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ABSTRACT	

Understanding	 the	 genotype	 –	 phenotype	 map	 and	 how	 variation	 at	 different	 levels	 of	 biological	

organization	 are	 associated	 are	 central	 topics	 in	 modern	 biology.	 Fast	 developments	 in	 sequencing	

technologies	 and	 other	 molecular	 omic	 tools	 enable	 researchers	 to	 obtain	 detailed	 information	 on	

variation	at	DNA	level	and	on	intermediate	endophenotypes;	such	as	RNA,	proteins	and	metabolites.	This	

can	facilitate	our	understanding	of	the	link	between	genotypes	and	molecular	and	functional	organismal	

phenotypes.	Here,	we	use	the	Drosophila	Genetic	Reference	Panel	and	nuclear	magnetic	resonance	(NMR)	

metabolomics	 to	 investigate	 the	 ability	 of	 the	 metabolome	 to	 predict	 organismal	 phenotypes.	 We	

performed	NMR	metabolomics	on	four	replicate	pools	of	male	flies	 from	each	of	170	different	 isogenic	

lines.	Our	results	show	that	metabolite	profiles	are	variable	among	the	 investigated	 lines	and	that	 this	

variation	is	highly	heritable.	Secondly,	we	identify	genes	associated	with	metabolome	variation.	Thirdly,	

using	 the	 metabolome	 gave	 better	 prediction	 accuracies	 than	 genomic	 information	 for	 four	 of	 five	

quantitative	 traits	 analysed.	 Our	 comprehensive	 characterization	 of	 population-scale	 diversity	 of	

metabolomes	 and	 its	 genetic	 basis	 illustrates	 that	 metabolites	 have	 large	 potential	 as	 predictors	 of	

organismal	phenotypes.	This	finding	is	of	great	importance	e.g.	in	human	medicine	and	animal	and	plant	

breeding.		 	
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1.	Introduction	

Understanding	how	 information	encoded	 in	 the	DNA	 is	 transcribed	 to	RNA,	 translated	 to	proteins	and	

other	downstream	endophenotypes	such	as	metabolites,	and	how	this	information	dictates	the	organismal	

functional	phenotype	is	in	the	core	of	several	biological	disciplines.	While	the	revolutionary	work	that	led	

to	the	discovery	of	this	central	flow	of	genetic	information	within	biological	systems	was	published	more	

than	70	years	ago	(Crick	1970)	we	are	still	making	progress	in	understanding	the	genotype	–	phenotype	

map.	This	 is	aided	by	new	technologies	within	molecular	and	systems	biology,	allowing	researchers	 to	

obtain	full	genome	sequences	from	individuals	of	any	species,	detailed	information	about	expression	levels	

of	all	genes,	abundancies	of	proteins	and	metabolites	etc.	These	omics	 tools	have	provided	unforeseen	

knowledge	about	the	genetic	and	environmental	background	of	complex	traits,	which	has	revolutionized	

the	field	of	genetics	with	strong	impacts	on	multiple	research	disciplines	including	medicine,	animal	and	

plant	breeding	and	evolutionary	biology	(Pinu	et	al.	2019;	Hasin	et	al.	2017;	Elmer	2016;	Dekkers	2012).	

	 One	common	goal	of	studies	on	genotype	–	phenotype	associations	is	to	understand	to	what	extent	a	

complex	organismal	phenotype	such	as	behavioural	traits,	traits	linked	to	reproduction,	diseases	or	the	

ability	to	cope	with	stressful	environmental	conditions,	can	be	predicted	from	DNA	sequence	information	

or	from	endophenotypes.	If	information	on	endophenotypes,	such	as	transcript,	protein	or	metabolite,	can	

accurately	 predict	 the	 phenotype	 this	 has	wide	 ranging	 applications	 across	 life	 sciences,	 and	 this	 has	

proven	useful	in	several	cases	(Buckler	et	al.	2009;	Hayes	and	Goddard	2010;	Desta	and	Ortiz	2014;	Hickey	

et	 al.	 2017;	 Grinberg	 et	 al.	 2019).	 However,	 studies	 have	 also	 demonstrated	 that	 predicting	 complex	

phenotypes	based	on	genetic	information	can	often	be	difficult	and	the	predictive	power	in	such	studies	is	

typically	 low	 (Schrodi	et	 al.	2014;	Sun	et	 al.	2016;	Märtens	et	 al.	2016).	Reasons	 for	 the	difficulties	 to	

accurately	predict	 the	phenotype	are	many	and	 include;	 (i)	 that	quantitative	 trait	values	 result	 from	a	

complex	 interplay	between	a	 large	number	of	genes,	 each	with	a	 small	 contribution	 to	 the	phenotype,	

combined	with	environmental	factors,	(ii)	despite	progress,	the	underlying	genetic	architectures	of	most	

traits	of	medical	interest	or	traits	with	relevance	in	agriculture	or	evolutionary	biology	are	still	not	well-

understood,	 (iii)	 the	 effect	 of	 so	 called	 candidate	 genes	 is	 often	depending	on	 the	 genetic	 background	

(epistasis)	and	they	explain	only	a	small	proportion	of	the	heritability,	and	(iv)	genes	and	environments	
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interact	in	their	effect	on	the	phenotype.	These	factors	give	rise	to	substantial	challenges	in	constructing	

and	implementing	genetic	risk	prediction	models	across	biological	disciplines.		

	 Challenges	with	using	DNA	sequence	variation	to	predict	variation	at	the	organismal	phenotypic	level	

have	 sparked	 an	 interest	 in	 using	 endophenotypes	 as	 predictors	 of	 complex	 functional	 phenotypes	

(Scoriels	et	al.	2015;	 te	Pas	et	al.	2017;	Hayes	et	al.	2017;	Van	Der	Ende	et	al.	2018).	Endophenotypes	

influence	 and	 regulate	 the	 functional	 phenotype	 and	 in	 contrast	 to	 the	 genotype,	which	 is	 fixed	 in	 an	

individual’s	lifetime,	they	are	governed	by	interactions	between	the	genome	of	an	individual	and	internal	

and	external	influences	that	range	from	the	cellular	level	and	to	the	wealth	of	external	biotic	and	abiotic	

factors	 an	 individual	 is	 exposed	 to	 in	 its	 environment.	 Thus,	 endophenotypes	 have	 been	 proposed	 to	

constitute	proximal	links	between	variation	at	the	genome	level	and	the	organismal	phenotype	and	they	

may	provide	more	accurate	predictors	of	the	functional	phenotype	compared	to	the	genotype	(te	Pas	et	al.	

2017;	Zhou	et	al.	2020).	

		 We	hypothesize,	that	the	predictive	value	of	endophenotypes	for	organismal	functional	phenotypes	is	

linked	 to	 the	 proximity	 of	 the	 endophenotype	 to	 the	 organismal	 phenotype.	 Accepting	 this	 premise	

information	on	the	metabolome	level	should	provide	more	accurate	prediction	than	e.g.	information	at	the	

gene-expression	or	protein	levels.	This	is	an	emerging	research	field	and	we	do	not	have	many	results	on	

this	yet.	However,	 there	are	studies	that	support	 the	hypothesis	 that	transcriptomic	or	proteomic	data	

combined	with	genotype	information	improves	prediction	of	several	traits	in	e.g.	Drosophila	melanogaster	

and	maize	(Wang	and	Marcotte	2010;	Harel	et	al.	2019;	Azodi	et	al.	2020;	Li	et	al.	2019).	The	metabolome	

is	closer	to	the	functional	phenotype	than	transcriptomics	and	proteomics	and	a	recent	study	based	on	

investigating	453	metabolites	in	40	isogenic	lines	suggest	that	the	metabolome	might	constitute	a	reliable	

predictor	 of	 organismal	 phenotypes	 and	 that	 the	 metabolome	 provide	 novel	 insights	 into	 the	

underpinnings	of	complex	traits	and	its	genetic	basis	(Zhou	et	al.	2020).	

