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Abstract 

Cognitive impairments associated with advanced age are a growing concern in our aging 

society. Such impairments are associated with alterations in brain structure and function, 

especially in the hippocampus, which changes to experience throughout life. It is well-known 

that regular exercise can maintain hippocampus volume. The hippocampus is critical for 

cognitive flexibility involved with extinction and reinstatement of conditioned fear. Therefore, 

we asked whether voluntary chronic exercise in middle-aged mice can improve extinction 

and/or reinstatement of conditioned fear compared to standard housing. Eight-month-old 

male and female C57Bl/6J mice had access to a running wheel or remained in standard 

housing until 11 months of age. Alongside control standard-housed young adult (3-month-

old) mice, they received tone-footshock pairings, which were subsequently extinguished with 

tone-alone presentations the next day. Half of the mice then received a reminder treatment 

in the form of a single footshock. Both male and female 11-month-old mice housed in 

standard conditions exhibited impaired reinstatement compared to young adult mice. 

However, for males that had access to a running wheel from 8 months of age, the reminder 

treatment rescued reinstatement ability. This was not observed in females. Additionally, 

exercise during middle age in both sexes increased expression of Bdnf mRNA in the 

hippocampus, specifically exon 4 mRNA. These results show that, at least for males, 

physical exercise is beneficial for reducing age-related decline in cognitive abilities. Despite 

not rescuing their impaired reinstatement, exercise also increased Bdnf gene expression in 

the female hippocampus, which could potentially benefit other forms of hippocampal-

dependent cognition.  

Keywords: sex characteristics; cognition; exercise; hippocampus; Bdnf; reinstatement  
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1. Introduction 

Aging is associated with reduced executive functions, with cognitive flexibility being one of 

the most impaired facets of intelligence due to age (Salthouse, 1996). Cognitive flexibility is 

the ability to adapt to a changing environment and is often tested using reversal or set 

shifting tasks (Dajani & Uddin, 2015; Scott, 1962). Currently, medical interventions for 

cognitive impairments associated with aging are limited. Thus, identifying new ways to delay 

age-associated cognitive problems is vital in our aging society. 

People with a history of a physically active lifestyle are known to have some 

resilience to the effects of normal aging on cognition. In humans, the correlation between 

aerobic exercise and improved cognition is strong and exercise appears to be effective 

across the lifespan (Chaddock et al., 2010; Erickson et al., 2011; Herting & Nagel, 2012; 

Kleemeyer et al., 2016; Rosano et al., 2017; Stillman et al., 2018; Thomas et al., 2016). This 

has significant implications for older adults who face heightened risk of dementia (Erickson 

et al., 2011; Kleemeyer et al., 2016; Rosano et al., 2017). 

The effects of exercise on cognition has been linked with hippocampal function 

(Rubin, Watson, Duff, & Cohen, 2014), which is important for spatial tasks and cognitive 

flexibility (Burghardt, Park, Hen, & Fenton, 2012). Although many studies highlight changes 

in the hippocampus volume and connectivity as the neural correlate for exercise effects in 

humans (Chaddock et al., 2010; Erickson et al., 2011; Herting & Nagel, 2012; Kleemeyer et 

al., 2016; Rosano et al., 2017), the molecular correlates are poorly understood. Rodent 

models have been useful in this regard and have provided additional insights. For example, 

chronic exercise can alleviate the decrease of hippocampal neurogenesis and synaptic 

plasticity in aging rodents (Anacker & Hen, 2017; van Praag, Shubert, Zhao, & Gage, 2005).  

Importantly, the hippocampus is a sexually-dimorphic brain region in rodents and 

humans, dependent on hormonal cycle stage (reviewed in Yagi & Galea, 2019). Indeed, sex 

differences in hippocampus-dependent learning have been widely reported in rodents and 

humans, with males typically showing superior spatial learning (Jonasson, 2005; Linn & 
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Petersen, 1985; Voyer, Voyer, & Bryden, 1995). However, whether there are sex differences 

in cognitive decline with age is unclear in humans (Ferreira, Ferreira Santos-Galduróz, Ferri, 

& Fernandes Galduróz, 2014; Karlsson, Thorvaldsson, Skoog, Gudmundsson, & Johansson, 

2015; McCarrey, An, Kitner-Triolo, Ferrucci, & Resnick, 2016; Workman, Healey, Carlotto, & 

Lacreuse, 2019; Zaninotto, Batty, Allerhand, & Deary, 2018) . In rodents, there are very few 

reports of sex differences in non-pathological cognitive decline with age (Zanos et al., 2015). 

