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Highlight: A genome-wide association study including the factor time highlighted that early 1 

plant growth in Arabidopsis is governed by several medium and many small effect loci, most 2 

of which act only during short phases of two to nine days. 3 

 4 

 5 

ABSTRACT  6 

We assessed early vegetative growth in a population of 382 accessions of Arabidopsis 7 

thaliana using automated non-invasive high-throughput phenotyping. All accessions were 8 

imaged daily from seven to 18 days after sowing in three independent experiments and 9 

genotyped using the Affymetrix 250k SNP array. Projected leaf area (PLA) was derived from 10 

image analysis and used to calculate relative growth rates (RGR). In addition, initial seed size 11 

was determined. The generated data sets were used jointly for a genome-wide association 12 

study that identified 238 marker-trait associations (MTAs) individually explaining up to 8 % 13 

of the total phenotypic variation. Co-localisation of MTAs occurred at 33 genomic positions. 14 

At 21 of these positions, sequential co-localisation of MTAs for two to nine consecutive days 15 

was observed. The detected MTAs for PLA and RGR could be grouped according to their 16 

temporal expression patterns, emphasising that temporal variation of MTA action can be 17 

observed even during the vegetative growth phase, a period of continuous formation and 18 

enlargement of seemingly similar rosette leaves. This indicates that causal genes may be 19 

differentially expressed in successive periods. Analyses of the temporal dynamics of 20 

biological processes are needed to gain important insight into the molecular mechanisms of 21 

growth-controlling processes in plants. 22 

 23 

 24 
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INTRODUCTION 1 

 2 

Plant growth is a complex process integrating many genetic, metabolic and environmental 3 

factors at the level of cells, tissues, organs or whole plants. Growth in the model plant system 4 

Arabidopsis thaliana occurs in a sequence of distinct yet partially overlapping phases (Boyes 5 

et al., 2001), germination, seedling establishment, vegetative growth with successive 6 

appearance of leaves and progressive development of the root system, floral transition, 7 

flowering, seed production, senescence, each of which may be initiated and controlled by a 8 

network of different processes and responses to environmental cues (Beemster et al., 2005; 9 

Dubois et al., 2017; Schippers, 2015; Silva et al., 2016; Tisné et al., 2008; Weng et al., 2016). 10 

In this context, quantitative trait locus (QTL) mapping and genome-wide association analyses 11 

have often been applied to identify QTL/alleles for biomass and other growth-related traits. 12 

Examples include QTL for leaf area, growth rates and dry weight (El-Lithy et al., 2004; Lisec 13 

et al., 2008), for seed germination, seed longevity or seed dormancy (Clerkx et al., 2004; 14 

Nguyen et al., 2012), and for complex traits such as leaf shape (Juenger et al., 2005), or 15 

epistatic QTL for shoot and root growth (Bouteillé et al., 2012). In several cases, the genes 16 

underlying the QTL could be identified (Bentsink et al., 2006; Coluccio et al., 2010; Loudet 17 

et al., 2005; Riewe et al., 2016; Todesco et al., 2010). However, growth analyses were often 18 

restricted to one or a few time points during the development and consequently detected 19 

mostly cumulative effects (Zhu, 1995). The establishment of automated non-invasive high-20 

throughput phenotyping systems (Furbank and Tester, 2011) allowed in-depth studies of 21 

many aspects of plant growth in model and crop plants, including Arabidopsis (Dornbusch et 22 

al., 2012; Granier et al., 2006; Lyu et al., 2017; Tisné et al., 2013), maize (Cabrera�Bosquet 23 

et al., 2016; Junker et al., 2015; Zhang et al., 2017), rice (Al-Tamimi et al., 2016; Campbell 24 

et al., 2015; Schilling et al., 2015), barley (Honsdorf et al., 2014; Neumann et al., 2017; 25 

Wang et al., 2019a), pea (Humplík et al., 2015), lentil (Muscolo et al., 2015) and rapeseed 26 

(Fanourakis et al., 2014; Kjaer and Ottosen, 2015; Pommerrenig et al., 2018). In particular, 27 

these automated platforms enabled almost continuous monitoring of plant growth and 28 

development at many time points during development. In Arabidopsis, a genome wide 29 

association study (GWAS) of projected leaf area at 12 different time points, parameters 30 

derived from growth models, and final biomass data revealed time-specific and general QTL 31 

affecting plant growth (Bac-Molenaar et al., 2015). Temporal patterns for growth and 32 

developmental traits have also been described for maize (Muraya et al., 2017), barley 33 

(Neumann et al., 2017), triticale (Liu et al., 2014), wheat (Ren et al., 2018), and rapeseed 34 
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(Knoch et al., 2020; Wang et al., 2015). Taken together, these findings clearly show a need 1 

for time-resolved analyses of plant growth to detect loci showing temporal restricted 2 

expression patterns. We applied daily automated imaging to a population of 382 natural 3 

Arabidopsis accessions and performed genome-wide association analyses throughout early 4 

vegetative phases to address the following questions: (i) Can we resolve dynamic, time-5 

restricted contributions of loci for early growth by a time course analysis? (ii) Does initial 6 

seed size affect vegetative growth (iii) Can we draw links to known QTL and loci? (iv) Are 7 

we able to identify candidate genes underlying the observed marker-trait-associations?  8 

 9 

 10 

MATERIALS AND METHODS 11 

 12 

Plant materials and growth conditions 13 

 14 

The 382 Arabidopsis accessions (Table S1) were amplified together, and the number of 15 

siliques restricted to six per plant. Seeds from this amplification were sown in a controlled 16 

environment growth-chamber. After two days of stratification at 5°C in constant darkness, 17 

seeds were germinated and seedlings acclimated under a 16/8 h day/night regime with 18 