	 Here	we	elaborate	on	the	findings	from	Zhou	et	al.	(2020)	by	using	nuclear	magnetic	resonance	(NMR)	

metabolomics	to	obtain	information	about	fly	metabolomes	in	pooled	samples	of	whole	male	flies	from	

170	inbred	lines	from	the	Drosophila	Genetic	Reference	Panel	(DGRP);	a	system	of	fully	inbred	sequenced	

lines	of	D.	melanogaster	(Huang	et	al.	2014;	Mackay	et	al.	2012).	NMR	metabolomics	constitute	a	highly	
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reproducible	technique	that	in	contrast	to	mass	spectrometry	allows	for	metabolic	profiling	of	the	total	

complement	of	metabolites	 in	a	 sample	 (Emwas	2015).	With	 this	 set-up,	we	 first	 investigated	 to	what	

extent	the	metabolome	varies	across	the	investigated	DGRP	lines	and	whether	this	variation	was	heritable.	

Secondly,	we	performed		a	genome-wide	scan	to	detect	DNA	sequence	variants	that	were	associated	with	

variation	 in	 NMR	 feature	 intensity.	 Finally,	 we	 investigated	 to	 what	 degree	 metabolomic	 data	 could	

increase	prediction	accuracy	of	five	complex	behavioural	and	stress	tolerance	phenotypes	compared	to	

when	predictions	were	based	on	DNA	sequence	variation.	

	

2.	Materials	and	Methods	

2.1	Drosophila	lines,	husbandry	and	collection	

We	used	170	 inbred	 lines	of	 the	DGRP	 (Mackay	 et	 al.	 2012;	Huang	 et	 al.	 2014).	The	DGRP	 lines	were	

established	 by	 20	 consecutive	 generations	 of	 full	 sibling	 inbreeding	 from	 isofemales	 collected	 at	 the	

farmer’s	market	in	Raleigh,	NC.	Complete	genome	sequence	of	the	DGRP	lines	have	been	obtained	using	

Illumina	platform,	and	is	publicly	available	(Mackay	et	al.	2012;	Huang	et	al.	2014).		

	 The	DGRP	 lines	were	maintained	on	 standard	Drosophila	medium	 (see	Kristensen	 et	 al.	 (2016)	 for	

recipe	details)	in	a	23	°C	climate	chamber	at	50%	relative	humidity	with	a	12h:12-h	light:dark	cycle.	For	

this	study	only	male	flies,	which	were	separated	by	sex	after	24	hours,	were	used.	Flies	were	collected	from	

170	DGRP	lines	in	four	replicates	containing	20	flies	per	replicate.	

	

2.2	Drosophila	sample	preparation	

We	prepared	four	replicates	of	20	pooled	male	flies	for	NMR	spectroscopy.	Males	were	snap	frozen	at	three	

days	of	age	and	kept	at	–80°C.	Samples	were	mechanically	homogenized	with	a	Kinematica,	Pt	1200	(Buch	

&	Holm	A/S,	Herlev,	Denmark)	in	1	mL	of	 ice-cold	acetonitrile	(50%)	for	45	s.	Hereafter	samples	were	

centrifuged	(10,000	g)	for	10	min	at	4°C	and	the	supernatant	(900	μL)	was	transferred	to	new	tubes,	snap	

frozen	and	stored	at	–80°C.	The	supernatant	was	lyophilized	and	stored	at	-80°C.	Immediately	before	NMR	

measurements,	samples	were	rehydrated	in	200	mL	of	50	mM	phosphate	buffer	(pH	7.4)	in	D2O,	and	180	

μL	was	transferred	to	a	3	mm	NMR	tube.	The	buffer	contained	50	mg/L	of	the	chemical	shift	reference	2,2-

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.11.145623doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.145623
http://creativecommons.org/licenses/by-nd/4.0/


 - 6 - 

Dimethyl-2-silapentane-5-sulfonate-d6,	 sodium	 salt	 (DSS),	 and	 50	 mg/L	 of	 sodium	 azide	 to	 prevent	

bacterial	growth.	

	

2.3	NMR	experiments	and	spectral	processing	

NMR	measurements	were	performed	at	25°C	on	a	Bruker	Avance	III	HD	800	spectrometer	(Bruker	Biospin,	

Rheinstetten,	Germany),	operating	at	a	1H	frequency	of	799.87	MHz,	and	equipped	with	a	3	mm	TCI	cold	

probe.	1H	NMR	spectra	were	acquired	using	a	standard	NOESYPR1D	experiment	with	a	100	ms	delay.	A	

total	of	128	transients	of	32	K	data	points	spanning	a	spectral	width	of	20	ppm	were	collected.	

The	spectra	were	processed	using	Topspin	(Bruker	Biospin,	Rheinstetten,	Germany).	An	exponential	

line-broadening	of	0.3	Hz	was	applied	 to	 the	 free-induction	decay	prior	 to	Fourier	 transformation.	All	

spectra	were	referenced	to	the	DSS	signal	at	0	ppm,	manually	phased	and	baseline	corrected.	The	spectra	

were	aligned	using	icoshift.(Savorani	et	al.	2010)	The	region	around	the	residual	water	signal	(4.87-4.70	

ppm)	was	removed	in	order	for	the	water	signal	not	to	interfere	with	the	analysis.	The	high-	and	low-field	

ends	of	the	spectrum,	where	no	signals	except	the	reference	signal	from	DSS	appear,	were	also	removed	

(i.e.,	leaving	data	between	9.7	and	0.7	ppm).	The	spectra	were	normalized	by	probabilistic	quotient	area	

normalization	(Dieterle	et	al.	2006).	

Metabolite	assignments	were	done	based	on	chemical	shifts	only,	using	earlier	assignments	and	

spectral	databases	previously	described	(Schou	et	al.	2017;	Malmendal	et	al.	2006).	