Sex differences are observed following exercise in hippocampus-dependent tasks, although 

rodent and human findings differ. A meta-analysis in humans reported sex-differences in the 

level of cognitive improvements following exercise, with females having greater 

improvements especially after aerobic training (Barha, Davis, Falck, Nagamatsu, & Liu-

Ambrose, 2017). A similar meta-analysis in rodents describes no sex differences in spatial 

tasks following aerobic training, but greater improvements in non-spatial cognitive tasks in 

males (Barha, Falck, Davis, Nagamatsu, & Liu-Ambrose, 2017). Taken together, it is clear 

that sex-specific effects on cognition and underlying neurobiology need further examination.  

The aim of the present study was to examine the impact of exercise on cognitive 

flexibility and hippocampus in aging male and female mice. Cognitive flexibility was 

assessed using reinstatement following extinction of conditioned fear. Mice were first 

conditioned with a tone conditioned stimulus (CS) that was paired with a footshock 

unconditioned stimulus (US), which led to freezing to the CS as a measure of emotional 

memory of the conditioning session (CS-US). Then the CS was presented repeatedly 

without the US, which decreases the freezing to the CS to form the extinction memory (CS-

no US). When tested in the same context as extinction, the CS-no US memory is typically 

retrieved, evidenced by low levels of freezing. However, a single reminder footshock can 

facilitate the retrieval of the conditioning memory and lead to high freezing (i.e., 

reinstatement). Taken together, reinstatement can test cognitive flexibility because it 

requires flexible retrieval of the extinction vs conditioning memory depending on the 

reminder given (Anacker & Hen, 2017; Kim & Richardson, 2010; Short et al., 2016). While it 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.10.145136doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.10.145136


 5 

is not the typical model to study cognitive flexibility, it is widely agreed that expression of 

reinstatement requires a complex understanding of environmental cues to be flexible in the 

choices of responses, and deficit in such cognitive flexibility may be related to persistence of 

fear observed in anxiety disorders (Bouton, 2002; Ganella & Kim, 2014; Giovanello, 

Schnyer, & Verfaellie, 2009; Kim & Richardson, 2010; Maren, Phan, & Liberzon, 2013). 

Consistent with these ideas, hippocampal lesions impair reinstatement (Frohardt, Guarraci, 

& Bouton, 2000; Wilson, Brooks, & Bouton, 1995). In those studies, it was not the context-

specificity of reinstatement that was abolished, but reinstatement itself was abolished in the 

same context as where the reminder is given (Frohardt, Guarraci, & Bouton, 2000; Wilson, 

Brooks, & Bouton, 1995). Those results demonstrate that similar to cognitive flexibility, the 

hippocampus is a critical structure also for reinstatement. This model is particularly 

appropriate for this study because previous studies have found that reinstatement is both 

sex- and age-specific in rodents (Kim & Richardson, 2007; Matsuda et al., 2015; Park, 

Ganella, & Kim, 2017a; Voulo & Parsons, 2017), highlighting that it is sensitive to age and 

sex effects. 

In addition, we examined hippocampal brain-derived neurotrophic factor (Bdnf) gene 

expression of these mice to see if the beneficial effects of exercise are reflected at a 

molecular level. Increased hippocampal Bdnf expression in freely exercising rodents is a 

well-established molecular correlate for the exercise-associated benefits on brain and 

behavior (Berchtold, Chinn, Chou, Kesslak, & Cotman, 2005; Berchtold, Kesslak, Pike, 

Adlard, & Cotman, 2001; Cotman, Berchtold, & Christie, 2007; Neeper, Gómez-Pinilla, Choi, 

& Cotman, 1996). In particular, Bdnf exon 4 transcript expression has been implicated in 

extinction of conditioned fear in rodents (Baker-Andresen, Flavell, Li, & Bredy, 2013; Bredy 

et al., 2007).   