16/14°C, 75% relative humidity, and 140 ± 10 μmol m−2 s−1 light intensity for three days. 19 

Parameters were then adjusted to 20/18°C, 60/75% relative humidity and 140 ± 10 µmol m−2 20 

s−1 photosynthetically active radiation (PAR) from Whitelux Plus metal halide lamps (Venture 21 

Lighting Europe Ltd., Rickmansworth, Hertfordshire, England) still under a 16/8 h day/night 22 

regime. 12-well trays with a well size of 38x38x78 mm, cut from QuickPot QP 96T trays 23 

(HerkuPlast, Ering, Germany), were filled with a mixture of 85% (v) red substrate 2 24 

(Klasmann-Deilmann GmbH, Geeste, Germany) and 15% (v) sand. Plants were watered with 25 

45 ml water at 7 and 9 days after sowing (DAS), and then every other day until 19 DAS with 26 

55 ml water, to maintain approximately 70% field capacity. 27 

Plants were grown in three independent experiments over one year, arranged in a randomised 28 

complete block design with three replicates per experiment. Each replicate consisted of four 29 

individual plants grown in the same 12-well tray. 30 

 31 

Genotyping of accessions with 250K SNP chip 32 

 33 
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As no public 250k SNP data (Horton et al., 2012) were available for 64 Arabidopsis 1 

accessions, DNA of the missing accessions was hybridised to the Affymetrix 250K SNP 2 

Array (DNAVision, Charleroi, Belgium), and raw data subjected to the analysis pipeline 3 

established by Nordborg and colleagues (Atwell et al., 2010). Distribution of SNPs across the 4 

genome was visualized using the SNP-density plot function of the R package ‘rMVP’, a 5 

Memory-efficient, Visualization-enhanced, and Parallel-accelerated tool for genome-wide 6 

association studies, with bin size set to 10,000 bp. The package is available at github: 7 

https://github.com/XiaoleiLiuBio/rMVP. 8 

The Araport database (Hanlon et al., 2015; Rosen et al., 2014; www.araport.org) and 9 

Polymorph1001 (1001GenomesConsortium, 2016; http://tools.1001genomes.org/polymorph) 10 

were used to classify SNPs in candidate genes. 11 

 12 

Population structure 13 

 14 

Population structure was analysed using the software package STRUCTURE, version 2.3.4 15 

(Pritchard et al., 2000). Population clustering for K= 1 to 10 using the ‘admixture’ model was 16 

performed with a burn-in period of 50,000, 50,000 MCMC replications and five iterations per 17 

K. Two approaches were combined to determine the best value for K, L(K) as described by 18 

Rosenberg et al. (2001), and ∆K introduced by Evanno et al. (2005).  19 

 20 

High-throughput non-invasive phenotyping 21 

 22 

We assessed vegetative growth of the 382 Arabidopsis accessions at 12 different time points 23 

during development using the IPK automated phenotyping facility for small plants (Junker et 24 

al., 2015; https://www.ipk-gatersleben.de/en/phenotyping).  25 

Plants were imaged daily between 7 and 18 days after sowing (DAS), and dry weight was 26 

determined at 20 DAS. The germination time was defined as the time of emergence of the 27 

cotyledons, and determined by manually scanning the top view fluorescent images taken from 28 

three days after sowing onwards. Projected leaf area (PLA) measurements were extracted 29 

from top view images in the visible light range using IAP (Klukas et al., 2014) and used to 30 

calculate relative growth rates (RGRs) as in Eq.1 in overlapping three-day intervals. 31 

 32 

(Eq.1)  RGR =  
�������������������

	
�	�
   33 

 34 
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To measure seed size traits, 20 seeds per accession were fixed on an A4 sheet including a size 1 

standard and scanned with an Epson Expression 10000XL flatbed scanner (Seiko Epson 2 

Corporation, Suwa, Japan) at a resolution of 1200 dpi. Seed width, length and area were 3 

extracted using the custom program “Evaluator” (Meyer et al., 2012). The Evaluator 4 

algorithm isolates the seed image from the background based on differences in pixel 5 

intensities, creates a contour boundary and counts the pixels inside the boundary as a measure 6 

of area. Length and width of each seed are determined based on the seed’s orientation. 7 

 8 

Statistical analyses 9 

 10 

Adjusted phenotypic means were extracted as best linear unbiased estimates (BLUEs) using 11 

the GenSTAT 17th Edition (VSNi, Hempstead, UK) procedure REML and the following 12 

mixed linear model:  13 

 14 

(Eq.2)    y = µ + accession + germination + experiment/accession + 15 

experiment/replicate/block. 16 

 17 

Plant genotypes (accession) were considered as fixed factor effects with days to emergence of 18 

cotyledons (germination proxy) as covariate. Combinatorial interactions between each set of 19 

experiments, replicates within the experiments and blocks (8 carriers moving together in the 20 

phenotyping facility) within the replicates were considered as random factor effects.  21 

Broad-sense heritability was calculated using the same mixed linear model, but with genotype 22 

as random factor:  23 

 24 

(Eq.3)  �
 �  ��
�

�
�
� � �

��

 �
���
� � �

��

  �	
�
 25 

 26 

where σg is the genetic variance (accessions), σGxE is the variance of the experiment/accession 27 

interaction, σe is the error variance, nE is the average number of experiments per accessions 28 

(nE=3), and n0 is the number of individual plants for each accession (n0=36; He et al., 2016). 29 