	

2.4	Quantitative	genetics	of	NMR	intensities		

Each	NMR	feature	(14,440	in	total)	was	treated	as	a	quantitative	trait.	For	each	NMR	feature,	we	fitted	a	

linear	mixed	model	 to	partition	 the	 total	 phenotypic	 variation	 (i.e.	 one	NMR	 feature)	 into	 genetic	 and	

environmental	variation.	Using	the	R	package	qgg	(Rohde	et	al.	2020)	we	fitted	the	model,	

	 𝒚 = 𝑿𝒃 + 𝒁𝒈 + 𝒆	 (1)	

where	𝒚	was	a	vector	of	NMR	intensities	for	a	particular	NMR	feature,	𝑿	and	𝐙	are	design	matrices	linking	

fixed	and	random	effects	to	the	phenotype,	𝒃	is	a	vector	of	the	fixed	effects	(Wolbachia	infection	status,	

and	major	 polymorphic	 inversions;	 In2Lt,	 In2RNS,	 In2RY1,	 In2RY2,	 In3LP,	 In3LM,	 In3LY,	 In3RP,	 In3RK,	
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In3RMo,	In3RC.	Information	available	at	http://dgrp2.gnets.ncsu.edu),	𝒈	is	a	vector	of	the	random	genetic	

effects	defined	as	𝒈~𝑁(𝟎, 𝑮𝜎!"),	and	𝒆	is	a	vector	of	residual	effects	defined	as	𝒆~𝑁(𝟎, 𝑰𝜎#").	The	variance	

structure	among	the	random	effects	are	modelled	as	independent	for	the	residual	effects	(by	the	identity	

matrix	𝑰),	and	for	the	genetic	effects	by	the	additive	genomic	relationship	matrix	𝑮,	which	was	constructed	

using	 all	 SNPs	 (minor	 allele	 frequency	≥0.05)	 as	𝑮 = 𝑾𝑾′ 𝑚⁄ ,	 where	𝑚	 is	 the	 number	 of	 SNPs	 (i.e.	

1,725,755),	and	𝑾	is	a	centered	and	scaled	genotype	matrix,	where	each	column	vector	is	𝒘$ =
𝒂!&"'!

("'!(*&"'!)
,	

𝑝$ 	is	the	allele	frequency	of	the	ith	SNP,	and	𝒂$ 	is	the	ith	column	vector	of	the	allele	count	matrix,	𝑨,	which	

contains	the	genotypes	coded	as	0	or	2	counting	the	number	of	the	minor	allele	(genotypes	are	available	

at	http://dgrp2.gnets.ncsu.edu).	

	 For	each	NMR	feature	we	estimated	the	proportion	of	phenotypic	variation	explained	by	SNP	variation	

as	ℎ=SNP2 = ,-g2

,-g2+,-e2
,	where	𝜎>g2	and	𝜎>e2	are	the	estimated	variance	components	from	equation	1.	The	significance	

of	each	ℎ=SNP2 	was	determined	as	ℎ=SNP2 − 𝑆𝐸Bℎ=SNP2 C × 𝑍 > 0,	where	𝑍	is	the	quantile	function	of	the	normal	

distribution	 at	 probability	𝑃 = 0.05/14,440.	 Thus,	 the	 resulting	 set	 of	 heritability	 estimates	 are	 those	

estimates	that	differ	significantly	from	zero	when	accounting	for	a	total	14,440	statistical	tests.		

	

2.5	Mapping	of	metabolome	QTL		

Metabolome	 quantitative	 trait	 loci	 (mQTLs)	 for	 mean	 NMR	 intensity	 were	 identified	 using	 linear	

regression	(Huang	et	al.	2015)	using	the	function	for	single	marker	association	analysis	implemented	in	

the	qgg	package	(Rohde	et	al.	2020).	The	estimated	genetic	effects	(𝒈N,	from	equation	1)	were	used	as	line	

means,	since	these	values	represents	the	within	DGRP	line	mean	intensity	of	a	single	NMR	feature	adjusted	

for	Wolbachia,	chromosomal	inversions,	and	polygenicity,	which	then	was	regressed	on	marker	genotypes.		

	 Significant	mQTLs	were	 identified	 as	 those	 SNP-NMR	 associations	with	 a	 Bonferroni	 adjusted	𝑃 <

0.05/1,725,755 = 	2.9 × 10&.;	 i.e.	 genome-wide	 significant.	 Furthermore,	 we	 restricted	 the	 search	 for	

mQTLs	to	the	set	of	NMR	features	with	a	significant	heritability	estimate.	
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2.6	Phenotypic	predictions	

Using	the	linear	mixed	model	(BLUP;	best	linear	unbiased	prediction)	framework	we	performed	several	

phenotypic	prediction	models	using	 either	 genomic	 (GBLUP)	or	metabolomic	 (MBLUP)	 information	 to	

investigate	if	the	metabolome	provides	additional	information	that	will	increase	the	accuracy	of	prediction	

compared	 to	 genomic	 prediction.	 The	 DGRP	 has	 been	 characterised	 for	 a	 wide	 range	 of	 molecular,	

environmental	stress	resistance,	morphological	and	behavioural	phenotypes	(Anholt	and	Mackay	2018;	

Mackay	and	Huang	2018).	When	the	number	of	individual	genotypes	is	low	(i.e.,	the	number	of	DGRP	lines)	

a	 large	 number	 of	 within-line	 replicates	 are	 required	 for	 accurate	 predictions	 (Edwards	 et	 al.	 2016).	

Therefore,	 we	 restricted	 the	 set	 of	 quantitative	 traits	 to	 those	 where	 we	 had	 access	 to	 all	 individual	

observations,	and	where	the	average	number	of	observations	within-line	was	>25	(Table	1).	

	 The	 five	 test	 traits	 were	 initially	 adjusted	 for	 experimental	 factors	 (see	 references	 in	 Table	 1),	

Wolbachia	infection	status,	and	major	polymorphic	inversions	(In2Lt,	In2RNS,	In3RP,	In3RK,	In3RMo).	The	

adjusted	phenotypic	values	were	obtained	as:	𝒚T/ = 𝐿=/ + 𝒆> / ,	where	𝐿=/ 	is	the	estimated	line	effect	for	DGRP	

line	𝑙		(i.e.,	the	BLUP	value),	and	𝒆> / 	is	a	vector	containing	the	residuals	for	line	𝑙.	Thus,	𝒚/ 	and	𝒚T/ 	has	the	

same	dimension.	The	 estimated	 line	 effects	 (𝑳=)	were	 assumed	𝑳~𝑁(0, 𝑰𝜎0").	 The	metabolome	 contains	

aggregated	 information	both	on	the	 individual	genotypes	and	environmental	exposures.	Thus,	 to	avoid	

double	counting	the	genomic	variation	as	represented	by	SNP	information	by	adding	genomic	information	

in	both	the	two	steps	in	the	GBLUP	and	MBLUP	analysis,	we	assumed	the	DGRP	lines	to	be	independent,	

modelled	by	the	identity	matrix	𝑰,	instead	of	𝑮	in	the	first	step.	

	 For	each	quantitative	trait	(Table	1)	we	fitted	two	models,	each	for	100	randomly	selected	training	sets	

(𝑡,	the	training	sets	were	the	same	for	all	prediction	models)	containing	90%	of	the	DGRP	lines:		

	 𝒚T1 = 𝒁1𝒈1 + 𝒆1 ,	 (2)	

	 𝒚T1 = 𝒁1𝒎1 + 𝒆1 ,	 (3)	

where	𝒚T1	is	the	adjusted	phenotypic	values	for	the	DGRP	lines	in	training	set	𝑡,	𝒆1	is	a	vector	of	random	

residuals,	𝒁1	is	a	design	matrix	linking	the	genomic	(𝒈1)	and	metabolomic	(𝒎1)	effects	to	the	phenotypes.	