We chose mice at 3 months of age as young adult baseline controls, which is a well-

established age of young adulthood based on hormone and cognitive development (Bell, 

2018; Madsen & Kim, 2016). In addition, we showed previously that 3-month-old mice 
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reliably display reinstatement of extinguished fear (Chen et al., 2016). For the aged group, 

we chose 11-month-olds to test reinstatement at an age with documented cognitive decline 

in mice (Lynch, Rex, & Gall, 2006; Marlatt, Potter, Lucassen, & van Praag, 2012), while 

avoiding the onset of reproductive senescence in female mice occurring at 12 months of age 

(Diaz Brinton, 2012; Koebele & Bimonte-Nelson, 2016) to ensure potential sex differences 

during aging can be observed. We hypothesized that an age-related impairment of 

reinstatement and hippocampal BDNF gene expression would be reversed by voluntary 

exercise during middle age. Based on meta-analysis in mice (Bahar, Falck et al., 2017), we 

also anticipated that exercise effects would be greater in males than females. 

2. Material and Methods 

2.1. Animals 

C57Bl/6J mice at 8 weeks of age were purchased from the Animal Resources Centre 

(Murdoch, WA, Australia) in 3 cohorts. They were aged to 8 months, and assigned to either 

Standard Housing or Exercise. All animals were group housed (2-3 mice, males and females 

separately) in cages with a floor area of 1862 cm2 (GR1800, Techniplast, Australia). 

Exercising animals had access to 1 running wheel per mouse for 3 months until behavioral 

testing commenced at 11 months of age. Exercise wheels were removed the day before 

behavioral testing. C57Bl/6J mice also purchased at 8 weeks of age from ARC served as 

Young controls. They were housed similarly to Standard Housing aging mice with no access 

to running wheels and were tested at 3 months of age concurrently with the aged mice. All 

cages were lined with sawdust and two tissues provided for nesting with food and water ad 

libitum. Temperature and humidity were controlled at 22°C and 45%, respectively. Mice were 

maintained on a 12-h light/dark cycle (lights on at 0700 hours) and bedding changed weekly. 

All experiments were approved and performed in accordance with the guidelines of the 

Florey Institute of Neuroscience and Mental Health Animal Ethics Committee. 
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2.2. Behavior 

2.2.1. Apparatus 

Fear conditioning chambers were rectangular (31.8 cm × 25.4 cm × 26.7 cm) with stainless 

steel grid floors with 36 rods (3.2 x 7.9mm), equipped with a Med Associates VideoFreeze 

system (Med Associates, USA). A constant-current shock generator was used to deliver 

electric shock (0.7mA, 1s) (unconditioned stimulus, US) to the floor of the chambers as 

required. A programmable tone generator, speaker and sound calibration package was used 

to deliver auditory tone (volume: 80 dB; frequency: 5000 Hz) (conditioned stimulus, CS). In 

order to create two different contexts the chambers differed in appearance as described 

previously (Handford et al. 2014). One type of context contained a white house light, curved 

striped walls and a tray lined with paper towels placed 10 cm beneath the grid floor. The 

second context had no house light, and contained no wall insert and a tray lined with clean 

bedding beneath the grid floor. Individual chambers were enclosed in sound-attenuating 

boxes within the same room. The experimental room in which the chambers were located 

was brightly lit with overhead lights. Animals were randomly assigned to different starting 

contexts. 

2.2.2. Conditioning  

Mice at either 3 or 11 months-of-age concurrently received fear conditioning. Mice were 

placed in the chamber, and baseline freezing was measured for 2 minutes. Following this, all 

animals received 6 tone–footshock (CS-US) pairings. Each pairing consisted of a 10s tone 

that co-terminated with a 1s shock (0.7mA). Inter-trial intervals (ITIs) ranged from 85 to 

135s, with an average of 110s. Two minutes following the last presentation, the mouse was 

removed from the chamber and placed back into the home cage. 

2.2.3. Extinction 

The day following conditioning, mice were tested for their fear CS memory by being placed 

in a different context to that in which they were conditioned. Mice were allowed a 2 min 
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period during which baseline freezing was measured. They then received 45 presentations 

of a 10s tone in the absence of the shock with ITI of 10s.  

2.2.4. Reinstatement and test  

The day following extinction, the mice were divided into two groups. One group (Reminder) 

received a single reminder shock (0.7mA, 1s) in the extinction context, and the other group 

(No Reminder) was placed in the extinction context but did not receive any shock. The 

following day the rats were tested as described for extinction (2 min baseline followed by 45 

presentations of a 10s tone in the absence of the shock with ITI of 10s (i.e. extinction) in the 

same context as where extinction and reminder occurred. 