The following statistical analyses were performed in R version 3.4.4 software environment for 30 

statistical computing and graphics (RCoreTeam, 2018), and RStudio Version 1.1.383.  31 

Pearson correlations and associated p-values were estimated using the function ‘rcorr’ from 32 

the R package ‘Hmisc’ (V 4.1.1, https://cran.r-project.org/web/packages/Hmisc/index.html).  33 
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GWAS was performed with 26 traits and 212,142 SNP markers using FarmCPU (Liu et al., 1 

2016). Principal components (PCs) to adjust for population structure were extracted from the 2 

GAPIT output (Lipka et al., 2012; Tang et al., 2016). For each trait, QQ plots were inspected 3 

to choose an appropriate number of PCs within the limits set by the STRUCTURE analysis 4 

(2-4 populations). The maxLoop parameter was increased to 30 and the optimal threshold for 5 

p-value selection of the model in the first iteration was estimated by the 6 

FarmCPU.P.Threshold function with 1,000 permutations and set to 0.000085 for all traits. 7 

Subsequently, p-values of marker-trait-associations were adjusted for multiple comparisons 8 

using FDR (Benjamini and Hochberg, 1995). Only associations with adjusted p-values below 9 

the FDR threshold of 0.05 were included in further analyses. The phenotypic variance 10 

explained (PVE%) by a significant marker was estimated in R as described in Knoch et al. 11 

(2020). 12 

Linkage disequilibrium (LD) was individually measured for each chromosome as r², the 13 

square of the allelic correlation coefficient of the pairwise physical distance between the 14 

109,178 homozygous SNP markers with the R package LDheatmap (Shin et al., 2006). A 15 

modified equation (Marroni et al., 2011; Remington et al., 2001) based on expectations for r² 16 

(Hill and Weir, 1988) was used to estimate the decay of r² with distance implemented in R:  17 

 18 

(Eq.4)  ���
� � � ����
�
���������

	 �1 �  �������
��
�����

��
���������
	 19 

 20 

where n is the effective population size (764 gametes of 382 individuals) and c is the 21 

recombination fraction between sites and C = 4nc. The arbitrary C is estimated fitting a 22 

nonlinear model using the nls function in R and starting with C = 0.1. The estimated C is than 23 

refitted into the equation to model adjusted LD values aligned for their Euclidian distance 24 

along the chromosome. The intercept of the half maximum adjusted LD with the Euclidian 25 

pairwise distance between SNPs was the half LD decay value of the population.  26 

To estimate the degree of random co-localisation, permutation analyses were performed, 27 

distributing the detected associations randomly to all markers and extracting the number of 28 

co-localisations. This procedure was repeated 100,000 times.  29 

 30 

 31 

RESULTS 32 

 33 

Description of the mapping population 34 
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 1 

The 382 accessions were selected to represent a wide geographic distribution (Fig. S1), with a 2 

focus on accessions for which public 250K SNP data were available (Atwell et al., 2010). 3 

Hundred and one of these accessions were previously analysed in a nitrogen use efficiency 4 

study (Kuhlmann et al., 2020). For 64 accessions no public SNP data were available at the 5 

time. DNA of the missing accessions was extracted and hybridised to the Affymetrix 250K 6 

SNP Array. The raw data were subjected to the analysis pipeline established by Nordborg and 7 

colleagues (Atwell et al., 2010). The total number of 214,052 identified SNPs (call method 8 

75; (Horton et al., 2012) was reduced to 212,142 SNPs by filtering for a minor allele 9 

frequency above 2% and missing values below 5% for use in GWAS. The SNP density plot 10 

(Fig. 1) reveals an even distribution of the markers across the genome. Overall population 11 

structure was low, with the first ten principal components (PCs) yielding a cumulative R2 of 12 

only 16.16% (3.67, 2.31, 2.02, 1.74, 1.33, 1.28, 1.07, 0.97, 0.95, 0.83 %, respectively). The 13 

mean Ln probability (L(K)) and the mean difference between successive likelihood values of 14 

K (ΔK) derived from the STRUCTURE output indicated an optimum K, i.e. number of 15 

subpopulations, between 2 and 4 (Fig. S2). The genome-wide half maximum LD decay was 16 

found to occur at a pairwise physical SNP distance of 3.37 kb. LD decay was also determined 17 

for each chromosome separately and amounted to 2.91 kb, 4.26 kb, 3.13 kb, 3.11 kb, and 18 

3.82 kb for chromosomes 1 to 5, respectively.  19 

 20 

Analysis of traits 21 

 22 

Between 7 and 18 days after sowing (DAS), plants were phenotyped on a daily basis using top 23 

view visible light images. Best linear unbiased estimates (BLUEs) of projected leaf area 24 

(PLA) and relative growth rates (RGR) were obtained using a mixed linear model (Eq. 2). 25 

Three models were evaluated, all of which contained accession (genotype) as fixed factor: 26 

model 1 incorporated the day of emergence of the cotyledons (proxy for germination) as a 27 

covariate to account for different germination time points (3-7 DAS); model 2 included the 28 

seed size as covariate in the fixed model, and model 3 included both germination and seed 29 

size. Only germination showed a significant effect, and therefore model 1 with accession as 30 

fixed factor and germination time as covariate was used to obtain adjusted mean values. The 31 

same model with accession as random factor was used to estimate broad-sense heritabilities of 32 

PLA and RGR (Table S2). Heritabilities were moderate to high, ranging from 66% for 33 