The	random	genomic	effects	are	𝒈1~𝑁(𝟎, 𝑮[1,1]𝜎!"),	and	the	metabolomic	effects	are	𝒎1~𝑁(𝟎,𝑴[1,1]𝜎5" ),	

where	𝑮	 is	the	additive	genomic	relationship	matrix	as	specified	previously,	and	𝑴	 is	the	metabolomic	
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relationship	matrix.	The	metabolomic	relationship	matrix	was	computed	as	𝑴 = 𝑸𝑸′ 𝑚NMR⁄ ,	where	𝑸	is	a	

𝑛 ×𝑚NMR	matrix	of	adjusted,	centred	and	scaled	NMR	intensities	(𝑚NMR = 14,440).	Each	column	vector	of	

𝑸	 contains	 the	 BLUP	 values	 from	 a	 mixed	 model	 where	 the	 phenotype	 was	 the	 corresponding	 NMR	

intensity,	which	was	adjusted	 for	Wolbachia	 infection	status	and	major	polymorphic	 inversions	(In2Lt,	

In2RNS,	In3RP,	In3RK,	In3RMo),	using	the	identity	matrix	as	covariance	structure.	This	was	done	to	obtain	

a	data	structure	similar	to	the	genomic	data;	namely	one	value	of	each	DGRP	line/NMR	intensity.	

	 The	predicted	phenotypes	in	validation	set	𝑣	(𝒚N6)	was	obtained	using	Equation	4	and	5	for	GBLUP	and	

MBLUP,	respectively.	

	 𝒚N6 = (𝑮[6,1]𝜎>!")^𝑮[1,1]𝜎>!" + 𝑰[1,1]𝜎>#"_
&*(𝒚T1 − 𝜇1),	 (4)	

	 𝒚N6 = (𝑴[6,1]𝜎>5" )^𝑴[1,1]𝜎>5" + 𝑰[1,1]𝜎>#"_
&*(𝒚T1 − 𝜇1).	 (5)	

	 The	prediction	accuracy	(𝑃𝐴)	was	quantified	as	the	mean	Pearson’s	correlation	between	observed	and	

predicted	 phenotypes	 across	 training	 sets,	 𝑃𝐴 = *
*77

∑ 𝐶𝑜𝑟(*77
18* 𝒚T6 , 𝒚N6).	 The	 accuracies	 of	 GBLUP	 and	

MBLUP	was	compared	using	a	paired	𝑡-test.	

	

2.7	NMR	cluster-guided	phenotypic	predictions	

From	 genomic	 prediction	 models	 we	 know	 that	 allowing	 marker	 effects	 to	 come	 from	 different	

distributions,	e.g.	grouping	genetic	variants	into	functional	pathways,	can	increase	the	prediction	accuracy	

markedly	(Speed	and	Balding	2014;	Edwards	et	al.	2016;	Rohde	et	al.	2017,	2018;	Sørensen	et	al.	2017;	

Fang	 et	 al.	 2017).	 Therefore,	we	 investigated	 if	 similar	 benefits	 could	 be	 achieved	 by	 partitioning	 the	

metabolome.	

	 Using	 the	𝑸-matrix	 (i.e.	 the	𝑛 ×𝑚NMR	 matrix	 of	 adjusted,	 centred	 and	 scaled	 NMR	 intensities)	 we	

computed	 all	 pairwise	 Pearson’s	 correlation	 coefficients	 and	 performed	 hierarchical	 clustering	 on	 the	

dissimilarity	on	the	correlation	coefficients	using	an	unweighted	pair	group	method	with	arithmetic	mean	

agglomeration	 (Fig.	 1).	 Using	 a	 range	 of	 total	 number	 of	 clusters	𝐾9/ = {25, 50, 75, 100, 125, 200}	 we	

performed	metabolomic	feature	best	linear	unbiased	prediction	(MFBLUP)	which	is	an	extension	to	the	

MBLUP	model	(Eq.	3)	containing	an	additional	metabolomic	effect	(Eq.	6,	Fig.	1).	For	each	𝐾9/ 	 level	we	
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estimated	model	parameters	for	each	cluster	(for		𝐾9/ = 25	we	ran	25	models,	and	for		𝐾9/ = 50	we	ran	50	

models	etc.)	as	follows:	

	 𝒚T1 = 𝒁1𝒎1
:"#_% + 𝒁1𝒎1

; + 𝒆1 ,	 (6)	

where	the	superscript	𝐾9/_= 	indicate	the	total	number	of	clusters	(𝐾9/)	and	the	cluster	number	(𝑐𝑙).	The	

first	 metabolomic	 effect	 was	 defined	 as	𝒎1
:"#_%~𝑁(0,𝑴[1,1]

:"#_%𝜎5&"#_%
" ),	 where	𝑴[1,1]

:"#_% 	 corresponds	 to	 the	

metabolomic	relationship	of	the	DGRP	lines	within	the	training	set	(t)	for	the	NMR	features	within	cluster	

number	𝑐𝑙	among	the	𝐾9/ 	clusters.	The	second	metabolomic	effect	(𝒎1
;~𝑁(𝟎,𝑴[1,1]

; 𝜎5'
" ))	 is	 the	random	

effects	using	all	NMR	features	except	those	within	the	𝐾9/_= 	cluster.	

	 Similar	to	the	MBLUP	model,	the	predicted	phenotypes	in	the	validation	set	𝑣	(𝒚N6)	was	obtained	as	

	 𝒚N6 = (𝑴[6,1]
:"#_%𝜎>

5&"#%
" +𝑴[6,1]

; 𝜎>5'
" ) j𝑴[1,1]

:"#_%𝜎>
5&"#%
" +𝑴[1,1]

; 𝜎>5'
" + 𝑰[1,1]𝜎>#"k

&*
(𝒚T1 − 𝜇1).	 (7)	

The	 prediction	 accuracy	 for	 each	 𝐾9/_= 	 cluster	 was	 obtained	 as	𝑃𝐴 =
*
*77

∑ 𝐶𝑜𝑟(*77
18* 𝒚T6 , 𝒚N6),	 and	 was	

compared	 (using	paired	 t-test	 corrected	 for	multiple	 testing	by	 a	 false	 discovery	 rate	 (FDR)	 of	 <0.05)	

within	and	across	𝐾9/ 	clusters	to	identify	the	NMR	features	resulting	in	the	largest	prediction	accuracy.	We	

only	considered	clusters	to	be	signigicant	if	the	FDR	was	below	0.05	,	and	if	the	proportion	of	variance	

captured	by	the	cluster	was	larger	than	1%,	which	is	computed	as	l𝜎>
5&"#%
" /(𝜎>

5&"#%
" + 𝜎>5'

" )m > 1%.	

	 Finaly,	to	investigate	if	we	could	increase	the	predive	performance	further,	we	took	all	the	clusters	that	

increased	the	trait-specific	predictive	performance	(including	clusters	where	the	variance	captured	was	

below	1%),	 ranked	 them	by	 their	 predictive	performance,	 and	 ran	 a	 new	 series	 of	 prediction	models,	

adding	the	NMR	features	sequential	to	the	model	based	on	the	clusters	predictive	performance	(high	to	

low).			

	

3	Results	

3.1	The	metabolome	of	D.	melanogaster	

Using	1H	NMR	we	quantified	the	metabolome	of	males	from	170	DGRP	lines	in	four	biological	replicates	

(Supplementary	 Data	 file	 S1).	 For	 each	 of	 the	 14,440	 NMR	 features	 we	 estimated	 the	 proportion	 of	
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variation	in	NMR	intensity	explained	by	common	genetic	variants	(ℎ",	Fig.	2A).	In	total,	39%	of	all	NMR	

features	had	a	significant	heritability	estimate	(Fig.	2B),	of	which	the	average	heritability	was	0.26	(0.13	

across	all	features).	