2.3. Gene expression analysis  

2.3.1. RNA extraction 

One-week following the reinstatement test, whole hippocampi were micro-dissected from 

animals from the second cohort of males (3-months standard n=4; 11-months standard n=3; 

11-months running n=3) and females (3-months standard n=4; 11-months standard n=3; 11-

months running n=3). RNA was extracted using QIAGEN RNeasy Mini extraction kit as per 

manufacturer’s instructions (QIAGEN, VIC, Australia). Tissue samples were disrupted using 

a Diagenode Biorupter (UCD-300; Life Research, VIC, Australia) in the QIAGEN lysis buffer. 

On-column DNAse1 treatment was performed, and RNA was eluted in 50µL of RNase-free 

water. RNA concentrations and purity were determined using Nanodrop spectrograph 

(2000c Thermo Scientific, Wilmington, DE, USA). Samples were then stored at -80°C until 

required. 

2.3.2. Reverse transcription 

Thawed RNA (1000ng) was reverse transcribed using Superscript VILO cDNA synthesis kit 

(Invitrogen, Life Technologies, VIC, Australia). Reverse transcription PCR was performed in 

a thermal cycler (Takara Shuzo, Tokyo, Japan) using 1 x cycle of the following programme: 

25°C for 10 minutes, 48°C for 30 minutes and 95°C for 5 minutes. Samples were then stored 

at -20 °C. 
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2.3.3. Real-time quantitative PCR (qPCR) 

Levels of gene expression in the tissue was quantified using qPCR using either the Viia 7 

Real-Time PCR system (Applied Biosystems, CA, USA). Reactions were made using: SYBR 

green, 10µL (S4438, Sigma-Aldrich, NSW, Australia), ROX reference dye 0.2 µL (12223-

012, Invitrogen, VIC, Australia), Forward and reverse primers (20µM) 0.5-1.5µL each, cDNA 

50ng in 5µL, DNAse-free H2O up to 20µL. Cyclophillin was used as the endogenous control. 

Primer sequences:  

Cyclophillin forward 5’CCCACCGTGTTCTTCGACA3’  

Reverse 5’CCAGTGCTCAGAGCTCGAAA3’.  

Bdnf total forward 5' GCGCCCATGAAAGAAGTAAA 3’  

Reverse 5' TCGTCAGACCTCTCGAACCT 3' 

Bdnf Exon 4 forward 5' CAGAGCAGCTGCCTTGATGTT 3'  

Reverse 5' GCCTTGTCCGTGGACGTTTA 3' 

Primers were ordered from Sigma-Aldrich (Castle Hill, NSW). Optimal primer 

dilutions and amplification efficiencies had previously been determined by TYP and AKS. 

PCRs were run on the following programme: 50°C for 2 minutes, 95°C for 10 minutes, 

followed by 40x cycles of 95°C for 15 seconds and 60°C for 1 minute. The expression levels 

of the target genes were determined using comparative Ct (ΔΔCt) method and normalized to 

the mean expression of the young adult male control group. 

2.4. Statistical analysis 

2.4.1. Overall 

Statistics were computed using SPSS statistics version 22.0 (IBM, Armonk NY, USA) and 

GraphPad prism 6.0 (GraphPad software, Inc., La Jolla, CA. All behaviors were analyzed as 

described previously (Madsen, Guerin, & Kim, 2017; Short et al., 2017). For conditioning, 

percentage freezing during the first 9 seconds of each CS-US trial was analyzed to avoid 
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analyzing shock-related movement. For extinction, percentage freezing reported is based on 

10s of tone blocked into average freezing of 5 tones to produce 9 blocks. For test, 

percentage freezing reported is based on 10s of tone presentations averaged across the 

whole test. Three-way repeated measures analyses of variance (ANOVA) was employed to 

analyze potential effects of Sex, Treatment, Reminder and interactions between these 

factors on freezing levels. Three-way ANOVA was employed to analyze potential effects of 

Sex, Treatment, Reminder and interactions on the levels of mRNA expression. Main effects 

were followed up with Tukey’s multiple comparisons post hoc tests. Where there were 

significant interactions post hoc Bonferroni t-tests were performed.  

