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Summary  

Whether maximizing rewards and minimizing punishments rely on distinct brain systems 

remains debated, inconsistent results coming from human neuroimaging and animal 

electrophysiology studies. Bridging the gap across species and techniques, we recorded 

intracerebral activity from twenty patients with epilepsy while they performed an instrumental 

learning task. We found that both reward and punishment prediction errors (PE), estimated 

from computational modeling of choice behavior, correlated positively with broadband 

gamma activity (BGA) in several brain regions. In all cases, BGA increased with both 

outcome (reward or punishment versus nothing) and surprise (how unexpected the outcome 

is). However, some regions (such as the ventromedial prefrontal and lateral orbitofrontal 

cortex) were more sensitive to reward PE, whereas others (such as the anterior insula and 

dorsolateral prefrontal cortex) were more sensitive to punishment PE. Thus, opponent 

systems in the human brain might mediate the repetition of rewarded choices and the 

avoidance of punished choices. 

 

 

Keywords  

reinforcement learning; appetitive learning, aversive learning; monetary gains; monetary 

losses; anterior insula; prefrontal cortex; broadband gamma; Ecog; iEEG  
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INTRODUCTION 

Approaching reward and avoiding punishment are the two fundamental drives of animal 

behavior. As the philosopher John Locke would put it “reward and punishment are the only 

motives to a rational creature: these are the spur and reins whereby all mankind are set on 

work, and guided”. In principle, both reward-seeking and punishment-avoidance could be 

learned through the same algorithmic steps. One the most straight and simple algorithm 

postulates that the value of chosen action is updated in proportion to prediction error 

(Rescorla and Wagner, 1972; Sutton and Barto, 1998), defined as observed minus expected 

outcome value. In this simple reinforcement learning model, the only difference is outcome 

valence: positive for reward (increasing action value) and negative for punishment 

(decreasing action value). The same brain machinery could therefore implement both reward 

and punishment learning. 

Yet, different lines of evidence point to an anatomic divide between reward and punishment 

learning systems, in relation with opponent approach and avoidance motor behaviors 

(Boureau and Dayan, 2011; Pessiglione and Delgado, 2015). First, fMRI studies have 

located prediction error (PE) signals in different brain regions, such as the ventral striatum 

and ventromedial prefrontal cortex (vmPFC) for reward versus the amygdala, anterior insula 

(aINS) or lateral orbitofrontal cortex (lOFC) for punishment (O’Doherty et al., 2001; 

Pessiglione et al., 2006; Seymour et al., 2005; Yacubian, 2006). Second, reward and 

punishment learning can be selectively affected, for instance by dopaminergic manipulation 

and anterior insular lesion (Bodi et al., 2009; Frank, 2004; Palminteri et al., 2012; Rutledge et 

al., 2009).  

However, a number of empirical studies have casted doubt on this anatomical separation 

between reward and punishment learning systems. Part of the confusion might come from 

the use of behavioral tasks that allow for a change of reference point, such that not winning 

becomes punishing and not losing becomes rewarding (Kim et al., 2006). The issue is 

aggravated with decoding approaches that preclude access to the sign of PE signals, i.e. 

whether they increase or decrease with reward versus punishment (Vickery et al., 2011). 

Another reason for inconsistent findings might be related to the recording technique: fMRI 

instead of electrophysiology. Indeed, some electrophysiological studies in monkeys have 

recorded reward and punishment PE signals in adjacent brain regions (Matsumoto and 

Hikosaka, 2009; Monosov and Hikosaka, 2012). In addition, single-unit recordings in 

monkeys have identified PE signals in different brain regions: not only small deep brain 
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nuclei such as the ventral tegmental area (Bayer and Glimcher, 2005; Schultz et al., 1997) 

but also large cortical territories such as the dorsolateral prefrontal cortex (dlPFC, Asaad et 

al., 2017; Oemisch et al., 2019).  

A key issue with fMRI is that the temporal resolution might not be sufficient to dissociate the 

two components of PE - observed and expected outcome value. The issue arises because 

the same region might reflect PE at both the times of option and outcome display. Thus, if 

option and outcome display are close in time, the hemodynamic signals reflecting positive 

and negative expected outcome value would cancel each other (Roy et al., 2014; Rutledge et 

al., 2010). Moreover, discrepant results between human and monkey studies could also arise 

from other differences in the paradigms (Wallis, 2012), such as the amount of training or the 

particular reward and punishment items used to condition choice behavior in monkeys. 

Indeed, primary reinforcers such as fruit juices and air puffs may not be exact reward and 

punishment equivalents, as are the monetary gains and losses used in humans. 

With the aim of bridging across species and techniques, we investigate here PE signals in 

the human brain, using a time-resolved recording technique: intracerebral 

electroencephalography (iEEG). The iEEG signals were collected in patients implanted with 

electrodes meant to localize epileptic foci, while they performed an instrumental learning 

task. The same approach was used in one previous study that failed to identify any 

anatomical specificity in the neural responses to positive and negative outcomes (Ramayya 

et al., 2015). To assess whether this lack of specificity was related to the recording technique 

or to the behavioral task, we used a task that properly dissociates between reward and 

punishment learning, as shown by previous fMRI, pharmacological and lesion studies 

(Palminteri et al., 2012; Pessiglione et al., 2006).  