	 For	those	NMR	features	where	we	observed	a	significant	heritability,	we	next	sought	to	identify	genetic	

variants	associated	with	NMR	feature	intensity,	namely	mQTLs.	We	found	a	total	of	5,782	genome-wide	

significant	 mQTLs	 (Supplementary	 Table	 1)	 covering	 1249	 NMR	 features	 and	 1468	 unique	 genetic	

variants.	The	significant	mQTLs	were	found	within	963	genes,	with	the	gene	Coronin	having	488	genome-

wide	associations	(Supplementary	Table	S1),	which	is	extreme	compared	to	the	average	of	6.0	significant	

associations	per	gene.	

	

3.2	Phenotypic	predictions	

To	test	the	predictive	performance	of	the	metabolome	we	obtained	data	from	five	previously	published	

data	 on	 complex	 phenotypes	 (Table	 1);	 two	 behavioural	 traits	 and	 three	 stress	 resistance	 traits.	 We	

constructed	 relationship	matrices	 based	 on	 genomic	 and	 on	metabolomic	 information	 and	 performed	

genomic/metabolomic	best	linear	unbiased	prediction	(GBLUP/MBLUP).	For	each	trait	we	used	90%	of	

the	data	to	estimate	the	parameters	using	either	the	genomic	or	metabolomic	relationship	matrices	and	

used	 the	 estimated	 parameters	 to	 predict	 the	 remaining	 10%	 of	 the	 data.	 This	 was	 repeated	 on	 100	

random	data	divisions.		

	 The	mean	 prediction	 accuracy	 for	 the	 two	 behavioural	 traits,	 locomotor	 activity	without	 and	with	

treatment	of	Ritalin,	was	below	0.1	when	based	on	genomic	information	(Fig.	3A-3B).	Using	metabolomic	

information	the	predictive	performance	was	increased	to	above	0.4	(Fig.	3A-3B,	Suplementary	Table	S2).	

By	 using	 the	 Drosophila	 metabolome,	 we	 could	 also	 increase	 the	 predictive	 accuracy	 of	 the	 two	

environmental	 stress	 resistance	 traits,	 chill	 come	 recovery	 and	 starvation	 resistance	 (Fig.	 3C-3D,	

Supplementary	 Table	 S2).	 However,	 for	 startle	 response	 (a	 behavioural	 response	 to	 a	 physical	

disturbance)	prediction	using	genomic	information	was	superior	over	the	metabolome	(Fig.	3E).	

	 We	 computed	 Pearson’s	 correlation	 coefficient	 among	 all	 NMR	 features	 and	 performed	 hieracical	

clustering	(Supplementary	Fig.	S1).	We	then	ran	the	two	component	NMR	cluster-guided	prediction	model	
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(MFBLUP)	where	 the	 first	 component	was	based	on	NMR	 features	within	 one	 cluster,	 and	 the	 second	

component	was	based	on	the	remaining	NMR	features	(Fig.	1).	We	tested	all	clusters	from	the	hierachical	

clustering	 using	 different	 number	 of	 total	 clusters;	 𝐾9/ = {25, 50, 75, 100, 125, 200}	 (Fig.	 1).	 By	 the	

extension	of	the	MBLUP	model	we	could	increase	the	predictive	performance	of	all	five	quantitative	traits	

by	 17%-185%	 (Fig.	 3,	 Supplementary	 Table	 S2).	 Interestingly,	 the	 largest	 improvement	 in	 prediction	

accuracy	was	obtained	at	different	cluster	levels	for	the	five	traits	(Fig.	3	and	Supplementary	Figure	S2).	

For	locomotor	activity	the	largest	improvement	in	prediction	accuracy	was	obtained	at	cluster	level	𝐾9/ =

100	 (Fig.	 3A),	 with	 cluster	 1	 as	 the	 only	 cluster	 that	 had	 significantly	 increased	 predictive	 accuracy	

(Supplementary	Table	S3	and	Supplementary	Fig.	3).	For	 locomotor	activity	(Ritalin	treatment),	startle	

response	and	starvation	resistance,	cluster	level	𝐾9/ = 200	contained	the	clusters	that	gave	the	highest	

predictive	performance	(Fig.	3B,	3D-3E	and	Supplementary	Fig.	S2).	For	activity	(with	Ritalin)	cluster	121	

and	 74	 	 (Supplementary	 Table	 S3)	 increased	 the	 predictive	 performance.	 Combining	 the	 two	 clusters	

increased	the	prediction	accuracy	insignificantly	by	1%	(Fig.	3B,	Supplementary	Figure	S5).	Eight	clusters	

increased	the	predictive	performance	(that	also	captured	>1%	feature	variance)	for	startle	response	(1,	2,	

5,	14,	99,	112,	145	and	187,	Supplementary	Table	S3	and	Fig.	S3),	and	by	combining	cluster	1,	2,	5,	112	and	

145	we	further	increased	the	predition	accuracy	(Fig	3E,	Supplementary	Table	S2,	Supplementary	Figure	

S7).	Startle	response	was	the	only	trait	where	metabolomic	prediction	performed	worse	than	genomic	

prediction	(Figure	3E);	however,	by	combining	the	five	clusters	with	the	highest	prediction	accuracy	the	

metabolomic	 prediction	 performed	 better	 than	 genomic	 prediction	 (Supplementary	 Table	 S2).	 Five	

clusters	(21,	65,	83,	95	and	140)	increased	the	accuracy	of	prediction	(and	captured	>1%	feature	variance)	

for	starvation	resistance	(Supplementary	Fig.	3),	and	the	joint	effect	of	cluster	21,	65,	83	and	95	further	

insignificantly	 increased	 the	 accuracy	 (Fig.	 3D,	 Supplementary	 Table	 S3,	 Supplementary	 Figure	 S8).	

Finally,	for	chill	coma	recovery	the	maximum	prediction	accuracy	was	obtained	at	cluster	level	𝐾9/ = 50	

(Fig.	 3B),	 where	 cluster	 5,	 27	 and	 35	 were	 significant	 explaining	 >1%	 of	 the	 NMR	 feature	 variance	

(Supplementary	Table	S3	and	Supplementary	Figure	S3).	Combining	 the	 two	clusters	with	 the	highest	

accuracy	led	to	insignificant	increased	accuracy	(Fig.	3B,	Supplementary	Table	S2	and	Fig.	S8).	
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	 The	contributions	to	the	predictive	clusters	at	cluster	level	𝐾9/ = 200	from	the	metabolite	NMR-spectra	

were	mapped	on	to	the	NMR	spectrum	(Fig.	4).	Interestingly,	none	of	the	clusters	contained	signals	from	

the	highest	concentration	metabolites.	Rather	they	contain	signals	from	metabolites	at	lower	abundance	

or	very	broad	signals,	suggesting	contributions	from	small	metabolites	bound	to	larger	molecules	or	larger	

molecules	themselves.	Out	of	the	18	clusters	(Table	2),	seven	(1,	2,	5,	21,	32,	45,	65;	Figure	4A)	contained	

signals	in	a	region	where	aromatic	compunds	with	quartenary	nitrogens,	such	as	NAD	and	nicotinamide	

ribotide	 appear.	 These	 clusters	 showed	 high	 prediction	 accuracy	 for	 locomotor	 activity	 ,	 chill	 coma	

recovery	and	startle	response.	Four	clusters	(32,	74,	83,	95;	Figure	4A)	contained	signals	in	a	region	where	

other	heterocycles,	such	as	adenosine,	appears.	Furthermore,	six	clusters	(112,	121,	129,	139,	145,	154;	

Figure	 4B)	 contained	 signals	 in	 a	 region	 where	 aromatic	 groups	 from	 aminoacids	 like	 histidine	 and	

tyrosine	appear.	Most	of	these	are	important	for	locomotor	activity	with	Ritalin	and	starvation	resistance.	