2.4.2. Baseline freezing 

At conditioning, there was a significant effect of Sex on baseline freezing (F(1,72)=4.05, 

p<0.05) with males freezing more than females (Figure 1a). There were no other effects or 

interactions (p > 0.05). At extinction (Figure 1b), there were no effects or interactions (p 

>0.05). At test, there was an effect of Reminder on baseline freezing (F(1,72)=28.38, p<0.001), 

with mice that received the reminder footshock freezing more than those that did not (Figure 

1c). There were no other effects or interactions (p >0.05). To control for pre-existing 

differences in baseline freezing, CS-elicited freezing for each behavioral session was 

analyzed using analyses of co-variance (ANCOVA) with baseline freezing levels as a co-

variate as described in previous studies (Kim & Richardson, 2007; Park et al., 2017a). 

However, the results of ANCOVA did not differ from results of ANOVA (i.e., without baseline 

as a co-variate), therefore, we report the results of ANOVA below. 

3. Results 

3.1. Aging impairs cognitive flexibility that is rescued with exercise only in males 

Repeated measures (RM) ANOVA of CS-elicited freezing during conditioning (Figure 1a) 

revealed main effects of Trial (F(5,360)=147.99, p<0.001) and Treatment (F(2,72)=4.26, p<0.05). 

Tukey post hoc tests revealed that aged mice with access to running wheels froze more than 

young mice (p<0.01). There were no effects of Sex, Reminder or interactions between any of 
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the factors (p>0.05). These results indicate that while all mice increased their CS-elicited 

freezing across conditioning trials, aged mice with access to running wheels freeze more 

when compared to young mice regardless of Sex.  

 

Figure 1. Effect of age and exercise on fear conditioning, extinction, and reinstatement 
test (Mean ± SEM). (a) While all mice increased their CS-elicited freezing across conditioning 
trials, aged mice with access to running wheels freeze more when compared to young mice 
regardless of sex (*p<0.05 main effect of Treatment with post-hoc Tukey comparisons; 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.10.145136doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.10.145136


 12 

^p<0.05 main effect of Sex). (b) Aging elevates CS-elicited freezing levels during extinction 
in males and females (*p<0.05 main effect of Treatment with significant post-hoc 
differences). In addition, males overall display greater fear retrieval in the beginning of 
extinction followed by a steeper extinction curve (i.e., accelerated extinction learning) 
compared to females, however, there is no sex difference by the final extinction block 9 
(^p<0.05 Sex X Block interaction with significant post-hoc effect of Sex). (c) In males, 
reinstatement is impaired in aged animals living in standard housing, which is rescued by access 
to running wheels. In females, reinstatement is impaired in aged mice regardless of access to 
running wheels (#p<0.05 Treatment X Sex X Reminder interaction with significant post-hoc 
effect of Reminder or main effect of Reminder). Conditioning and extinction: males; n=12-16 
and females; n=14-15 per group. Reinstatement test:  males; n=4-9 and females; n=7-8 per 
group. 

 

 Three-way RM ANOVA of CS-elicited freezing during extinction (Figure 1b) revealed 

main effects of trial Block (F(8,576)=35.91, p<0.001) and Treatment (F(2,72)=6.70, p=0.002). 

Tukey post hoc tests revealed that both groups of aged mice froze more than young mice 

(p<0.05). There was a Block x Sex interaction (F(8,576)=5.13, p<0.001) with post hoc tests 

showing males freezing more than females at block 1 (p<0.001), then females freezing more 

than males at block 8 (p<0.05) but no other blocks showing sex effects (ps>0.05). There 

were no other effects or interactions (ps>0.05). These results suggest that regardless of 

Exercise or Sex, aging elevates CS-elicited freezing levels during extinction. In addition, 

males overall display greater fear retrieval in the beginning of extinction followed by a 

steeper extinction curve (i.e., accelerated extinction learning) compared to females. 

However, there is no sex difference by the final extinction block 9. 

Three-way ANOVA of CS-elicited freezing during test (Figure 1c) showed main 

effects of Reminder (F(1,72)=13.28, p<0.005) and Treatment (F(2,72)=5.41, p<0.01), with Tukey 

post hoc tests showing that young mice froze less than aged mice (p<0.05). There also were 

Treatment x Reminder interaction (F(2,72)=6.01, p<0.005), and Treatment x Reminder x Sex 

interaction (F(2,72)=3.29, p<0.05) but no other interactions (p>0.05). To understand the 3-way 

interaction, the effect of Reminder was tested via Bonferroni-corrected t-tests per Sex and 

per Treatment. In males, the reminder effectively reinstated extinguished fear in young 

(p<0.01) and running wheel housed aged mice (p=0.05) mice but not in standard housed 

aged mice (p>0.05).  In females, only young animals showed reinstatement (p<0.01), with 
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no Reminder effect in both aged groups (p>0.05). Taken together, this suggests that aging 

decreases cognitive flexibility in both sexes, and that this can be rescued with exercise in 

males but not in females. 