In this task (Figure 1a), patients (n=20) were required to choose between two cues to 

maximize monetary gains (during reward-learning) or minimize monetary losses (during 

punishment-learning). Reward and punishment PE could then be inferred from the history of 

tasks events, using a computational model. We first identified from the 1694 cortical 

recording sites a set of brain regions encoding PE, which included vmPFC, lOFC, aINS and 

dlPFC. We then specified the dynamics of PE signals in both time and frequency domains, 

and compared between reward and punishment outcomes. Results suggest a dissociation 

between two functionally opponent systems encoding both components (outcome minus 

expectation) of either reward (vmPFC and lOFC) or punishment (aINS and dlPFC) PE 

signals.  
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RESULTS 

iEEG data were collected from twenty patients with drug-resistant epilepsy (see 

demographical details in Table S1 and methods) while they performed an instrumental 

learning task during which reward and punishment conditions were matched in difficulty, as 

the same probabilistic contingencies were to be learned. 

Behavioral performance 

Patients were able to learn the correct response over the 24 trials of the learning session: 

they tended to choose the most rewarding cue in the gain condition and avoid the most 

punishing cue in the loss condition (Figure 1b). Average percentage of correct choices 

(Figure 1c) in the reward and punishment conditions was significantly different from chance 

level (reward: 71.4 ± 3.2%, t19=6.69, p<3×10-6; punishment: 71.5 ± 2.1%, t19=10.02, p<6×10-9; 

difference: t19=-0.03; p=0.98). Reaction times were significantly shorter in the reward than in 

the punishment condition (Figure 1f; reward: 700 ± 60 ms; punishment: vs 1092 ± 95 ms; 

difference: t19=-7.02, p<2×10-6). Thus, patients learnt similarly from rewards and 

punishments, but took longer to choose between cues for punishment avoidance. This 

pattern of results replicate behavioral data previously obtained from healthy subjects 

(Palminteri et al., 2015; Pessiglione et al., 2006). 

Computational modeling 

To generate trial-wise expected values and prediction errors, we fitted a Q-learning model 

(QL) to behavioral data. The QL model generates choice likelihood via a softmax function of 

cue values, which are updated at the time of outcome. Fitting the model means adjusting two 

parameters (learning rate and choice temperature) to maximize the likelihood of observed 

choices (see methods). Because this simple model left systematic errors in the residuals, we 

implemented another model (QLr) with a third parameter that increased the value of the cue 

chosen in the previous trial, thereby increasing the likelihood of repeating the same choice. 

We found that including a repetition bias in the softmax function better accounted for the 

data, as indicated by a significantly lower Bayesian information criterion for QLr model 

(t19=4.05, p<0.001; Table 1). On average, this QLr model accounts for a more symmetrical 
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performance between reward and punishment learning (Figure 1d), while the standard QL 

model would learn better in the reward condition, because reinforcement is more frequent 

than in the punishment condition (as patients approach the +1€ and avoid the -1€ outcome). 

With the QLr model, choices in reward and punishment conditions were captured equally 

well, with an explained variance across patients of 87 and 83% (Figure 1e).  

 

 
Figure 1. Behavioral task and results. a. Successive screenshots of a typical trial in the reward (top) 
and punishment (bottom) conditions. Patients had to select one abstract visual cue among the two 
presented on each side of a central visual fixation cross, and subsequently observed the outcome. 
Duration is given in milliseconds. b. Average learning curves (n=20 patients). Modeled behavioral 
choices (solid line) are superimposed on observed choices (shaded areas represent mean ± SEM 
across patients). Learning curves show rates of correct choice (75% chance of 1€ gain) in the reward 
condition (blue curves) and incorrect choice (75% chance of 1€ loss) in the punishment condition (red 
curves). c. Average performance (correct choice rate). Modeled performance is indicated by white and 
grey disks (using Q-learning + repetition bias and basic Q-learning model, QLr and QL, respectively). 
d. Difference between conditions (reward minus punishment correct choice rate) in observed and 
modeled data. e. Inter-patient correlations between modeled and observed correct choice rate for 
reward and punishment learning. Each circle represents one patient. Red line represents the linear 
regression. f. Reaction time (RT) learning curves. Median RT are averaged across patients and the 
mean (± SEM) is plotted as function of trials separately for the reward (blue) and punishment (red) 
conditions. 
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Table 1. Model parameters and comparison criterion. 

 Degrees of 

freedom (DF) 

Bayesian 

information 

criterion (BIC) 

Learning 

rate (α) 

Inverse 

temperature (β) 

Repetition       

bias (θ) 

QL 2 502 ±31 0.27 ± 0.04 3.80 ± 0.48  

QLr 3 430 ±30 0.26 ± 0.04 3.19 ± 0.43 0.44 ± 0.06 
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iEEG: localizing PE using broadband gamma activity 

To identify brain regions signaling PE, we first focused on broadband gamma activity (BGA, 

in the 50-150Hz range) because it is known to correlate with both spiking and fMRI activity 

(Lachaux et al., 2007; Mukamel et al., 2005; Niessing, 2005; Nir et al., 2007). BGA was 

extracted from each recording site and time point and regressed against PE (collapsed 

across reward and punishment conditions) generated by the QLr model across trials. The 

location of all iEEG recording sites (n=1694 bipolar derivations) was labeled according to 

MarsAtlas parcellation (Auzias et al., 2016), and to the atlas of Destrieux (Destrieux et al., 

2010) for the hippocampus and the distinction between anterior and posterior insula (Figure 

2). In total, we could map 1473 recording sites into 39 brain parcels. In the following, we 

report statistical results related to PE signals tested across the recording sites located within 

a given parcel. Note that a limitation inherent to any iEEG study is that the number of 

recorded sites varies across parcels, which impacts the statistical power of analyses used to 

detect PE signals in different brain regions. 