There	is	also	one	cluster	(171	;	Figure	4C)	that	contained	signals	in	a	region	where	signals	from	sugars	

appear,	and	another	(187	;	Figure	4D)	that	contained	signals	 in	a	region	where	amino	acid	CH2	groups	

appear.	 Out	 of	 these	 clusters	 1	 and	 187	 clearly	 contained	 signals	 that	 would	 usually	 be	 identified	 as	

baseline,	while	 clusters	2,	 5,	 32,	 112,	 129,	 139,	 145	 contained	mostly	well	 resolved,	 though	often	 low	

intensity,	signals.	The	remaining	signals	are	somewhere	in	between.	Only	cluster	32	could	be	matched	to	

a	known	metabolite	and	its	signals	are	assigned	as	coming	from	the	nicotinamide	group	of	NADP.	The	other	

metabolites	could	not	be	found	in	currently	available	databases	with	NMR	characteristics	of	metabolites	

(Ulrich	 et	 al.	 2008;	Cui	 et	 al.	 2008;	Wishart	 et	 al.	 2018).	 The	 clusters	 at	 cluster	 level	𝐾9/ = 200	 	were	

compared	with	those	giving	the	highest	prediction	accuracy	for	locomotor	activity	at	cluster	level	𝐾9/ =

100,	and	chill	coma	recovery	at	cluster	level	𝐾9/ = 50	(Supplementary	Fig.	S9).	For		locomotor	activity	the	

larger	cluster	with	the	higher	prediction	activity	cover	a	larger	stretch	of	the	baseline	in	the	nicotinamide	

region	indicating	that	it	 is	optimal	to	include	a	larger	number	of	higher	molecular	weight	nicotinamide	

units	(Fig	3A,	Supplementary	Fig.	S9A-B).	For	chill	coma	recovery	the	larger	cluster	covers	the	broad	peak	

containing	the	signals	 from	aromatic	amino	acids	 in	a	higher	molecular	weight	context	and	there	 is	no	

smaller	 cluster	 that	 retain	 significant	 predictivity	 once	 the	 larger	 cluster	 is	 broken	 up	 (Fig.	 3E,	

Supplementary	Fig.	S9C-D).		
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4.	Discussion	

Prediction	 of	 phenotypic	 trait	 values	 using	 genetic	 markers	 has	 been	 a	 central	 element	 in	 plant	 and	

livestock	breeding	for	decades	(Meuwissen	et	al.	2001;	Van	Arendonk	et	al.	1994;	Goddard	et	al.	2009),	

and	more	recently	this	strategy	has	emerged	within	human	genetics	attempting	to	accurately	predict	e.g.	

disease	risk	from	DNA	information	(Wray	et	al.	2008,	2019;	Hall	et	al.	2004;	Schrodi	et	al.	2014).	However,	

the	predictive	value	from	genotyped	genetic	variants	is	often	low	(Patron	et	al.	2019;	Schrodi	et	al.	2014),	

and	this	is	problematic	when	aiming	to	predict	complex	phenotypes	such	as	many	diseases,	behaviors	or	

production	traits.	Therefore,	there	is	a	potential	to	further	optimize	the	applicability	of	these	methods.	

Here,	we	obtained	full	metabolome	profiles	of	males	from	170	DGRP	lines	in	four	biological	replicates	to	

investigate	if	an	endophenotype,	in	our	case	the	metabolome,	has	improved	predictive	power	compared	

with	a	situation	where	only	genome	information	is	available.	

	 We	found	that	the	Drosophila	metabolome	was	highly	variable	with	more	than	39%	of	the	NMR	features	

having	 a	 significant	 heritability	 estimate	 (Fig.	 2),	 displaying	 same	 level	 of	 genetically	 determined	

variability	 as	 the	 Drosophila	 transcriptome	 (Huang	 et	 al.	 2015).	 It	 has	 previously	 been	 shown	 that	

metabolome	variation	appears	to	have	a	genetic	signature	(Zhou	et	al.	2020),	but	also	that	the	metabolome	

is	highly	variable	among	sexes	(Zhou	et	al.	2020;	Li	et	al.	2018)	and	change	with	age	(Hoffman	et	al.	2014;	

Yoshida	et	al.	2010;	Lawton	et	al.	2008).	Our	findings	confirm	that	variation	in	metabolite	abundance	is	

genetically	controlled.	The	metabolome	can	therefore	be	influenced	by	evolutionary	forces	like	any	other	

phenotypic	 trait	 and	 this	 variation	 can	 be	 utilized	 e.g.	 in	 livestock	 and	 plant	 breeding	where	 specific	

metabolites	may	be	of	interests	(Gamboa-Becerra	et	al.	2019;	Browne	and	Brindle	2007;	Goldansaz	et	al.	

2017).		

	 Metabolite-wide	 association	 studies,	 which	 is	 the	 mapping	 of	 metabolite	 QTLs,	 seeks	 the	 same	 as	

genome-wide	and	transcriptome-wide	association	studies,	namely	to	identify	genetic	variants	associated	

with	variation	in	a	functional	character	or	an	endophenotype	(Holmes	et	al.	2008;	Bictash	et	al.	2010).	

Here,	we	mapped	the	individual	data	points	in	the	metabolome	spectra	with	SNP	genotypes	and	identified	

abundant	metabolite	feature	–	SNP	associations	(Supplementary	Table	S1).	We	identified	more	than	900	

genes	associated	with	metabolome	variation,	where	the	average	number	of	associations	per	gene	was	six.	
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Such	a	low	number	of	features	may	make	it	difficult	to	identify	the	underlaying	metabolites.	However,	four	

genes	had	more	than	100	feature	–	SNP	associations.	The	Drosophila	gene	Coronin	was	the	gene	containing	

most	significant	associations	with	metabolome	variation	(488	metabolomic	features).	Coronin	is	involved	

in	muscle	morphogenesis	(Schnorrer	et	al.	2010).	The	human	orthologue	of	Coronin	is	coronin	1C	and	has	

previously	been	associated	with	lipoprotein	and	cholesterol	levels	(Siewert	and	Voight	2018;	Wakil	et	al.	

2016).	Accordingly,	the	NMR	features	associated	with	Coronin	include	signals	corresponging	to	the	choline	

methyl	groups	of	sn-glycerophosphocholine	and	methylene	and	methyl	groups	from	larger	molecules	such	

as	peptides	or	fatty	acids	(Supplementary	Fig.	S10A).	The	second	most	associated	gene	was	sidestep	(133	

NMR	features),	which	controls	the	migration	of	motor	axons	in	the	developing	fly	(Siebert	et	al.	2009).	

Across	model	organisms	and	humans	sidestep	has	no	apparent	orthologous	genes	(Hu	et	al.	2011).	Another	

gene	with	many	associated	NMR	features	(123)	was	CG43373,	which	has	the	human	ortholog	adenylate	

cyclase	5	(ADCY5),	that	in	multiple	studies	have	been	associated	with	type	II	diabetes	mellitus	(Qi	et	al.	