3.2. Exercise up-regulates hippocampal Bdnf mRNA levels in male and female mice  

One-week following the reinstatement test, whole hippocampi were micro-dissected from 

animals from the second cohort of males. While there was no significant Sex x Treatment 

interaction (F(2,14)=1.945, p=0.17) nor effect of Sex (F(1,14)=3.77, p=0.07) for total Bdnf (Figure 

2a), there was an overall effect of Treatment (F(2,14)=6.38, p=0.01). Tukey’s post hoc 

comparisons revealed that aged running mice had higher levels of total Bdnf when 

compared to aged standard (p<0.01). There was also a strong trend for its heightened levels 

in aged running mice compared to young standard (p=0.056). Similarly, for Bdnf exon 4 

(Figure 2b) there was no Sex x Treatment interaction (F(2,14)=0.863, p =0.443) nor effect of 

Sex (F(1,14)=1.77, p =0.21), but there was a significant effect of Treatment (F(2,14)=5.67, p 

=0.01). Tukey’s post hoc comparisons revealed increased Bdnf exon 4 mRNA expression in 

aged running animals compared to young standard and aged standard housed animals, 

separately (p<0.05).  

Figure 2. Effect of age and exercise on hippocampal Bdnf mRNA expression (Mean ± 
SEM). (a) Total Bdnf transcript expression in the hippocampus was significantly increased 
following 3 months of exercise compared to standard housing in aged mice (*p<0.05 main effect 
of Treatment with post-hoc Tukey comparisons). (b) Bdnf exon 4 transcript expression in the 
hippocampus was significantly increased following 3 months of exercise compared to standard 
housing in young and aged mice (*p<0.05 main effect of Treatment with post-hoc Tukey 
comparisons). n=3-4 per group. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.10.145136doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.10.145136


 14 

4. Discussion 

The main findings of the current study are 1) aging impairs reinstatement in both sexes; 2) 

aerobic exercise during middle age can restore reinstatement in males but not in females; 

and 3) exercise during middle age increases expression of total Bdnf and Bdnf exon 4 

mRNA. Our secondary findings include combined effects of aging and running to increase 

freezing during conditioning, and aging increasing overall freezing during extinction and test. 

There was a subtle effect of males showing accelerated extinction acquisition compared to 

females, however, there were no sex effects by the final block of extinction. Notably, all the 

mice from the present study were obtained at 8 weeks of age, and were housed in the same 

facility until the end of the study, which an important detail given that most studies in aging 

mice were bought as retired breeders with unknown history.  

4.1. Exercise, sex, and age effects on cognitive flexibility and hippocampal Bdnf 

The present study found significant impairments in cognitive flexibility as measured by 

reinstatement of extinguished fear in mice at 11 months of age compared to mice at 3 

months of age. A decrease in functional connectivity between the prefrontal cortex (PFC) 

and the hippocampus with age that may predict cognitive performance has been reported 

(Buckley et al., 2017). Such connectivity is hypothesized to be critical for reinstatement of 

extinguished fear (Ganella & Kim, 2014), hence a decreased connectivity in these extinction-

related pathways would explain the present finding of age-associated impairment in fear 

reinstatement.  

Interestingly, we found no sex effects between standard-housed groups at any age in 

our study. There is some evidence of sex differences within the literature regarding cognitive 

flexibility in young adults and even in children under the age of 3, with males generally 

performing better (Evans & Hampson, 2015; Overman, 2004). Consistent with this, a recent 

report in middle-aged marmosets showed that males are faster to acquire reversal learning 

(Laclair et al., 2019). These studies all highlighted the PFC as the main driver of observed 

sex differences in these reversal tasks, but did not undertake further investigations of the 
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role of the hippocampus. The absence of sex differences between standard-housing groups 

in our study may be because reinstatement of extinguished fear relies heavily on 

hippocampus (Frohardt, Guarraci, & Bouton, 2000; Wilson et al., 1995), whereas the role of 

PFC in reinstatement is yet unknown. Importantly, while all rats given reminder froze more 

during test baseline than rats not given any reminder (i.e., context-shock association has 

been formed due to the reminder training; Figure 1C), only 3 out of 6 groups that received 

reminder actually showed reinstatement. This finding is consistent with previous reports that 

baseline freezing at test does not indicate relapse following extinction (Callaghan et al. 2011; 

Kim & Richardson, 2009; Park et al. 2020). Classic theories of extinction do highlight that 

relapse following extinction is not a simple summation between context fear and CS fear at 

test (Bouton & King, 1983; Bouton et al. 2002), strongly supported by recent studies showing 

a dissociation between context and CS-elicited freezing (Park et al. 2017b; 2020).  

