatment of ADs.  

In order to demonstrate the potential, we queried the database to explore the expression 

pattern of IFN regulated genes across all autoimmune diseases. This analysis revealed 

that the IFN signature is consistent in SLE and SjS but it shows heterogeneity in RA 

samples. In a second analysis, we integrated all datasets in order to define a set of 

consistent biomarkers for each disease considering the expression data from multiple 

studies. 

 

Construction and content 

We have prepared five different pipelines to process data for each platform (RNA-Seq, 

Affymetrix and Illumina gene expression microarrays, and Illumina methylation arrays 

27K and 450K). All these workflows are written in R language and are publicly available 

in GENyO Bioinformatics Unit GitHub (https://github.com/GENyO-

BioInformatics/ADEx_public). Figure 1 contains an overview of the different steps 

performed to prepare the data for ADEx application. 

Data collection 

Collection of the datasets included in ADEx was carried out by searching in the GEO web 

page with ADs names as key terms. We filtered the results by study type (expression 

profiling by array, expression profiling by high throughput sequencing and methylation 

profiling by array), organism (Homo sapiens) and platform manufacturer (Affymetrix or 

Illumina). 

We downloaded the metadata for these initial datasets with GEOquery [19] R package in 

order to apply our inclusion criteria and exclude those studies and samples that do not 

meet them. We only included case-control studies from samples, which were not treated 

with drugs in vitro. Exclusively datasets with available raw data were considered. Studies 

whose controls and cases belong to different tissues were discarded. We only selected 

datasets with 10 samples at least. We divided the datasets containing samples from 
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different diseases, platforms, tissues or cell types in subgroups so that these are constant 

and avoid possible batch effects. 

82 datasets containing 5609 samples passed our filtering criteria (see Additional file 1 for 

complete information about all included datasets). Then we downloaded their raw data 

with GEOquery [19]. For expression microarrays, we downloaded CEL files and raw text 

files for Affymetrix and Illumina platforms respectively. For RNA-Seq, we downloaded 

the fastq files from the European Nucleotide Archive. For methylation microarrays, we 

downloaded raw methylation tables if they were available and idat files otherwise. 

Metadata curation 

GEO does not require submitters to use either a fixed structure or standard vocabulary to 

describe the samples of an experiment. For that reason, it was necessary to manually 

homogenize the information provided within all the selected datasets using standardized 

terms. There are some methods for automatic curation of GEO metadata, but manual 

curation is still necessary to get high-quality metadata [20]. This metadata curation was 

an essential step for the following analyses and permits an easy datasets information 

exploration. 

Platforms curation 

We have used a total of 12 different gene expression platforms from microarray and 

RNA-Seq technologies. Microarray platforms quantify expression levels in probes. In 

order to match probe identifiers to gene names, platforms annotation files are available 

from GEO. However, we found that some of these annotation files match probes to 

inappropriate gene names. On the one hand, some platforms save gene names with errors 

due to the conversion of gene names such as MARCH1 or SEPT1 into dates, a common 

error that has been reported previously [21].  In these cases, we fixed manually these 

genes in the annotation files. On the other hand, some platforms use obsolete or different 

aliases to refer to the same genes. We used human genes’ information from NCBI 

repository in order to match aliases with actual official gene symbols and substituted them 

in the platform annotations. 
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Figure 1. Processing pipeline for ADEx data. Black arrows indicate intermediate processing steps. Red 

arrows indicate the inputs to ADEx application. 

Data processing 

Raw data from Illumina expression microarrays were loaded by reading the plain text 

files. In order to remove background noise, we kept only the probes that had a Detection 

P-value lower than 0.05 in 10 % of the samples. Then we performed a background

correction and quantile normalization [22] using neqc function from limma package [23]. 

CEL files from Affymetrix expression microarrays platforms were loaded to R 

environment with affy package [24]. To filter low intensity probes, we removed all probes 

with an intensity lower than 100 in at least 10 % of the samples. Normalization was 

carried out computing Robust Multichip Average (RMA) normalization [25] with affy 

package [24]. 

For RNA-Seq datasets, fastq files were aligned to human transcriptome reference hg38 

using STAR 2.4 [26] and raw counts were obtained with RSEM v1.2.31[27] with default 

parameters. Raw counts were filtered using NOISeq R package [28], removing those 

features that have an average expression per condition lower than 0,5 counts per million 
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(CPM) and a coefficient of variation (CV) higher than 100 in all conditions. Counts 

normalization was carried out with TMM method [29]. 

We translated microarrays probes identifiers to gene symbols using our curated 

annotation tables. For those genes targeted by two or more microarray probes, we 

calculated the median expression values of all their targeting probes. For RNA-Seq, we 

translated ENSEMBL identifiers to gene symbols using biomaRt package [30, 31].  