2017;	Mahajan	et	al.	2014;	Bonàs-Guarch	et	al.	2018),	body	mass	index	(Locke	et	al.	2015),	blood	glucose	

(Manning	et	al.	2012)	and	cholesterol	levels	(Liu	et	al.	2017;	Hoffmann	et	al.	2018).	Both	of	these	genes	

associate	 with	 the	 same	 unidentified	 signal	 in	 a	 region	with	 signals	 from	 hydrogen	 in	 the	 vicinity	 of	

hydroxy	or	carboxy	groups	(Supplementary	Fig.	S10B-C).	These	two	genes	have	no	SNP’s	in	common,	so	

they	are	only	highly	correlated.	The	last	gene	with	more	than	100	associated	NMR	features	is	CCHa2r	that	

encodes	a	neuropeptide	 (Hansen	et	al.	2011).	 In	humans,	CCHa2r	 is	 the	bombesin	receptor	subtype	3,	

which	regulates	metabolic	rate	(Xiao	et	al.	2017)	and	glucose	metabolism	(Feng	et	al.	2011).	This	gene	

associates	with	signals	from	tyrosine	only	(Supplementary	Fig.		S10D).	Our	results	clearly	indicate	that	the	

human	orthologues	of	the	top	associated	genes	are	involved	in	metabolic	processes	supporting	that	the	

metabolomic	 feature-SNP	 associations	 are	 biological	 relevant	 and	 not	 statistical	 artefacts.	 The	 genes	

shortly	presented	here	and	other	genes	strongly	associated	with	metabolome	variation	(Supplementary	

Table	S1)	are	candidates	for	further	studies	using	e.g.	knock	in	and	knock	out	technologies	to	verify	their	

importance	at	the	functional	phenotypic	level.				

	 Accurate	 phenotypic	 prediction	 of	 any	 trait	 requires	 large	 sample	 sizes	 to	 reliably	 estimate	model	

parameters,	 and	 some	measure	 that	 can	describe	 the	 covariance	 structure	 among	 individuals,	 such	 as	
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genetic	 variants	 or	 other	 molecular	 variation.	 Although	 the	 DGRP	 system	 appears	 to	 lack	 power	 for	

mapping	and	prediction	studies	because	of	the	limited	number	of	inbred	lines,	it	gains	statistical	power	

because	it	is	possible	to	obtain	repeated	measures	on	a	large	number	of	individuals	with	the	same	genetic	

background	resulting	in	very	accurate	within-DGRP-line	measures	(Mackay	and	Huang	2018).		

	 The	 main	 aim	 of	 the	 current	 study	 was	 to	 investigate	 the	 predictive	 power	 of	 the	 Drosophila	

metabolome	compared	with	prediction	models	using	genomic	data.	We	showed	that	for	four	out	of	five	

quantitative	traits	using	the	Drosophila	metabolome	for	phenotypic	predictions	significantly	improved	the	

accuracy	of	prediction	compared	to	using	the	Drosophila	genome	(Fig.	3).	The	extent	to	which	prediction	

was	increased	varied	across	traits,	but	the	trend	is	clear	across	all	five	traits;	partitioning	the	metabolome	

by	 highly	 correlated	 NMR	 features	 increased	 the	 predictive	 performance	 (Fig.	 3).	 Despite	 lack	 of	

significance	for	startle	response	(Fig.	3G),	the	increase	in	predictive	ability	was	bordeline	significant	(P	

value	=	0.09).	

	 Recently,	Zhou	et	al.	(2020)	measured	metabolite	variation	in	453	metabolites	using	40	DGRP	lines,	and	

concluded	that	if	the	sample	size	was	larger	the	accuracy	of	metabolome	predictions	could	be	improved.	

This	 is	 exactly	what	we	 have	 shown	 in	 this	 study;	 that	 the	metabolome	 can	 increase	 the	 accuracy	 of	

phenotypic	prediction.	The	increased	power	relative	to	Zhou	et	al.	(2020)	may	originate	not	only	from	the	

larger	numbers	of	DGRP	lines,	but	also	from	the	higher	reproducibility	that	NMR	metabolomics	provide.	

Moreover,	we	have	demonstrated	that	our	novel	approach,	NMR	cluster-guided	phenotypic	prediction,	

identifies	 metabolite	 modules	 of	 NMR	 features	 which	 are	 trait	 specific	 (Table	 2	 and	 Fig.	 3),	 which	

significantly	increased	the	prediction	accuracy	compared	to	when	using	the	entire	metabolome	(Fig.	3).	

	 Our	results	clearly	demonstrate	the	added	value	of	performing	predictions	of	functional	phenotypes	

using	NMR	metabolomics	compared	with	SNP	genotypes.	These	findings,	together	with	others,	truly	open	

the	doors	for	applying	metabolomics	in	different	disciplines,	for	example	in	the	human	health	sector	or	in	

animal	breeding.	Metabolites	can	be	easily	quantified	in	biofluids	from	livestock,	human	blood	donors	or	

patients	 that	 have	 blood	 samples	 taken	 on	 a	 regular	 basis.	 This	 entails	 a	 clear	 advantage	 over	 other	

methods	in	terms	of	translatability	(Fontanesi	2016).	Recently,	studies	have	shown	that	the	metabolomic	

signatures	of	blood	from	cattle	(Novais	et	al.	2019)	and	pigs	(Carmelo	et	al.	2020)	can	be	used	to	accurately	
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separate	animals	by	their	feed	efficiency	which	is	one	of	the	most	economically	important	traits	in	livestock	

production.	 Studies	 of	 the	 human	 metabolome	 and	 its	 relevance	 to	 human	 health	 have	 also	 clearly	

increased	the	last	five	years	(Rangel-Huerta	et	al.	2019;	Zhang	et	al.	2020),	and	it	is	very	likely	to	be	one	of	

the	 cornerstones	 in	 an	 implementation	of	 personalised	medicine.	With	 the	 emergence	of	 large	human	

cohort	projects,	like	the	UK	Biobank	(Bycroft	et	al.	2018),	FinnGenn	(Mars	et	al.	2020)	and	BioBank	Japan	

(Nagai	et	al.	2017)	etc.,	the	data	samples	are	reaching	a	sample	level	that	could	provide	ground-breaking	

research	if	full	metabolomic	profiles	were	obtained.	

	 The	 fact	 that	many	of	 the	NMR	signals	with	high	predictivity	come	 from	unidentified	and/or	 larger	

metabolites	of	 lower	concentration	shows	 that	despite	 the	 inherently	 low	sensitivity	of	NMR,	 the	high	

reproducibility	of	the	method	allows	for	a	high	accumulated	sensitivity	to	be	obtained	for	the	combined	

data	set.	An	 interesting	example	here	 is	 the	cluster	with	the	highest	prediction	accuracy	for	chill	coma	

recovery,	 that	 covers	 the	 entire	 aromatic	 amino	 acid	 region.	 It	 also	 shows	 the	 need	 for	 a	 deeper	

investigation	of	the	Drosophila	metabolome	by	NMR.	From	a	metabolic	signalling	perspective	it	also	makes	

sense	that	it	is	the	less	abundant	metabolites	with	aromatic	groups	that	are	important	in	these	processes.	