RGR15_17 to 93% for seed area.  34 
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Pearson correlations were calculated between all phenotypic traits. The corresponding 1 

heatmap is presented in Fig. 2. The traits are clearly separated into three groups, 2 

corresponding to biomass (PLA and DW20), seed traits, and growth rates (RGR), 3 

respectively. Seed traits are positively correlated with PLA, and negatively with RGR, both at 4 

a low level. Correlations between PLA over time are all positive and highly significant. In 5 

contrast, correlation between RGRs over time are generally lower and switch from positive to 6 

negative during the late phase starting 14 DAS. This switch is even more pronounced in 7 

correlations between PLA and RGR.  8 

 9 

Genome-wide association study 10 

 11 

Genome-wide association studies (GWAS) were performed using the 26 phenotypic traits 12 

(dry biomass at 20DAS, PLA at 12 time points, RGR at 10 intervals, 3 seed traits) and 13 

212,142 SNPs in FarmCPU (Liu et al., 2016). Correction for population structure was 14 

obtained by inclusion of the FarmCPU kinship matrix (Liu et al., 2016), and in addition 15 

inclusion of principal components (PCs); the optimal number of PCs for each trait (Table S3) 16 

was selected based on QQ plots (Fig. S3). Overall, 238 significant (p-value(FDR) ≤ 0.05) 17 

marker-trait associations (MTAs) were discovered, explaining between 0.1% and 8.1% of the 18 

estimated phenotypic variance (Table S3). Final biomass (dry weight at 20 DAS, DW20) 19 

resulted in 10 MTAs, while the time-resolved projected leaf area (PLA) yielded 111 MTAs, 20 

and the relative growth rates (RGR) 85 MTAs; 32 MTAs were found for seed traits (seed area 21 

SA, seed length SL, seed width SW). The next step consisted in a search for co-localisations; 22 

two MTAs were considered co-localised if they were positioned within the chromosome-23 

specific LD decay threshold from each other. MTAs of different traits co-localised at 33 24 

positions (Table S3). In a permutation analysis with 100,000 repeats a maximum of 4 co-25 

localisations per iteration was detected, consistent with the low number of detected 26 

associations (n=238) in relation to the number of markers (n=212,142). 27 

MTAs for final biomass and leaf areas over time only shared three positions, no common 28 

MTAs were detected for final biomass and RGRs. Surprisingly, one co-localisation was found 29 

between seed area and RGR10_12. To explore similarities between our results and QTL 30 

reported in the literature, with physical distances available (Bac-Molenaar et al., 2015; El-31 

Lithy et al., 2004; Knoch et al., 2017; Lisec et al., 2008; Meyer et al., 2010), we searched for 32 

co-localisations within a 10 kb interval around the SNP marker. The larger interval was 33 

chosen to harmonise our search with previous studies (Bac-Molenaar et al., 2015; Kim et al., 34 
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2007). MTAs co-localised (Table 1) at one position with a QTL for PLA extracted from Bac-1 

Molenaar et al. (2015), at another position with a QTL for PLA identified by Meyer et al. 2 

(2010), and at three positions with metabolic QTL identified by Knoch et al. (2017) and Lisec 3 

et al. (2008). Two overlaps with known flowering genes were found (Table 1), one of which 4 

also coincides with the co-localised growth QTL of Bac-Molenaar et al. (2015). 5 

We were particularly interested in the occurrence of growth MTAs over time, and 6 

investigated robust MTAs that were significant on at least two consecutive days. Overall, 7 

MTAs at 21 positions fulfilled this criterion, 15 PLA (Fig. 3A) and 6 RGR (Fig. 4A) loci. At 8 

two dynamic PLA loci, a MTA for RGR15-17 also co-localised, while a MTA for PLA12 co-9 

localised at one dynamic RGR locus, but with reverse effect (Fig. 3B). A reversal of effects 10 

over time occurred in dynamic MTAs for RGR (Fig. 4B) only. Interestingly, one dynamic 11 

MTA for PLA coincided with a QTL previously described for metabolites in leaves (Lisec et 12 

al., 2008) and seeds (Knoch et al., 2017; Fig. S4).  13 

The dynamic MTAs were only significant during restricted periods ranging from two to nine 14 

days (Fig. S4), none were significant over the whole time (12 days). For PLA, we found three 15 

early QTL, two early/intermediate QTL, two early/intermediate/late QTL, one intermediate 16 

QTL, four intermediate/late QTL, two late and one QTL with breaks between the early, 17 

intermediate and late phases (Fig. S4). For RGR we detected one early QTL, one 18 

early/intermediate QTL, two intermediate/late QTL and two late QTL (Fig. S4).  19 

In the next step we looked for genes situated within the respective chromosome LD decay 20 

interval of each significant marker. In total we found 78 genes in or immediately adjacent to 21 

the MTA region, encoding one miRNA, three t-RNAs, five long non-coding RNAs, ten 22 

transposable elements and 59 genes encoding (putative) proteins (Table S4). Four significant 23 

markers associated with protein-coding genes (AT1G07680, AT1G60750, AT2G30690, 24 

AT3G07020) directly caused non-synonymous changes.  25 

 26 

Candidate genes 27 

 28 

The confidence intervals around sixteen MTAs contained a total of 30 genes annotated to be 29 

involved in growth, cell wall, signalling, or transcription regulation (Table S5), with up to five 30 

genes in an interval. Additional SNPs and small insertions/deletions (indels) were identified in 31 

the candidate genes using the 250K SNP array data (Horton et al., 2012), Araport JBROWSE 32 

(Krishnakumar et al., 2015) and Polymorph 1001 (1001GenomesConsortium, 2016), yielding 33 