Methylation raw data are available in GEO as idat or text files depending on the dataset. 

Idat files were read with minfi package [32], while text files were read in the R 

environment. In both cases, poorly performing probes with a detection P-value above 0.05 

in more than 10 % of samples were removed. Probes adjacent to SNPs, located in sexual 

chromosomes or reported to be cross-reactive [33] were also removed. We normalized 

the methylation signals using quantile normalization with lumi package [34]. Finally, for 

datasets generated with 450k platform, we applied BMIQ normalization [35] using 

wateRmelon package [36] in order to correct for the two types of probes contained in this 

platform. 

Differential expression analysis 

We performed a differential expression analysis in all datasets independently towards the 

identification of differential patterns among disease samples and healthy controls. These 

analyses were performed in different ways depending on the source of data. Gene 

expression profiles from microarray platforms were carried out by the standard pipeline 

of limma package [23]. We used lmFit function to fit a linear model to the gene expression 

values followed by the execution of a t-test by the empirical Bayes method for differential 

activity (eBayes function). On the other hand, gene expression profiles from RNA-Seq 

platforms were analyzed by the standard pipeline of DESeq2 package [37]. In both cases, 

differential expression analysis provided P-values, adjusted P-values by False Discovery 

Rate (FDR) and log2 Fold-Change (FC). 

Pathway analysis 

Pathway enrichment analysis was precomputed for each expression dataset using 

differential expression analysis results. We considered DEGs those genes with a FDR 

lower than 0.05 and we performed hypergeometric tests to check if each pathway contains 
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more DEGs as expected by chance. We used KEGGprofile 1.24.0 R package to perform 

this analysis but beforehand we manually updated its dependency, KEGG.db, the 

database used to perform the statistical test. The pathways were plotted using the KEGG 

mapper tool Search&Color Pathway, with the genes colored by their FC between case 

and control samples. 

Signaling network analysis 

We integrated signaling network analysis applying HiPathia software [38] to gene 

expression data so that changes in the activity of the network from different pathways can 

be detected. We precomputed this analysis for each gene expression dataset. Firstly, we 

translated the gene expression matrix and scaled it. Then, we calculated the transduction 

signal and compared among conditions, cases and controls. 

Causal networks inference 

We used the CARNIVAL [39] R package pipeline to analyze the causal networks 

architectures from gene expression data. For that aim, we followed the instructions 

published by their creators at https://github.com/saezlab/transcriptutorial. Briefly, 

differential expression analyses were performed with limma [23] and the results were 

used to calculate the transcription factor activities with DoRothEA [40] and the pathways 

activities with PROGENy [41]. These results were the input of CARNIVAL to calculate 

the upstream regulatory signaling pathways for each expression dataset. Finally, the 

results were stored in interactive html reports. 

Database architecture 

Pursuing an optimal data organization and quick access to all the data in ADEx, we have 

enabled an internal database with PostgreSQL. We chose this technology since it is open 

source and it is best suited to the huge dimensionality of omics datasets. 

Webtool 

ADEx user interface was designed with RStudio Shiny package. The application uses a 

set of external packages to perform analysis and graphics on demand. Most of the plots 

are generated with ggplot2 [42]. All the computations in the Meta-Analysis section are 

performed whenever users request them. Biomarkers analysis is performed with the Rank 
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Products algorithm integrated in RankProd R package [43]. The tool runs on our own 

server with CentOS 7.0 operating system, 16 processors and 32 Gb of RAM memory. 

 

Utility and discussion 

Data collection and processing 

ADEx contains data from 5609 samples. We have processed 82 expression and 

methylation datasets from case-control studies for SLE, RA, SjS, SSc and T1D diseases 

(see Table 1 for a summary and Additional file 1 for complete information about all 

included datasets). We have manually curated all metadata in order to standardize the 

nomenclature of phenotypes, cell types, etc. from different studies and discard samples 

or datasets that do not meet the selection criteria (see Construction and content section). 

The processed datasets are available from the Download Data section in the application. 

The ADEx application 

ADEx data portal can be used to download and analyze the processed data. ADEx is freely 

available at https://adex.genyo.es. The tool is divided in 6 different sections arranged in 

different tabs (Figure 2a). 

 

Table 1. Summary of accessible studies and samples by disease and data type in ADEx.  

 Expression Methylation Total 

Disease Datasets - Samples Datasets - Samples Datasets - Samples 

SLE 20 - 2053 13 - 628 33 - 2681 

RA 17 - 1122 3 - 835 20 - 1957 

SjS 9 - 400 1 - 29 10 - 429 

SSc 5 - 229 1 - 37 6 - 266 

T1D 11 - 176 2 - 100 13 - 276 
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Section 1: Data overview 

Information about the available datasets can be found in both table or pie plot formats in 

this section. In tables, information about the sample phenotype and their data origin is 

provided. In pie plots quantitative information is provided regarding the clinical and 

phenotype information. All this information has been extracted from GEO or from the 

associated published articles whenever supplied. This information can be presented 

individually for each dataset or grouped by disease. While a single dataset is being 

explored, the experiment summary is shown. Users can use this section to identify 

datasets of their interest to be analyzed in the following sections. 