For each parcel, we first tested the significance of regression estimates (averaged over the 

0.25 to 1 s time window following outcome onset) in a fixed-effect analysis (pooling sites 

across patients) and Bonferroni-corrected for multiple comparisons across parcels. We also 

estimated the significance of PE signals at the site level, by using time-varying regression 

estimates and associated p-values, while FDR-correcting for multiple comparisons in the 

time domain (across 97 comparisons in the 0 to 1.5 s time window following outcome onset), 

in accordance with published methods (Genovese et al., 2002). We found 8 parcels showing 

significant PE signals and displaying a proportion of significant contacts superior to 20% 

(Table S2). This set of significant brain parcels included the aINS, vmPFC, dlPFC, lOFC, 

hippocampus, lateral and caudal medial visual cortex (VCcm and VCl) and the medial inferior 

temporal cortex (ITcm). Given this result and the literature reviewed in the introduction, we 

focused on the anterior insula and prefrontal ROIs (vmPFC, lOFC and dlPFC) in the 

hereafter analyzes, while the same analyzes performed in the other ROIs are analyzed are 

presented as supplementary information.  
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Figure 2. Anatomical location of intracerebral electrodes. a. Sagittal and axial slices of a brain 
template over which each dot represents one iEEG recording site (n=1694). Color code indicates 
location within the four main regions of interest (red: vmPFC; green: dlPFC; blue: lOFC; purple: aINS). 
b. MarsAtlas parcellation scheme represented on an inflated cortical surface.  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.145433doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.145433
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

 

iEEG: PE signals across ROIs and frequency bands 

In each ROI (Figure 3a), we explored whether activity in other frequency bands could also be 

related to PE. A time-frequency analysis confirmed the presence of PE signals in BGA 

following outcome onset in all ROIs (Figure 3b). Furthermore, PE was also positively 

associated with beta-band (13-33 Hz) power in the aINS and vmPFC. In the theta/alpha 

bands (4-8 and 8-13 Hz), there was an initial positive association (during the first 500 ms 

after outcome onset), which was followed by a negative association (from 500 ms to 1000 ms 

after outcome onset) in all four ROIs. Thus, the time-frequency analysis pointed to three 

other frequency bands in which power was associated to PE.  

We regressed trial-wise power against PE, in the four ROIs and four frequency bands, for 

each time point between -0.2 and 1.5 s around outcome onset. In the broadband gamma 

(Figure 3c), we confirmed a significant cluster-corrected association with PE in the 0.09-

1.00s window for the aINS (sum(t(82))=462.2, pc<1×10-3), 0.19-0.97s for the dlPFC 

(sum(t(73))=273.5, pc<1×10-3), 0.30-0.86s for the vmPFC (sum(t(53))=115.3, pc<1×10-3) and 

0.39-0.94s for the lOFC (sum(t(69))=116.1, pc<1×10-3). We next focused on a 0.25-1s post-

outcome time window for subsequent analyses (Figure 3c), as it plausibly corresponds to the 

computation of PE. 

To further quantify statistically how the information about PE was distributed across 

frequencies, we averaged regression estimates over the 0.25-1s time window for the 

broadband gamma and beta bands, and over two separate time windows to distinguish the 

early (0 to 0.5 s) and late (0.5 to 1 s) components of theta-alpha band activity (Figure 3d). As 

expected, we found significant PE correlates in BGA. Furthermore, beta-band activity was 

also positively associated with PE in two ROIs (aINS: t(82)=9.17; p<1×10-13; vmPFC: t(53)=3.34 

p=0.0015). Finally, regarding the theta/alpha band, regression estimates were significantly 

above (below) zero in the early (late) time window in all ROIs (all p values<0.05). 

To compare the contribution of activities in the different frequency bands to PE signaling 

across the four ROIs, we included them as separate regressors in general linear models 

meant to explain PE. In particular, to test whether other frequency bands were adding any 

information about PE, we compared GLMs including only BGA to all possible GLMs 

containing broadband gamma plus any combination of low-frequency activities. Bayesian 

model selection (see Methods) designated the broadband-gamma-only GLM as providing the 

best account of PE (Ef=0.997, Xp=1). Thus, even if low-frequency activity was significantly 
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related to PE, it carried redundant information relative to that extracted from BGA. 

 

  

Figure 3. Investigation of PE signals across frequency bands. a. Anatomical localization of the 
aINS (purple), dlPFC (green), vmPFC (red) and lOFC (blue). All recording sites located in these 
parcels were included in the ROI analyzes. b. Time-frequency decomposition of PE signals following 
outcome onset. Hotter colors indicate more positive regression estimates. Horizontal dashed lines 
indicate boundaries between frequency bands that are investigated in panels c and d. c. Time course 
of regression estimates obtained from linear fit of BGA with PE modeled across reward and 
punishment conditions. Horizontal bold lines indicate significant clusters (pc<1×10-3). d. Regression 
estimates of power against PE, averaged over early (0 to 0.5 s) and late (0.5 to 1 s) post-stimulus 
windows for the lower frequency bands (θ/α: 4-13 Hz) and over the 0.25 to 1 s window for higher 
frequency bands (β: 13-33 Hz and broadband γ: 50-150 Hz). Black stars indicate significance of 
regression estimates. Black crosses indicate outliers. 
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iEEG: comparison between reward and punishment PE 

In the following analyses, we tested whether reward and punishment PE could be 

dissociated between the four ROIs previously identified (aINS, dlPFC, vmPFC and lOFC). 

The time course of regression estimates computed separately for reward and punishment PE 

showed increases at the time of outcome display, which differed between ROIs (Figure 4a). 