	 In	 conclusion	 we	 have	 convincingly	 shown	 that	 metabolomic	 approaches	 have	 large	 potential	 for	

predicting	functional	phenotypes.	Obviously,	the	generality	and	repeatability	of	these	findings	should	be	

verified	in	different	genetic	backgrounds,	in	non-model	species	and	in	samples	that	are	easy	to	generate	

from	livestock,	humans	and	plants.	However,	our	main	findings	namely	that	metabolite	profiles	are	highly	

heritable,	that	specific	genes	are	associated	with	metabolome	variation	and	that	the	metabolome	predicts	

phenotypes	more	accurately	than	genomic	data	are	robust.	

	

5.	Data	availability	

The	DGRP	genotypes,	chromosomal	inversions,	Wolbachia	infection	status,	and	the	phenotypic	values	for	

startle	 response,	 starvation	 resistance	 and	 chill	 coma	 recovery	 can	 be	 obtained	 from	

http://dgrp2.gnets.ncsu.edu/.	The	adjusted	metabolome	data	can	be	found	in	the	supplementary	material	

and	the	locomotor	activity	measurements	in	the	origical	publication	(Rohde	et	al.	2019).	
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Tables	

Table	1	Quantitative	traits	used	in	phenotypic	predictions.	Locomotor	activity	was	assessed	as	

distance	moved	per	unit	time	(the	trait	was	assessed	with	and	without	exposure	to	Ritalin	

(methylphenidate)).	Chill	come	recovery	is	time	to	recover	from	a	chill-induced	coma.	Startle	response	is	

a	measured	as	the	time	taken	to	reach	a	certain	distance	following	disturbance.	Starvation	resistance	is	

assessed	as	time	to	death	when	deprived	of	nutrients.	

Trait	 Number	of	

DGRP	lines	

Number	of	

observations*	

H2**	 Lines	for	

predictions***	

Locomotor	activity	(Rohde	et	al.	2019)	 172	 30	 0.43	 169	

Locomotor	activity	w/	Ritalin	(Rohde	et	al.	2019)	 172	 30	 0.45	 169	

Chill	coma	recovery	(Mackay	et	al.	2012)	 159	 101	 0.42	 132	

Startle	response	(Mackay	et	al.	2012)	 166	 40	 0.50	 137	

Starvation	resistance	(Mackay	et	al.	2012)	 197	 49	 0.52	 166	

*	Average	number	of	individual	observations	per	DGRP	line.	

**	Estimated	broad-sense	heritability		

***	The	number	of	DGRP	lines	that	are	in	common	between	phenotype	and	the	metabolomic	data.	
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Table	2	Predictive	NMR	feature	clusters.	

Trait	 Clusters	 Cluster	level	

Locomotor	activity		 1	 K100	

Locomotor	activity	w/	Ritalin		 74,	121	 K200	

Chill	coma	recovery		 5,	27,	35	 K50	

Startle	response		 1,	2,	5,	14,	99,	112,	145,	187	 K200	

Starvation	resistance		 21,	65,	83,	95,	140	 K200	

NMR	feature	IDs	for	each	cluster	can	be	found	in	Supplementary	Table	S4.	
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Figures		

	

	

Figure	 1.	 Conceptual	 illustration	 of	 the	 NMR	 cluster-guided	 phenotypic	 predictions.	 All	 pairwise	

correlations	among	the	NMR	featues	were	computed,	which	was	used	in	a	hierachical	clustering	of	NMR	

features.	The	dendrogram	was	then	sequentially	cut	 into	K	clusters	(25,	50,	75,	100,	125,	150	and	200	

clusters),	and	each	individual	cluster	was	then	used	in	the	MFBLUP	model.	NMR	features	within	one	cluster	

was	 used	 to	 construct	 a	 metabolomic	 relationship	 matrix	 that	 was	 used	 as	 covariance	 matrix	 in	 the	

MFBLUP	model.	The	MFBLUP	model	was	fitted	for	all	clusters	within	the	seven	levels	of	K	clusters.	
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Figure	2.	 Genetic	 variation	 for	 the	D.	melanogaster	metabolome.	 Panel	A	 shows	 in	 solid	 blue	 line	 the	

average	NMR	intensity	across	all	DGRP	lines	(intensity	axis	not	shown)	as	function	of	chemical	shift.	For	

each	NMR	feature	we	estimated	ℎ";	the	points	in	grey	represent	non-significant	estimates	of	ℎ",	and	points	

in	green	are	significant	estimates	of	ℎ".	Panel	B	is	a	histogram	of	the	significant	heritability	estimates.		
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Figure	3.	Prediction	accuracies	using	genomic	and	metabolomic	data.	For	each	panel,	the	barplot	shows	

the	maximum	mean	prediction		accuracies	(+	standard	error)	for	the	different	models.	GBLUP	and	MBLUP	

are	based	on	single	component	prediction	models,	whereas	the	two	MFBLUP	models	are	based	on	two	

components.	 The	 global	 maxium	 prediction	 accuracy	 obtained	 across	 all	 levels	 of	 clusters	 (𝐾9/ =
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{25, 50, 75, 100, 125, 200})	 is	 shown	 in	 the	MFBLUP	 bar	 (indicated	with	white	 arrow).	 The	 prediction	

accuracy	when	combining	 the	 significant	 clusters	 is	 shown	 in	 the	MFBLUP2	bar	 (indicated	with	white	

square	and	circle).	Significant	improved	predictive	performance	is	indicated	by	asterisks	above	the	bars,	

see	Supplementary	Table	S3	for	all	comparisons.	The	heatmaps	on	the	right	side	of	the	panels	show	all	

prediction	accuracies	for	the	NMR	cluster-guided	prediction	model	within	𝐾9/ 	cluster	level.	The	columns	

correspond	to	NMR	features	(fixed	across	the	𝐾9/ 	cluster	levels)	and	each	cell	is	one	cluster	of	NMR	features	

(link	 between	 NMR	 featuers	 and	 clusters	 can	 be	 found	 in	 Supplementary	 Table	 S4.).	 The	 predictive	

performance	of	each	cluster	within	𝐾9/ 	cluster	level	is	indicated	with	the	color	scale.	Within	cluster	level	

significant	 prediction	 accuracies	 are	 indicated	 with	 white	 squares	 and	 the	 cluster	 with	 the	 highest	

significant	prediction	accuracy	is	indicated	with	asterisk.	Across	all	cluster	levels,	the	highest	prediction	

accuracy	is	indicated	with	white	arrow	(which	then	corresponds	to	the	orange	bars	on	the	left-side	panel).	

The	 set	 of	 significant	 clusters	 that	 combined	gives	 the	highest	predictive	performance	 is	marked	with	

white	sqaures	with	black	circle	(corresponds	to	the	light	green	bars	in	the	barplot).		
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Figure	4.	Contributions	to	predictive	clusters	 from	the	metabolite	NMR-spectra	at	 the	𝐾9/ = 200	 level.	

Clusters	are	 indicated	with	colored	dots	on	the	average	of	all	NMR	spectra	(black	 line).	Panel	A	shows	

clusters:	1,	2,	5,	21,	32,	45,	65,	74,	83	and	95;	panel	B	clusters:	112,	121,	129,	139,	145	and	154;	panel	C	

cluster:	171;	 and	panel	D	 cluster:	187.	 Selected	major	metabolites	 in	 these	 regions	 are	 identified.	The	

location	of	the	nicotinamide	ribotide	signals	resonating	at	the	highest	ppm	values	are	also	indicated	in	

panel	A.	
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