Section 2: Gene Query 

This section was created in order to explore the expression and methylation of a specific 

gene, or the correlation between them, within a single dataset. Users can explore the 

different gene expression values for each dataset comparing case and control samples 

with a boxplot. Meanwhile, methylation data is presented at CpG level, so that users can 

select a region of the gene (e.g. promoter) and the mean methylation value for cases and 

controls is plotted for every CpG probe contained in the selected region. 

It has been demonstrated the strong relationship of gene expression and methylation 

levels [44]. That is why, in this section, users can also integrate both expression and 

methylation values to search for direct or inverse correlations. Finally, gene expression 

correlation analysis can be performed in order to get insight into the relationship between 

different genes and to find groups of coexpressed genes. 

Section 3: Gene Set Query 

Here users can select several datasets and genes in order to explore the FC between 

patients and controls across studies. All datasets from a disease can be automatically 

selected by clicking the right buttons, or individual studies can be selected by clicking 

directly on the table. Users can introduce a list of genes to explore their expression, 

although there are several preloaded gene lists covering the coexpression modules 

reported by Chaussabel et al. [45]. These modules consist of sets of coexpressed genes 

among hundreds of samples from different diseases. Each transcriptional module is 

associated with different pathways and cell types, most of them related to the immune 
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system [45]. See our use case 1 for an example of this type of analysis (Figures 2b and 

2c).  

Section 4: Analyze Dataset 

In this section, we focus the analysis on whole datasets instead of individual genes. By 

default, a heatmap with the expression of the top 50 differentially expressed genes 

(DEGs) sorted by FDR is displayed. It is also possible to sort them by FC and cutoffs can 

be applied to both statistics. Additionally, differential expression analysis results can be 

downloaded as an excel table.  

Furthermore, users can also study the KEGG [46] enriched pathways associated with the 

dataset selected. These results are precomputed using all the DEGs that have an FDR 

value below 0.05. A table gathers the significantly enriched KEGG pathways along with 

their associated hypergeometric test statistics and an interactive plot shows detailed 

information of the participant genes in the pathway colored according to their FC.  

Beyond conventional pathway enrichment methods, we have implemented more 

sophisticated mechanistic models of cell signaling activity which have demonstrated to 

be very sensitive in deciphering disease mechanisms [38, 47] as well as the mechanisms 

of action of drugs [48, 49]. To offer this functionality we have applied HiPathia software 

[38] to gene expression data. This method estimates changes in the activity of signaling 

circuits defined into different pathways. With this approach, it becomes possible to study 

in detail the specific signaling circuits altered in ADs within the different signaling 

pathways. We precomputed this analysis for each dataset and the results are available as 

tables and interactive reports. 

Finally, in this section the results of causal pathways analyses are available. We used 

CARNIVAL [39] software to construct the network topologies from the gene expression 

datasets in order to identify upstream alterations propagated through signaling networks 

in autoimmune diseases. 

Section 5: Meta-Analysis 

ADEx also implements meta-analysis functionalities based on gene expression data to 

integrate and jointly analyze different and heterogeneous datasets. We implemented a 

meta-analysis approach to search for biomarkers and common gene signatures across 
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different datasets from the same or different pathologies [50] based on the FCs of each 

dataset and gene. Datasets have to be selected similarly to Section 3 to launch the meta-

analysis. See our use case 2 for examples of this type of analysis (Figure 3). 

 

 

Figure 2. Overview of ADEx application and analysis of IFN signature across diseases. a) ADEx has 

six main sections. Section 1 provides information about available datasets. In section 2, users can explore 

expression and methylation for individual genes. Section 3 implements a module to explore data for a gene 

list, such as gene module or genes from a biological pathway, across several datasets. Section 4 allows 

researchers to perform analysis on individual datasets retrieving differential expression signatures and 

pathways and cell signaling enrichment analyses. Section 5 implements meta-analysis methods to integrate 

multiple datasets in order to define common biomarkers. Section 6 is for data download. b) Gene Set Query 

section screenshot. Datasets and gene set input is shown. Users select data there to plot a heatmap. c) IFN 

signature expression generally separates SLE and SjS from other ADs. Heatmap with the IFN genes 

generated in ADEx. Color represents the log2 FC of disease versus healthy samples (red for overexpression 

and blue for underexpression). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 22, 2021. ; https://doi.org/10.1101/2020.06.10.144972doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.10.144972
http://creativecommons.org/licenses/by-nc-nd/4.0/


Section 6: Download data 

In this section, users can select one or several datasets and download them. Curated data 

is obtained with the aim of performing additional analyses externally to ADEx 

application. 