In aINS and dlPFC, regression estimates were significantly higher for punishment than for 

reward PE, in the 0.23-0.70 s window for the aINS (sum(t(82))=-97.01, pc<1×10-3) and in the 

0.25-1.5 s for the dlPFC (sum(t(73))=-368.6, pc<1×10-3). An opposite pattern emerged in the 

vmPFC and lOFC: regression estimates were significantly higher for reward PE than for 

punishment PE, in the 0.48-1.02 s for the vmPFC (sum(t(53))=116, pc<1×10-3) and in the 0.72-

1.45 s for the lOFC (sum(t(69))=138.7, pc<1×10-3). 

We next decomposed PE signals into outcome and expected value, for both reward (R and 

Qr) and punishment (P and Qp) PE, to test whether the two components were related to 

BGA, at the time of outcome display. We observed a consistent pattern across ROIs: while 

the outcome component was positively correlated with BGA, the expectation component was 

negatively correlated with BGA (Figure 4b). To further quantify this pattern in each ROI, we 

tested regression estimates (averaged over a 0.25-1s post-outcome time window) of both 

outcome and expectation for both reward and punishment PE (Figure 4c). We found that all 

components of both reward and punishment PE were significantly expressed in aINS and 

dlPFC BGA (all p values<0.05), but only the reward PE components in the vmPFC and lOFC 

(all p values<0.05).  

The same analyzes were performed in the four other brain regions associated with PE 

(Figure S1). BGA in the medial Inferior Temporal Cortex (mITC) was associated with 

outcomes (reward and punishments), but not with expected value, so this region would not 

qualify as signaling PE. The three other ROIs (Hippocampus:  HPC; lateral Visual Cortex: 

lVC and caudal medial Visual Cortex: cmVC), showed a dissociation in time, with a short 

punishment PE and prolonged reward PE. When averaging the signal over the 0.25-1s post-

outcome time window, there was no significant difference between reward and punishment 

PE in these regions. There was therefore no strong evidence for these regions to be 

associated with either reward or punishment learning. 
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Figure 4. Dissociation of reward and punishment PE signals. a. Time course of regression 
estimates obtained from linear fit of BGA with PE modeled separately for the reward and punishment 
conditions (PPE: punishment prediction error; RPE: reward prediction error). Horizontal bold lines 
indicate significant difference between conditions (blue: RPE>PPE; red: PPE>RPE; pc<0.05). Shaded 
areas represent inter-patient SEM. b. Time course of regression estimates obtained from a linear 
model including both outcome and expected value components for both reward (R and Qr) and 
punishment (P and Qp) PE. c. Regression estimates averaged over the 0.25-1 s time window 
(represented as shaded gray areas in panels b).  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.145433doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.145433
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 

 

DISCUSSION 

Here, we compared the neural correlates of reward and punishment PE during instrumental 

learning. We identified a set of brain regions signaling PE in different frequency bands, the 

most informative being BGA. All regions signaled outcomes with increased BGA and 

expectations with decreased BGA. However, there was a partial dissociation: the vmPFC 

and lOFC emitted stronger signals for reward PE, whereas the aINS and dlPFC emitted 

stronger signals for punishment PE. In the following, we successively discuss the 

specification of PE signals in terms of anatomical location and frequency band, and then the 

dissociation between reward and punishment PE.  

Specification of PE signals 

When regressing BGA against PE modeled across learning conditions, we identified 

significant correlates in a number of brain regions. Among the significant ROIs, some (e.g., 

the vmPFC and aINS) were classic regions related to prediction errors in meta-analyses of 

human fMRI studies (Bartra et al., 2013; Garrison et al., 2013; Liu et al., 2011), whereas 

others (e.g., the dlPFC and lOFC) were regions where single-neuron firing activity in non-

human primates was shown to correlate with prediction error (Asaad et al., 2017; Oemisch et 

al., 2019; Sul et al., 2010). Our study thus fills a gap across species and techniques, 

confirming that intracerebral BGA is a relevant neurophysiological signal related to both 

hemodynamic and spiking activity, as previously suggested (Lachaux et al., 2012; Mukamel 

et al., 2005; Niessing, 2005; Nir et al., 2007).  

Yet it raises the question of why fMRI studies, including those using the same task as here 

(Pessiglione et al., 2006), often failed to detect PE correlates in regions such as the dlPFC 

and lOFC. One possible explanation is the more stringent correction for multiple comparisons 

across voxels in fMRI studies, compared to the correction across ROIs applied here, or the 

absence of correction in most animal studies that typically investigate a single brain region. 

Another explanation would be that regions such as the dlPFC are more heterogenous across 

individuals, such that the group-level analyses typically conducted in fMRI studies might be 

less sensitive than the subject-level analysis performed here or in animal studies. 

Conversely, some key regions consistently found to signal PE in fMRI studies (e.g., the 

ventral striatum), are absent in our results, for the simple reason that they were not sampled 

by the electrodes implanted for clinical purposes. Even if our analysis provides some insight 

about the location of PE signals, it cannot be taken as a fair whole-brain analysis, since 
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some regions were more frequently sampled than others, biasing the statistical power and 

hence the sensitivity of PE detection. 

In all the investigated ROIs, we also found significant links with activity in lower frequency 

bands. Time-frequency decomposition of PE correlates yielded remarkably similar patterns in 

the different ROIs, with an increase in the beta to high-gamma band, and an increase 

followed by a decrease in the theta to alpha band. The late decrease may reflect the 

opponency between theta-band activity and the other signals (broadband gamma, 

hemodynamic and spiking activity) that was documented in previous studies (Manning et al., 

2009; Mukamel et al., 2005; Nir et al., 2007). However, the early increase is more surprising 

and suggests that PE are initially signaled in low-frequency activity, before reaching BGA. 