1133 SNPs with high or moderate impact in the coding, promoter or UTR regions of 22 of 34 
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these candidate genes (Table S5). Further mining of available databases and literature for 1 

possible links to plant growth let to a reduced list of nine most promising candidate genes for 2 

seven dynamic MTAs (Table 2). 3 

 4 

 5 

DISCUSSION 6 

 7 

Unravelling the genetic basis of complex traits governing plant performance and discovering 8 

the underlying molecular mechanisms remains a major undertaking in plant biology. The 9 

main aim of this study was the identification of genetic factors that influence early vegetative 10 

growth in Arabidopsis over a period of 12 days (7 to 18 DAS). We applied daily automated 11 

high�throughput phenotyping in the IPK phenotyping platform for small plants (Junker et al., 12 

2015) to a diverse collection of 382 Arabidopsis thaliana accessions, extracted data for 13 

projected leaf area (PLA) at 12 time points, and calculated relative growth rates based on 14 

PLA. Previous studies have demonstrated that in Arabidopsis, biomass is highly correlated 15 

with leaf area (Leister et al., 1999; Meyer et al., 2004), enabling us to use PLA as a proxy for 16 

biomass. 17 

Hierarchical clustering of the phenotypic data revealed a separation between 18 

early/intermediate (7 – 14) and late (15-18) phases. One possible explanation may be the 19 

increasing overlap of leaves, and therefore underestimation of PLA, at the later stages. It may 20 

also reflect morphological differences between leaves appearing at different stages 21 

(heteroblasty; Berardini et al., 2001). Similarly, the pronounced switches in correlations 22 

between PLA and RGR may indicate distinct growth phases, in particular floral transition in 23 

the shoot apical meristem (SAM). The transition from vegetative to reproductive SAM is 24 

terminal in the annual Arabidopsis, occurs before any visible sign of flowering and slows 25 

down vegetative leaf growth (Cookson et al., 2007). In our long-day conditions, some 26 

accessions started bolting as early as 18 days after sowing. Another possibility is a link to the 27 

appearance of leaves, as speculated for rapeseed (Knoch et al., 2020). 28 

For all analysed time points, a total of 236 associations with endpoint biomass, the 22 growth-29 

related and the three seed traits were detected at p-value(FDR) ≤ 0.05. Most of the detected 30 

MTAs explained only a small percentage of phenotypic variance (< 5 PVE%, Table S3). In 31 

total, only 9 (3.8 %) MTAs with larger effects (> 5 PVE%) were detected, similar to a study 32 

in rapeseed (Knoch et al., 2020), confirming that plant growth results from the cumulative 33 

effects of the interaction of numerous small effect genes. We found a surprisingly large 34 
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number of associations for RGR, individually explaining up to 8% phenotypic variance, the 1 

highest value found in this study. Robust phenotypic values obtained by calculating RGR over 2 

rolling 3-day intervals certainly contributed to the successful GWAS.  3 

Several MTAs co-localised with previously described QTL, with the caveat that physical 4 

marker positions are only available for a restricted number of studies. This is particularly true 5 

for flowering time, where only eight QTL were available for comparison (Alonso-Blanco et 6 

al., 1998; Clarke et al., 1995); therefore known flowering genes (Sasaki et al., 2018; Srikanth 7 

and Schmid, 2011; Wellmer and Riechmann, 2010) were also included. The flowering time 8 

gene PFT1 (AT1G25540, (Cerdán and Chory, 2003) co-localising with MTA1-05 for RGR09-9 

11 is also involved in the control of organ size (Xu and Li, 2011) and the transcriptional 10 

regulation of genes involved in cell elongation and cell wall composition (Seguela-Arnaud et 11 

al., 2015). The flowering time gene AT3G19500 encodes a bHLH DNA-binding superfamily 12 

protein that is part of the genetic network underlying flowering time regulation; its expression 13 

is positively correlated with flowering time, and negatively correlated with the expression of 14 

FLC (Sasaki et al., 2018). This gene mapped to the same region as MTA3-08 for PLA15 from 15 

this study, and MTA 3/6.8 for PLA18 identified by Bac-Molenaar et al. (2015). According to 16 

their experimental set-up, plants were transferred from stratification 4, 5, or 6 days after 17 

sowing, and this day was counted as day 1, therefore their PLA18 corresponds to PLA at 22-18 

24 days after sowing. Despite 244 common accessions, this is the only shared MTA between 19 

these two growth studies, most likely due to different growth conditions and measurement at 20 

different time points. A large influence of even slightly different growth conditions was 21 

demonstrated in a comparison of the growth of three Arabidopsis accessions across ten 22 

laboratories (Massonnet et al., 2010). Therefore, the influence on growth of candidate genes 23 

located in this MTA is potentially stable across various environmental conditions.  24 

The co-localisation between MTAs for seed area and RGR10_12 was unexpected, as seed 25 

area displayed no significant effect in the mixed linear analysis. Seed size has been shown to 26 

influence early vegetative growth in Arabidopsis (Elwell et al., 2011; Meyer et al., 2004), but 27 

this effect can be neutralised by restricting the number of siliques per plant (Meyer et al., 28 

2004). However, the shared MTA region contains AtWRINKLED3 (AT1G16060), which 29 

encodes an AP2-domain protein that interacts with a positive regulator of the ABA response 30 

(ARIA) and is involved in regulating seedling growth (Lee et al., 2009). Conversely, ABA 31 

has been shown to be involved in endosperm development (Cheng et al., 2014), and seed size 32 

is at least partially determined by endosperm growth (Sun et al., 2010). The observed link 33 

may well reflect different actions of the same gene during different developmental phases. 34 
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Similarly, the co-localisation of a QTL for seed proline content (Knoch et al., 2017) with 1 