Use case 1: Exploring the IFN signature across diseases 

Using as a query a set of genes (a gene expression signature, genes from the same 

pathway, etc.), it becomes straightforward to explore how the signature is expressed 

across different datasets or diseases. In order to demonstrate the potential of ADEx, we 

explored the IFN signature expression status in different diseases given its importance in 

the autoimmune disorders [11]. To address this goal, we evaluated the expression level 

across all datasets of IFN signature previously defined [51] (Figure 2b). We observed that 

IFN signature is strongly overexpressed in SLE and SjS patients (Figure 2c), as previously 

described [52, 53]. These two diseases are clearly separated from the other pathologies 

based on these IFN-regulated modules. RA IFN signature is highly heterogeneous, which 

is coherent with previous studies [54]. Interestingly, IFN modules are overexpressed in 

most of the RA studies that used synovial membrane tissue, while this effect is absent or 

very subtle in most of the RA blood studies. This is expected because the primary 

inflammation sites in this disease are the synovial joints [55]. 

Use case 2: Biomarker discovery in ADs 

To show the functionality of ADEx for biomarker discovery, we also performed a disease-

centered meta-analysis with all the datasets included in the database in order to define 

candidate biomarkers for each disease. We removed those genes with NA values in more 

than 75 % of the samples and we used RankProd package [43] to calculate the Rank 

Product statistics and the adjusted P-value. We considered significant those genes with 

adjusted P-value < 0.05. Since there are datasets from different cell types, tissues, 

platforms and so on, our aim was to find global biomarkers independently of all those 

variables.  We discovered 1703 consistently deregulated genes in SLE, 367 in SjS, 743 

in RA, 45 in SSc and 294 in T1D (Figure 3 and Additional file 2). We used the information 

from Interferome database [56] to annotate each gene depending on how each type of IFN 

affects its expression (upregulation or downregulation). For that aim, we queried the 

Interferome database, searching for genes with an absolute log2 FC > 2 after IFN addition.  
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Figure 3. Integration of multiple datasets reveal candidate biomarkers for each disease. The observed 

effect of IFN I, II and III on gene expression is annotated at the left of each heatmap. Color represents the 

log2 FC. Heatmaps contains the significant biomarkers for a) SLE, b) SjS, c) RA, d) T1D and e) SSc. 

Given that this database contains different experimental conditions, we averaged the log2 

FC and considered as genes upregulated by IFN those with an average log2 FC > 0 and 

as downregulated those with an average log2 FC < 0. As can be observed in Figure 3, 

most of SLE, SjS and RA biomarkers are expressed according to the observed IFN effect 

on them, supporting the major role of IFN action in these diseases. It is notable the 

contribution of type II IFN (IFN II) to the observed expression changes. IFN II role in 

ADs is frequently underestimated in favour of type I IFN (IFN I) and, in fact, IFN 

signature definitions commonly focus on genes regulated by IFN I [6, 10, 52]. However, 

it has been demonstrated that Type II IFN has a key role in ADs pathogenesis [57]. Our 

findings support such importance and the need to focus the attention on IFN II regulation 

pathways to design new therapeutic strategies.  

In RA, the strongest biomarker signals come from synovial tissue studies, and these 

datasets are perfectly separated from the blood studies. This is coherent with the IFN 

signature expression results (Figure 2c). 
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Conclusions 

Despite that the heterogeneity of ADs is evident, there are common molecular 

mechanisms involved in the activation of immune responses. In this context, integrative 

analyses of multiple studies are crucial to discover shared and differential molecular 

signatures [58]. Nowadays there are many ADs datasets publicly available, but a strong 

computational knowledge is necessary in order to analyze them properly. With the aim 

of filling this gap between experimental research and computational biology, interactive 

easy-to-use software are valuable tools to perform exploratory and statistical analysis 

without strong computational expertise. This type of tool has been developed for other 

diseases and has helped to reuse public data and generate new knowledge and hypotheses 

[59–61]. 

A resource of this type is urged in the field of ADs to: 1) Compile available ADs’ public 

data in a single data portal, 2) Access to integrable data processed with uniform pipelines, 

and 3) Perform both individual and integrated analysis interactively. We developed ADEx 

database to accomplish all those objectives. Then, we used ADEx data and functions to 

illustrate our tool potential exploring the IFN signature in different diseases and revealing 

genes consistently over- and underexpressed which could be good biomarkers for these 

diseases. 

As far as we know, ADEx is the first ADs omics database and we expect it to be a 

reference in this area. During the coming years, ADEx will be expanded including data 

from more ADs and other omics.  
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