Yet when the different frequency bands were put in competition for predicting PE across 

trials, low-frequency activity proved to be redundant, with respect to the information already 

contained in BGA. This result is in line with our analysis of subjective valuation for decision 

making (Lopez-Persem et al., 2020): all the information available in neural activity could be 

found in BGA, even if activity in lower-frequency bands also showed significant value signals.  

The timing of PE signals, peaking around 0.5 seconds after outcome onset, was roughly 

compatible with that observed in the hemodynamic response, which is typically delayed by 5-

6 seconds. The (positive) correlation with the outcome and the (negative) correlation with the 

expectation were simultaneously observed. This double observation, made possible here by 

the high temporal resolution of iEEG, is rarely reported in fMRI studies (Fouragnan et al., 

2018). One reason is that the hemodynamic response, because of its low temporal 

resolution, may confound positive expectation at cue onset and negative expectation at 

outcome onset, unless the two events are separated by a long delay (as in, e.g., Behrens et 

al., 2008). Our double observation corroborates a previous study showing that the differential 

response to positive and negative feedbacks, recorded with intracranial electrodes, is 

modulated by reward expectation (Ramayya et al., 2015). As the response to outcome can 

be viewed as an indicator of valence, and the modulation by expectation as an effect of 

surprise, it shows that valence and surprise can be represented in the same brain region, in 

accordance with the very notion of prediction error signal. 

Dissociation between reward and punishment PE  

Although all our ROIs exhibited a same pattern of response, their quantitative sensitivity to 

reward and punishment PE could be dissociated. This anatomic divide between opponent 
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learning systems in the brain may appear at variance with a previous fMRI study reporting 

that rewards and punishments are ubiquitously represented all over the brain (Vickery et al., 

2011). However, this observation was made in a choice task (matching pennies) where the 

outcome is either reward or punishment. Thus, it is understandable that both reward and 

punishment regions were mobilized by the outcome in this task, since being rewarded is not 

being punished and vice-versa. Here, PE signals were defined by the comparison between 

reward or punishment outcomes and their omission, not with each other, which enabled a 

dissociation. 

Besides, the previous conclusion was based on the finding that the information about reward 

versus punishment outcomes could be recovered from many brain regions. Had we applied 

the same decoding analysis here, we would have reached the same conclusion: information 

about reward versus punishment PE could be recovered in all our ROIs, precisely because 

their response depended on outcome valence. In other words, the contrast between reward 

and punishment PE was significant in all ROIs, but the critical difference between ROIs is the 

sign of this contrast: positive in the vmPFC and lOFC but negative in the aINS and dlPFC. 

The dissociation between regions signaling reward and punishment PE may also seem at 

odds with single-unit recordings showing reward and punishment PE signals can be found in 

neighboring neurons (Matsumoto and Hikosaka, 2009; Monosov and Hikosaka, 2012). Yet it 

should be emphasized that the dissociation observed here was only partial, compatible with 

the possibility that some regions contained more reward-sensitive neurons and others more 

punishment-sensitive neurons, even if both types can be found in all regions. 

An important conclusion of our analyzes is that the dissociation was made between reward 

and punishment PE, not between positive and negative PE. Indeed, some learning models 

assume that positive and negative PE are processed differently, yielding different learning 

rates (e.g., Frank et al., 2007; Lefebvre et al., 2017). A strict dissociation between positive 

and negative PE (across valence) would imply that regions signaling reward PE with 

increased activity would signal punishment PE with decreased activity, and vice-versa. This 

would induce an ambiguity for the rest of the brain, as an omitted reward would be coded 

similarly to an inflicted punishment, and an avoided punishment similarly to an obtained 

reward. This is not the pattern that we observed: on the contrary, both reward and 

punishment PE were positively correlated to BGA in all regions (at least numerically, if not 

significantly). Yet reward and punishment PE could be distinguished by a downstream 

region, from the relative activity of regions more sensitive to reward and those more sensitive 

to punishment. Thus, rather than the sign of PE, the dissociation depended on their domain, 
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i.e. on whether the PE should reinforce the repetition or the avoidance of last choice.  

Within the reward-sensitive regions, the vmPFC was expected, given the number of fMRI 

studies reporting a link between vmPFC and reward outcome, including those using the 

same task as here (Pessiglione et al., 2006 reanalyzed in Palminteri et al., 2012) and meta-

analyses (Bartra et al., 2013; Clithero and Rangel, 2014; Garrison et al., 2013; Liu et al., 

2011). The expression of reward PE in the vmPFC might relate to its position as a main 

efferent output of midbrain dopamine neurons, following the meso-cortical pathway (Haber 

and Knutson, 2010). Indeed, manipulation of dopaminergic transmission was found to 

interfere with reward learning, specifically (Bodi et al., 2009; Frank, 2004; Rutledge et al., 

2009), an effect that was captured by reward sensitivity in a computational model of learning 

in this task (Pessiglione et al. 2006).The observation of reward PE signals in the lOFC was 

less expected, because it is generally not reported in meta-analyses of human fMRI studies 

and because several electrophysiology studies in animals suggested that, even if 

orbitofrontal cortex neurons respond to reward outcomes, they might not encode prediction 

errors (Roesch et al., 2010; Schultz, 2000). However, the similarity between lOFC and 

vmPFC reward PE signals is consistent with previous iEEG studies showing similar 

representation of subjective value and reward outcome in the two regions BGA (Lopez-

Persem et al., 2020; Saez et al., 2018). Yet the lOFC and vmPFC reward PE signals may 

serve different functions, as was suggested by lesion studies in both human and non-human 

primates showing that the lOFC (but not the vmPFC) is critical for solving the credit 

assignment problem (Noonan et al., 2010, 2017). 