MTAs for PLA between 13 and 18 DAS and dry weight at 20 DAS may be due to the 2 

influence of parental seed composition on growth and development of the next generation 3 

(Alonso-Blanco et al., 1999; Elwell et al., 2011). In early studies in wheat, seed proline 4 

content was positively correlated with seedling growth (Lowe et al., 1972). Proline has been 5 

associated with general stress tolerance (Ashraf and Foolad, 2007); it accumulates in maturing 6 

Arabidopsis seeds (Chiang and Dandekar, 1995) where it seems essential for embryo 7 

development (Funck et al., 2012) and stimulates Arabidopsis germination (Hare et al., 2003). 8 

Given these findings, it is conceivable that differences in seed proline content may translate 9 

into growth differences. The associated candidate gene At5g04275 encodes miRNA172, 10 

which is has been implicated in early vegetative development in Arabidopsis (Martin et al., 11 

2010) and in proline accumulation under drought stress in potato (Yang et al., 2013), and 12 

which shows higher abundance in fast growing Arabidopsis mutants overexpressing purple 13 

acid phosphatase 2 (Liang et al., 2014). 14 

The daily imaging performed during the phenotyping experiments allowed the analysis of the 15 

temporal dynamics of detected growth QTL. To address robust associations, only MTAs 16 

significant at two consecutive time points were considered for a detailed analysis. A total of 17 

21 of these associations were detected, 15 for projected leaf area and six for relative growth 18 

rate. The elucidation of growth dynamics by means of time-dependent QTL analysis has been 19 

addressed in several studies in model and crop plant species, including Arabidopsis (Bac-20 

Molenaar et al., 2016; Bac-Molenaar et al., 2015; Marchadier et al., 2019; Meyer et al., 21 

2010), Setaria (Feldman et al., 2017), rice (Al-Tamimi et al., 2016; Campbell et al., 2017; Wu 22 

et al., 2018), maize (Muraya et al., 2017; Wang et al., 2019b; Zhang et al., 2017), barley 23 

(Neumann et al., 2015; Pham et al., 2019), rye (Miedaner et al., 2018; Würschum et al., 2014) 24 

and rapeseed (Knoch et al., 2020; Wang et al., 2015), with phenotyping frequencies varying 25 

from daily to weekly. The high temporal resolution provided by the present study coupled to 26 

the advantages of the Arabidopsis model system (small plant size, small and annotated 27 

genome, plethora of publicly available genetic and genomic resources) and the fast LD decay 28 

in our population facilitate the identification of putative candidate genes. In concordance with 29 

a previous genome-wide association study in Arabidopsis (Bac-Molenaar et al., 2015), we 30 

detected only period-specific MTAs affecting growth, and none significant over the whole 31 

time. Only three MTAs for endpoint biomass (DW20) co-localised with sequential MTAs for 32 

PLA, all in the intermediate to late phase; none overlapped with MTAs for RGR. Similar 33 

observations were made during the analyses of plant growth dynamics in maize (Muraya et 34 
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al., 2017) and rapeseed (Knoch et al., 2020). Determining only endpoint biomass for input in 1 

a GWAS therefore severely limits the number of growth controlling genetic factors that can 2 

be detected.  3 

Of the 59 putative protein-encoding genes located within dynamic MTA regions for PLA and 4 

RGR, eleven were annotated as encoding hypothetical proteins and another eleven genes 5 

could not be assigned a function. The remaining 37 genes were screened in available 6 

databases (Araport, TAIR, eFP Browser) and literature for possible links to plant growth, 7 

reducing the list to 30 candidate genes. Of these candidates, nine genes displayed relevant 8 

expression patterns (leaves, roots, seedlings) and/or mutant growth behaviour; three genes 9 

contained both deleterious and missense SNPs, six genes harboured only moderate effect 10 

SNPs in the coding region, promoter or UTRs. Moderate effect SNPs may be of particular 11 

interests in attempts to identify alleles modulating the growth performance, without the 12 

possible pleiotropic effects caused by gene disruption. The low number of genes in the MTA 13 

regions should facilitate validation using time- and tissue-resolved expression analyses. 14 

AtECA4 (AT1G07670) encoding an endomembrane-type CA-ATPase 4 is a possible 15 

candidate within MTA1.1 for PLA10-14. Nguyen et al. (2018) showed that AtECA4 is 16 

involved in the recycling of endocytosed cargo proteins such as ABCG25 and BRI1 from the 17 

trans-Golgi network/early endosome to the plasma membrane. This process has been 18 

described to be crucial to regulate homeostasis of the cellular ABA levels, and brassinolide 19 

(BL)-mediated signalling for growth. Mutant eca4 plants showed multiple phenotypes 20 

including enhanced ABA sensitivity, increased resistance to dehydration and NaCl stresses, 21 

and more robust vegetative growth of shoots and roots. Candidate gene AT1G60790 (AtTBL2) 22 

is located within MTA1-03 for RGR08-11, belongs to the ‘trichome birefringence like’ (TBL) 23 

gene family with 46 members in Arabidopsis and clusters in the same clade as TBR, TBL1 and 24 

TBL4 (Gao et al., 2017). TBR (AT5G06700) and TBL29/ESK1 (AT3G55990) are involved in 25 

cell wall biogenesis and modification with mutants showing impaired growth (Bischoff et al., 26 

2010; Lefebvre et al., 2011; Xiong et al., 2013). In rice, trichome birefringence-like (tbl) 27 

mutants affected in xylan O-acetylation displayed a stunted growth phenotype (Gao et al., 28 