Strikingly, we observed that 3 months of exercise during middle age restored the 

age-related reinstatement deficit in males but not females. Sex-specific effects of exercise 

on fear extinction have been reported in young adult rats (Bouchet et al., 2017). In that 

study, acute exercise during extinction consolidation significantly improved extinction in 

males but had no effect on females (Bouchet et al., 2017). That finding is consistent with the 

idea that there is sex-specificity in how previous experiences impact cognitive flexibility. 

Studies of humans (Shields, Trainor, Lam, & Yonelinas, 2016) and mice (Laredo et al., 

2015) have found that cognitive flexibility in males was more significantly impaired following 

a stressor, although one recent study found that female rats were more affected (Grafe, 

Cornfeld, Luz, Valentino, & Bhatnagar, 2017). Sex-differences in cognitive performance 

between men and women are also reported in pathological conditions. Women have greater 

cognitive decline in Alzheimer’s disease compared to males (Irvine, Laws, Gale, & Kondel, 

2012), whereas in Parkinson’s disease patients, males have been described as having 

higher cognitive impairments than females (Nicoletti et al., 2016). There is still much to be 

discovered regarding sex differences in age-related cognitive decline. 
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In the present study, the protective effect of exercise in aging males does not appear 

to be driven by hippocampal Bdnf gene expression. While the tissue came from mice that 

received conditioning, extinction and test 1 week prior to tissue collection, increases in 

hippocampal BDNF mRNA following fear conditioning are only maintained up to 24 hours 

(Mizuno, Dempster, Mill, & Giese, 2012). Therefore, it is highly unlikely the mRNA findings 

are due to behavioral procedures, and all of the animals were treated identically. Taken 

together, aging did not appear to have any significant effect on the expression of Bdnf 

coding and exon 4 transcripts, but these were significantly up-regulated in both males and 

females following 3 months of voluntary exercise. “Including exon 4, the Bdnf gene contains 

multiple exons which undergo alternative splicing to create multiple exon-specific transcripts 

of Bdnf (Aid, Kazantseva, Piirsoo, Palm, & Timmusk, 2007; Timmusk et al., 1993). In 

addition to Bdnf exon 4 being required for the extinction of conditioned fear in rodents 

(Baker-Andresen et al., 2013; Bredy et al., 2007), it is also an important regulator of the 

activity dependent effects of BDNF protein. The exon 4 promoter contains a CRE binding 

site that is thought to be responsible for the cyclic adenosine monophosphate (cAMP) 

initiated transcription of BDNF important for experience-dependent plasticity (Ehrlich & 

Josselyn, 2016; Zheng & Wang, 2009). Bdnf plays a vital role in exercise-associated 

improvements of learning and memory (Cotman & Berchtold, 2002; Cotman et al., 2007; 

Neeper, Góauctemez-Pinilla, Choi, & Cotman, 1995; Zoladz, Pilc, & Pilc, 2010). In young 

adult rodents, both males (Neeper et al., 1996) and females (Berchtold et al., 2001) have 

increased levels of Bdnf mRNA within the hippocampus following voluntary wheel running.  

While we describe no sex differences in Bdnf mRNA expression, previous work has 

found differences in hippocampal BDNF protein levels between males and females which 

differed following exercise (Venezia, Guth, Sapp, Spangenburg, & Roth, 2016). It is possible 

that future studies with increased power can assess more subtle effects of sex. Specifically, 

voluntary access to running wheels from 8 weeks of age for 20 weeks had increased 

hippocampal levels of mature BDNF protein in males only, however females had higher 
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sedentary protein expression (Venezia et al., 2016). While expression of Bdnf has been 

found to decrease with age in rats (Silhol, Bonnichon, Rage, & Tapia-Arancibia, 2005) and in 

humans, a correlative decline with cognition has only been reported for females (Barha, 

Davis, et al., 2017; Komulainen et al., 2008). These indicate complex sex- and age-related 

interactions underlying functional BDNF expression changes related to exercise and 

consequential improvement in cognitive function. Future studies should consider 

interrogating the causal role of BDNF in cognition by manipulating its expression or receptor 

signaling during behavioral testing. 