Within the punishment-sensitive regions, the aINS was expected, as it was associated with 

punishment PE in our fMRI study using the same task (Pessiglione et al., 2006) and because 

it is systematically cited in meta-analyses of fMRI studies searching for neural correlates of 

punishment outcomes (Fouragnan et al., 2018; Garrison et al., 2013; Liu et al., 2011). 

Surprisingly, the link between aINS activity and punishment PE has seldom been explored in 

non-human primates. This exploration was made possible here by the development of 

oblique positioning techniques employed to implant electrodes, which result in a large spatial 

sampling of the insular cortex (Afif et al., 2010). This is important because other iEEG 

approaches, such as subdural recordings (Ecog), could not explore the role of the insular 

cortex in instrumental learning (Ramayya et al., 2015). The present result echoes a previous 

finding, using the same technique, that aINS BGA signals mistakes in a stop-signal task 

(Bastin et al., 2017). By comparison, punishment PE signals in the dlPFC were less 

expected, since they were not observed in fMRI results using the same task, even if it is not 
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uncommon to observe dlPFC activation following punishment outcomes (Fouragnan et al., 

2018; Garrison et al., 2013; Liu et al., 2011).  

Reward PE signals were also observed in both aINS and dlPFC regions, albeit with a lesser 

sensitivity. This may be interpreted as an effect of saliency rather than PE (Metereau and 

Dreher, 2013; Rutledge et al., 2010), as punishments were less frequent in the task than 

rewards (because patients learned to avoid the former and obtain the latter). However, pure 

saliency coding would not explain the responses to punishments observed in the aINS during 

Pavlovian learning tasks where high punishments were controlled to be more frequent than 

low punishments (e.g., Seymour et al., 2004) or in gambling tasks where punishment and 

reward outcomes were matched (e.g., Petrovic et al., 2008). Also, saliency coding would not 

predict the consequence of aINS damage, which was found to specifically impair punishment 

learning in this task, an effect that was captured by a specific diminution of the sensitivity to 

punishment outcome in a computational model (Palminteri et al., 2012). Yet it remains that 

reward and punishment learning are not exact symmetrical processes, since positive reward 

PE favors repetition of the same choice, whereas positive punishment PE pushes to the 

alternative choice, hence involving an additional switching process. This switching process 

might explain the longer choice RT observed in the punishment condition. The switch might 

relate to the prolonged implication of the dlPFC following punishment PE, in keeping with the 

established role of this region in cognitive control (Botvinick and Braver, 2015; Koechlin and 

Hyafil, 2007; Miller and Cohen, 2001). The implication of the aINS might be more related to 

the aversiveness of punishment PE, in line with the role attributed to this region in pain, 

interoception and negative feelings (Corradi-Dell’Acqua et al., 2016; Craig and Craig, 2009; 

Zaki et al., 2016).  

In summary, we used human intracerebral BGA to test the a priori theoretical principle that 

reward and punishment PE could be processed by the same brain machinery (one being the 

negative of the other). On the contrary, we found that both reward and punishment PE were 

positively correlated to BGA in all brain regions. Yet some regions amplified reward PE 

signals, and others punishment PE signals. Thus, the opponency between reward and 

punishment brain systems is not about the sign of the correlation with PE, but about the 

valence domain of outcomes (better or worse than nothing). These appetitive and aversive 

domains correspond to different behaviors that must be learned: more or less approach for 

reward PE and more or less avoidance for punishment PE. Further research is needed to 

disentangle the roles of the different reward and punishment regions in these learning 

processes.  
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Methods 

Patients 

Intracerebral recordings were obtained from 20 patients (33.5 ± 12.4 years old, ten females, 

see demographical details in Table S1) suffering from pharmaco-resistant focal epilepsy and 

undergoing presurgical evaluation. They were investigated in two epilepsy departments 

(Grenoble and Lyon). To localize epileptic foci that could not be identified through 

noninvasive methods, neural activity was monitored in lateral, intermediate, and medial wall 

structures in these patients using stereotactically implanted multilead electrodes (stereotactic 

intracerebral electroencephalography, iEEG). All patients gave written informed consent and 

the study received approval from the ethics committee (CPP 09-CHUG-12, study 0907) and 

from a competent authority (ANSM no: 2009-A00239-48). 

iEEG data acquisition and preprocessing 

Patients underwent intracerebral recordings by means of stereotactically implanted semirigid, 

multilead depth electrodes (sEEG). Five to seventeen electrodes were implanted in each 

patient. Electrodes had a diameter of 0.8 mm and, depending on the target structure, 

contained 8–18 contact leads 2-mm-wide and 1.5-mm-apart (Dixi, Besançon, France). 

Anatomical localizations of iEEG contacts were determined on the basis of postimplant 

computed tomography scans or postimplant MRI scans coregistered with preimplant scans 

(Deman et al., 2018). Electrode implantation was performed according to routine clinical 

procedures, and all target structures for the presurgical evaluation were selected strictly 

according to clinical considerations with no reference to the current study. 