2017). The MTA3-01 region for RGR15-18 contained two possible candidate genes: 29 

AT3G07020 and AT3G07030. AT3G07020 encodes an UDP-glucose:sterol 30 

glucosyltransferase, 80 UGT80A2, that is required for steryl glycosides and acyl steryl 31 

glycosides, and mutant ugt80A2 seedlings have been described to show reduced root growth, 32 

with overall minor effects on plant growth (DeBolt et al., 2009), and a lower seed mass 33 

(Stucky et al., 2014). The second gene, AT3G07030, encodes an ALBA DNA/RNA-binding 34 
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protein potentially involved in transcription regulation (Goyal et al., 2016). In Arabidopsis, 1 

ALBA proteins have been associated with rhizoid and root hair growth, with mutants alba1 2 

and alba2 displaying reduced elongation (Honkanen et al., 2016). AtXTH16 (AT3G23730) is 3 

the most likely candidate for MTA3-06 (PLA12-16). XTH16 is a xyloglucan 4 

endotransglucosylase/hydrolase 16, potentially involved in cell wall modifications 5 

(Sasidharan et al., 2010). Recent studies revealed that the expression of AtXTH16 is GA-6 

induced and PKL-dependent and correlates with larger plants (Park et al., 2017). Among the 7 

three genes within the MTA3-07 region for PLA12-20, AT2G49380 (iqd15) belongs to one of 8 

the plant-specific IQD families that have been described as scaffold-like proteins containing 9 

the IQ67 calmodulin binding domain that may link CaM-dependent Ca2+ signalling to cell 10 

function, shape, and growth (Bürstenbinder et al., 2017). Another possible candidate could be 11 

the cytokinin responsive gene AT3G49390 (CID10); however, T-DNA insertion mutants did 12 

not show an altered growth phenotype (Bravo et al., 2005). AT4G13620, adjacent to the 13 

MTA4-03 region (PLA14-15), encodes the ethylene-responsive transcription factor ERF062 14 

belonging to the DREB subgroup A6 within the ERF/AP2 transcription factor superfamily 15 

(Weber and Hellmann, 2009), and has been shown to be nitrate responsive (Menz et al., 16 

2016). 17 

The functional diversity of the candidate genes identified in this study is yet another reminder 18 

of the complexity of plant growth, which necessitates the coordinated action of a large 19 

number of genes active at different time points during development. 20 

 21 

CONCLUSIONS 22 

 23 

In this study we analysed the early growth of a diversity population of Arabidopsis accessions 24 

using high-throughput phenotyping at a high temporal resolution, and detected both single 25 

timepoint (general) and multiple timepoint (dynamic) MTAs. The inspection of the genes 26 

located in the MTA regions delivered potential targets for in-depth time-resolved functional 27 

analyses. The scarcity of shared QTL between endpoint biomass and PLA (proxy for 28 

biomass) or RGR over time illustrates the need for analyses of the temporal dynamics of 29 

biological processes to gain important insight into the molecular mechanisms of growth-30 

controlling processes in plants.  31 

 32 
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TABLES 

Table 1: Co-localisation of detected MTAs with known growth, metabolite and flowering time QTL 

MTA 
Locus trait SNP marker Chr. position p-value(FDR) LOD norm.effect % PVE% reference 

1-04 

RGR16_18 M1_30345995 1 30,345,995 2.67E-02 
 

3.713 0.90 
 Asparagine 

MASC09206 

1 30,348,203 
 

3.86 -1.0661 9.46 Knoch 2017 

Threonic acid 1 30,348,203 
 

7.18 -5.1204 29.57 Knoch 2017 
Unknown MST 
102 1 30,348,203 

 
2.59 -0.0450 3.19 Knoch 2017 

Unknown MST 
244 1 30,348,203   6.19 -1.0550 11.98 Knoch 2017 

1-05 RGR09-11 M1_8974266 1 8,974,266 1.69E-02 
 

2.26 

  flowering AT1G25540 1 8,974,815         Cerdán 2003 

2-06 

RGR07_09 M2_11691472 2 11,691,472 4.49E-02 
 

1.090 1.26 
 Asparagine 

nga1126 

2 11,696,472 
 

3.34 0.9462 3.12 Knoch 2017 

Leucine 2 11,696,472 
 

5.29 0.0001 4.78 Knoch 2017 
Unknown MST 
187 2 11,696,472 

 
10.53 4.3989 9.10 Knoch 2017 

Unknown MST 
205 2 11,696,472   9.47 6.1418 8.80 Knoch 2017 

2-07 
DW20 M2_19627477 2 19,627,477 2.56E-02 

 
-2.953 2.407 

 Unknown MST 7 MSAT2.22 2 19,625,983   3.60 -1.5678 4.038 Knoch 2017 

3-08 

PLA15 M3_6754875 3 6,754,875 2.56E-02 
 

3.012 

flowering AT3G19500 3 6,759,016 
   

Sasaki 2018 

PLA18 (PLA22-24) marker 3 6,751,136   5.11     Bac-Molenaar 2015 

4-08 
PLA18 M4_00143220 4 143,220 4.29E-02 2.009 1.50 

PLA06 per se MASC07015 4 146,029   2.32 -0.1500 2.47 Meyer 2010 

5-01 
Fucose 

MASC04860 5 1,193,462  
6.79 -3.4840 5.90 Knoch 2017 

Proline 
 

5.51 -2.5479 5.73 Knoch 2017 

.
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Unknown MST 6 
 

6.57 0.3066 5.16 Knoch 2017 

Unknown MST 79 
 

2.58 -0.4391 2.89 Knoch 2017 
Hexacosanoic 
acid 

    
Lisec 2008 

Phosphate 
    

Lisec 2008 

unknown_092 
    

Lisec 2008 
PLA13 

M5_01196098 5 1,196,098 

3.14E-02 
 

-5.311 1.80 
 PLA14 1.22E-03 

 
-6.388 2.61 

 PLA15 5.17E-06 
 

-7.548 3.36 
 PLA16 4.47E-03 

 
-5.662 3.84 

 PLA18 2.36E-04 
 

-4.811 3.54 
 DW20 3.60E-07   -7.710 6.14   

 