This study focused on the hippocampus because of its importance in the fear 

reinstatement/cognitive flexibility task used here following exercise in middle age in both 

sexes. While there was an increase in hippocampal Bdnf following exercise during aging in 

both sexes, in females there was no improvement in cognitive flexibility. This suggests that 

either increased Bdnf is not sufficient to restore age-related deficits in cognitive flexibility, or 

expression of hippocampal Bdnf is non-essential for fear reinstatement in females. Our aim 

of assessing females in this study has highlighted the complexity of the relationship of Bdnf 

and cognitive flexibility, but further work is required to fully understand the observed sex 

differences. The increases in Bdnf following exercise in this study suggest that there is an 

increase in synaptic plasticity within the hippocampus (Kuipers & Bramham, 2006). Previous 

work on female mice found that exercising for a longer period (6 months) than our study 

increased BDNF and hippocampal neurogenesis and improved spatial learning (Marlatt, 

Potter, Lucassen, & van Praag, 2012). Other brain regions such as the PFC, wherein 

dendritic spines density is increased by exercise (Brockett, LaMarca, & Gould, 2015), are 

also likely to contribute to improved cognitive flexibility (Gruber et al., 2010; Kim, Johnson, 

Cilles, & Gold, 2011).  

4.2. Aging effects on enhanced conditioned fear expression  

Across both sexes, aged animals with access to running wheels froze more overall during 

fear acquisition. Additionally, during extinction and test, aged animals regardless of exercise 
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had increased fear recall. Such enhanced freezing in both the aged standard and aged 

exercise groups suggests an age-related enhancement of cued fear memory consolidation, 

while aging and exercise may also cause enhance acquisition of cued fear memory. These 

findings are consistent with a recent report of similar increases in freezing with cued fear in 

aged mice (Shoji & Miyakawa, 2019). The amygdala is a central brain region regulating the 

acquisition and consolidation of cued fear (Duvarci, Nader, & LeDoux, 2005; Kim et al., 

2012; Orsini & Maren, 2012). While aged-related changes in amygdala structure and volume 

are currently poorly understood, there may be an overall loss of functional connectivity of the 

amygdala with the broader cortical regions (Von Bohlen und Halbach & Unsicker, 2002). 

However, the mechanisms whereby loss of innervation of the amygdala could result in 

increased conditioned fear consolidation remains to be investigated. 

4.3 Limitations 

A limitation of the study is that estrous cycle and estrogen levels of the females were not 

monitored. Estrous cycle has been shown to affect fear conditioning and extinction in female 

rodents and humans (Blume et al., 2017; Zeidan et al., 2011), with recent evidence that 

estrous cycle and related sex hormones drive extinction differences between male and 

female rats (Blume et al., 2017; Perry et al., 2020). However, the low variability in the female 

groups in the present study suggests that it is unlikely that estrous cycle is influencing our 

results. This may especially be the case for the female aging mice test at 11 months of age 

undergoing perimenopause with drastically reduced levels of circulating sex hormones (Diaz 

Brinton, 2012; Koebele & Bimonte-Nelson, 2016; Mobbs, Gee, & Finch, 1984). 

 In addition, running activity was not monitored, so it is unclear if the exercise levels 

were equivalent between males and females. Nevertheless, BDNF levels were induced to 

similar extents in males and females, suggesting that the running stimulus was sufficient to 

activate exercise-associated molecular signaling programs in the hippocampus.   

4.4 Conclusions 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 11, 2020. ; https://doi.org/10.1101/2020.06.10.145136doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.10.145136


 19 

Overall, our study suggests that exercise during middle age reduces the extent of cognitive 

impairments in males but not females. The benefits of exercise described here highlight the 

importance of tailoring exercise recommendations/expectations to the individual, with sex 

being an important consideration. Importantly, reinstatement of conditioned fear appears to 

be a helpful rodent model to delineate sex and age effects on cognition, and we hope that 

our observations will facilitate further studies to understand the molecular correlates of 

exercise benefits on cognitive flexibility.    
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