Neuronal recordings were conducted using an audio–video-EEG monitoring system 

(Micromed, Treviso, Italy), which allowed simultaneous recording of 128 to 256 depth-EEG 

channels sampled at 256 Hz (1 patient), 512 Hz (6 patients) or 1024 Hz (12 patients) [0.1–

200 Hz bandwidth]. One of the contacts located in the white matter was used as a reference. 

Each electrode trace was subsequently re-referenced with respect to its direct neighbor 

(bipolar derivations with a spatial resolution of 3.5 mm) to achieve high local specificity by 

cancelling out effects of distant sources that spread equally to both adjacent sites through 

volume conduction (Lachaux et al., 2003).  
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Behavioral task 

Patients performed a probabilistic instrumental learning task adapted from previous studies 

(Palminteri et al., 2012; Pessiglione et al., 2006). Patients were provided with written 

instructions, which were reformulated orally if necessary, stating that their aim in the task 

was to maximize their financial payoff and that to do so, they had to consider reward-seeking 

and punishment-avoidance as equally important (Figure 1). Patients performed short training 

sessions to familiarize with the timing of events and with response buttons. Training 

procedure comprised a very short session, with only two pairs of cues presented on 16 trials, 

followed by 2 to 3 short sessions of five minutes, such that all patients reached a threshold of 

70 % correct choices during both the reward and punishment conditions. During iEEG 

recordings, patients performed three to six test sessions. Each session was an independent 

task containing four new pairs of cues to be learned. Cues were abstract visual stimuli taken 

from the Agathodaimon alphabet. Each pair of cues was presented 24 times for a total of 96 

trials. The four cue pairs were divided in two conditions (2 pairs of reward and 2 pairs of 

punishment cues), associated with different pairs of outcomes (winning 1€ versus nothing or 

losing 1€ versus nothing). The reward and punishment conditions were intermingled in a 

learning session and the two cues of a pair were always presented together. Within each 

pair, the two cues were associated to the two possible outcomes with reciprocal probabilities 

(0.75/0.25 and 0.25/0.75). On each trial, one pair was randomly presented and the two cues 

were displayed on the left and right of a central fixation cross, their relative position being 

counterbalanced across trials. The subject was required to choose the left or right cue by 

using their left or right index to press the corresponding button on a joystick (Logitech Dual 

Action). Since the position on screen was counterbalanced, response (left versus right) and 

value (good versus bad cue) were orthogonal. The chosen cue was colored in red for 250 ms 

and then the outcome was displayed on the screen after 1000 ms. In order to win money, 

patients had to learn by trial and error the cue–outcome associations, so as to choose the 

most rewarding cue in the gain condition and the less punishing cue in the loss condition.  

Behavioral analysis 

Percentage of correct choice (i.e., selection of the most rewarding or the less punishing cue) 

and reaction time were used as dependent variables. Statistical comparisons between 

reward and punishment learning were assessed using two-tailed paired t-tests. All statistical 

analyses were performed with MATLAB Statistical Toolbox (MATLAB R2017a, The 

MathWorks, Inc., USA). 
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Computational modeling 

A standard Q-learning algorithm (QL) was used to model choice behavior. For each pair of 

cues A and B, the model estimates the expected value of choosing A (Qa) or B (Qb), 

according to previous choices and outcomes. The initial expected values of all cues were set 

at 0, which corresponded to the average of all possible outcome values. After each trial (t), 

the expected value of the chosen stimuli (say A) was updated according to the rule Qa(t+1) = 

Qa(t) + α*δ(t). The outcome prediction error, δ(t), is the difference between obtained and 

expected outcome values, δ(t) = R(t) - Qa(t), with R(t) the reinforcement value among -1€, 0€ 

and +1€. Using the expected values associated with the two possible cues, the probability (or 

likelihood) of each choice was estimated using the softmax rule: Pa(t) = exp[Qa(t)/β] / 

{exp[Qa(t)/β] + exp[Qb(t)/β]}. The constant parameters α and β are the learning rate and 

choice temperature, respectively. A second Q-Learning model (QLr) was implemented to 

account for the tendency to repeat the choice made on the preceding trial, irrespective of the 

outcome. A constant (θ) was added in the softmax function to the expected value of the 

option chosen on the previous trial presented the same cues. For example, if a subject chose 

option A on trial t, Pa(t+1) = exp[(Qa(t)+θ)/β] / {(exp[Qa(t)+θ)/β] + exp[Qb(t)/β]}. We 

optimized model parameters by minimizing the negative log likelihood (LLmax) of choice data 

using MATLAB fmincon function, initialized at multiple starting points of the parameter space, 

as previously described (Khamassi et al., 2015). Bayesian information criterion (BIC) was 

computed for each subject and model (BIC = log(ntrials) * (ndegrees of freedom) + 

2*LLmax). Outcome prediction errors (estimated with the QLr model) for each patient and 

trial were then Z-scored and used as statistical regressors for iEEG data analysis 

Electrophysiological analysis  

Collected iEEG signals were analyzed using Fieldtrip (Oostenveld et al., 2011) and 

homemade MATLAB codes. Anatomical labeling of bipolar derivation between adjacent 

contact-pairs was performed with IntrAnat software (Deman et al., 2018). The 3D T1 pre-

implantation MRI gray/white matter was segmented and spatially normalized to obtain a 

series of cortical parcels using MarsAtlas (Auzias et al., 2016) and the Destrieux atlas 

(Destrieux et al., 2010). 3D models of electrodes were then positioned on post-implantation 

images (MRI or CT). Each recording site (i.e., each bipolar derivation) was thus labeled 

according to its position in a parcellation scheme in the patients’ native space.  

Regions of interest definition. The vmPFC ROI (54 sites) was defined as the ventromedial 
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PFC plus the fronto-medial part of orbitofrontal cortex bilaterally (MarsAtlas labels: PFCvm 

plus mesial part of OFCv and OFCvm). The lOFC ROI (n=70 sites) was defined as the 

bilateral central and lateral parts of the orbitofrontal cortex (MarsAtlas labels: OFCvl plus 

lateral parts of OFCv). The dlPFC ROI (n=74 sites) was defined as the inferior and superior 

bilateral dorsal prefrontal cortex (MarsAtlas labels: PFrdli and PFrdls). The aINS ROI (n=83 

sites) was defined as the bilateral anterior part of the insula (Destrieux atlas labels: Short 

insular gyri, anterior circular insular sulcus and anterior portion of the superior circular insular 

sulcus). 