MTA: marker trait association; Chr: chromosome; p-value(FDR): FDR adjusted p-values, with FDR threshold set to 0.05; LOD: LOD score (measure 

of probability) of QTL taken from references; norm.effect %: normalised effect in %; PVE%: percentage of phenotypic variation explained by the 

MTA. 
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Table 2: List of candidate genes for growth-related trait variation  

 

MTA 

Locus trait stage gene name symbol annotation expression in 

1-01 PLA 10-13 AT1G07670 endomembrane-type CA-ATPase 4 ECA4 regulation of ABA and BL levels 
germinating seed, 

seedling root 

1-03 RGR 8-11 AT1G60790 
trichome birefringence-like 

protein (DUF828) 
TBL2 cell wall organization or biogenesis seedling, young leaves 

1-06 
SA seed 

AT1G16060 
ARIA-interacting double AP2 

domain protein 
WRI3 involved in regulating seedling 

growth. 
flower, petiole mature 

leaf RGR 10-12 

3-01 RGR 15-18 

AT3G07020 
UDP-Glycosyltransferase 

superfamily protein 

UGT80

A2 

lipid glycosylation; reduced seed 

size 

root, leaves, stem, 

flower 

AT3G07030 ALBA DNA/RNA-binding protein ALBA nucleic acid binding 
stem, root, mature 

leaves 

3-04 RGR 15-17 AT3G23730 
xyloglucan endotrans-

glucosylase/hydrolase 16 
XTH16 cell wall modification 

germinating seed, root 

apex, young leaves, 

flower 

3-07 PLA 12-20 

AT3G49380 plant-specific IQD family IQD15 CaM-dependent Ca2+ signalling 
seedling root, root, 

maturing seed 

AT3G49390 CTC-interacting domain 10 CID10 RNA-binding protein RBP37 
seedling root, root, 

leaves, maturing seed 

4-03 PLA 14-15 AT4G13620 
Integrase-type DNA-binding 

superfamily protein 
ERF062 transcription regulation seedling root, root 

 

List of the nine most promising candidate genes indicating the relevant MTA locus, the associated trait (PLA: projected leaf area, RGR: relative 

growth rate, SA: seed area) and stage (as time period given in days after sowing). The expression is derived from the eFP Browser Klepikova Atlas 

(Klepikova et al., 2016; Winter et al., 2007). 
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FIGURE LEGENDS 

 

Figure 1: SNP density plot illustrating even SNP distribution across the genome 

Shown is the genome-wide SNP marker distribution across the five Arabidopsis 
chromosomes. 212,142 unique, single-copy SNPs were binned in 10 kb intervals. The marker 
density is indicated by the colour legend (green to red) on the right side. Grey colour indicates 
regions without SNPs.  

 

Figure 2: Correlation heatmap and hierarchical clustering of phenotypic means  

Correlation heatmap and hierarchical cluster analysis of adjusted means of endpoint biomass 
(DW20), projected leaf area (PLA) and relative growth rates (RGR) over time, as well as seed 
area (SA), seed length (SL) and seed width (SW). The lower triangle displays the coefficients 
(r), the upper triangle the statistical significance (p-values). Colour scale for r: red, high 
correlation; blue, low correlation. Hierarchical clustering: colour differences in sidebars 
indicate the different trait groups within the clusters. 

 

Figure 3: Dynamic MTAs for projected leaf area 

Probabilities of 15 dynamic marker trait associations (MTA) (a) for projected leaf area over 
time (days after sowing, DAS), with normalised effects (b). The sign of the allelic effect is 
determined by the alphabetic order of the respective nucleotides of the SNP marker: a positive 
sign refers to the second allele in alphabetic order. The horizontal line indicates the 
significance threshold corresponding to p-value(FDR) < 0.05. Also shown are co-localised 
MTAs for endpoint biomass (DW20) and relative growth rate between 15-17 DAS (RGR15-
17). Different MTAs are represented by different colours, see legend. (Colours across figures 
3 and 4 are not comparable) 

 

Figure 4: Dynamic QTL for relative growth rates 

Probabilities for six dynamic marker trait associations (MTA) (a) for relative growth rates 
over time (days after sowing, DAS), with normalised effects (b). The sign of the allelic effect 
is determined by the alphabetic order of the respective nucleotides of the SNP marker: a 
positive sign refers to the second allele in alphabetic order. The horizontal line indicates the 
significance threshold corresponding to p-value(FDR)< 0.05. Also shown is a co-localised MTA 
for projected leaf area at 12 DAS (PLA12). Different MTAs are represented by different 
colours, see legend. (Colours across figures 3 and 4 are not comparable) 
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FIGURES 

 

Figure 1: SNP density plot illustrating even SNP marker distribution across the Arabidopsis 
thaliana genome 
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Figure 2: Correlation heatmap and hierarchical clustering of phenotypic means  
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Figure 3: Dynamic MTAs for projected leaf area 
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Figure 4: Dynamic MTAs for relative growth rates 
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