Computation of single-trial broadband gamma envelopes. Broadband gamma activity (BGA) 

was extracted with the Hilbert transform of iEEG signals using custom MATLAB scripts as 

follows. iEEG signals were first bandpass filtered in 10 successive 10-Hz-wide frequency 

bands (e.g., 10 bands, beginning with 50–60 Hz up to 140–150 Hz). For each bandpass 

filtered signal, we computed the envelope using standard Hilbert transform. The obtained 

envelope had a time resolution of 15.625 ms (64 Hz). Again, for each band, this envelope 

signal (i.e., time-varying amplitude) was divided by its mean across the entire recording 

session and multiplied by 100 for normalization purposes. Finally, the envelope signals 

computed for each consecutive frequency bands (e.g., 10 bands of 10 Hz intervals between 

50 and 150 Hz) were averaged together, to provide one single time-series (the BGA) across 

the entire session, expressed as percentage of the mean. This procedure was used to 

counteract a bias toward the lower frequencies of the frequency interval induced by the 1/f 

drop-off in amplitude. Finally, these time-series were smoothed with a 250 ms sliding window 

to increase statistical power for inter-trial and inter-individual analyses of BGA dynamics. 

Computation of envelopes in lower frequencies. The envelopes of theta, alpha and beta 

bands were extracted in a similar manner as the broadband gamma frequency except that 

steps were 1 Hz for theta and alpha and 5 Hz for beta. The ranges corresponding to the 

different frequency bands were as follows: broadband gamma was defined as 50-150 Hz, 

beta as 13-33 Hz, alpha as 8-13 Hz and theta as 4-8 Hz. 

Time-frequency decomposition. Time-frequency analyses were performed with the FieldTrip 

toolbox for MATLAB. A multitapered time-frequency transform allowed the estimation of 

spectral powers (Slepian tapers; lower frequency range: 4-32Hz, 6 cycles and 3 tapers per 

window; higher frequency range: 32-200Hz, fixed time-windows of 240ms, 4 to 31 tapers per 

window). This approach uses a steady number of cycles across frequencies up to 32 Hz 

(time window durations therefore decrease as frequency increases) whereas for frequencies 
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above 32Hz, the time window duration is fixed with an increasing number of tapers to 

increase the precision of power estimation by increasing smoothing at higher frequencies. 

General linear models. Frequency envelopes of each recording site were epoched on each 

trial and time locked to the outcome onset (-3000 to 1500 ms). Each time series was 

regressed against the variables of interest to obtain a regression estimate per time point and 

recording site. In all GLMs, normalized power (Y) was regressed across trials against 

prediction error signal PE (normalized within patients) at every time point:  

Y= α + β x PE,  

With β corresponding to the regression estimate on which statistical tests are conducted. PE 

corresponds to 

- Prediction errors collapsed across reward and punishment conditions in Figure 3 

- Either reward or punishment PE in Figure 4. Note that punishment PE were inverted 

to allow an easier comparison with reward PE. 

For the percentage of recorded sites related to prediction errors within each brain parcel, 

significance was assessed after a correction for multiple comparison in the time domain 

using the false discovery rate algorithm (Genovese et al., 2002). 

To assess the contribution of the different frequency bands to prediction errors, we used the 

following GLM:  

PE= βλ × Y(λ) + ββ × Y(β) + βeθα × Y(eθα) + βlθα × Y(lθα) 

With βλ, ββ, βeθα and βlθα corresponding to the regression estimates of the power time series Y in 

the broadband gamma, beta, early alpha-theta and late alpha-theta bands. This GLM was 

compared to the 8 possible alternative GLMs that combine BGA power to a single other 

frequency band (beta or early theta-alpha or late theta-alpha), two additional frequency 

bands (beta and early theta-alpha or beta and late theta-alpha or early and late theta-alpha) 

or all possible frequency bands (beta and early theta-alpha and late theta-alpha).  

The model comparison was conducted using the VBA toolbox (Variational Bayesian Analysis 

toolbox; available at http://mbb-team.github.io). Log-model evidence obtained in each 

recording site was taken to a group-level, random-effect, Bayesian model selection (RFX-

BMS) procedure (Rigoux et al., 2014). RFX-BMS provides an exceedance probability (Xp) 
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that measures how likely it is that a given model is more frequently implemented, relative to 

all the others considered in the model space, in the population from which samples are 

drawn. 

For the separate investigation of prediction error components, two separate analyses were 

conducted for reward and punishment PE. For each analysis, power time-series Y was 

regressed against both outcome (R or P) and expectation (Qr or Qp):  

Y= α + β1 x R + β2 x Q 

With β1 and β2 corresponding to the outcome (R or P) and expectation (Qr or Qp) regression 

estimates.  

For all GLMs, significance of regressors was assessed using one-sample two-tailed t-test. T-

values and p-values of those tests are reported in the result section. Once regions of interest 

were identified, significance was assessed through permutation tests within each ROI. The 

pairing between power and regressor values across trials was shuffled randomly 60000 

times. The maximal cluster-level statistics (the sum of t-values across contiguous time points 

passing a significance threshold of 0.05) were extracted for each shuffle to compute a ‘null’ 

distribution of effect size across a time window of -3 to 1.5 s around outcome onset. For each 

significant cluster in the original (non-shuffled) data, we computed the proportion of clusters 

with higher statistics in the null distribution, which is reported as the ‘cluster-level corrected’ 

pc-value  

Data and code availability 

The data that support the findings of this study and the custom code used to generate the 

figures and statistics are available from the lead contact (JB) upon request. 
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