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Abstract 

Attempts at using protein structures to identify disease-causing mutations have been dominated by the 
idea that most pathogenic mutations are disruptive at a structural level. Therefore, computational 
stability predictors, which assess whether a mutation is likely to be stabilising or destabilising to protein 
structure, have been commonly used when evaluating new candidate disease variants, despite not 
having been developed specifically for this purpose. We therefore tested 12 different stability predictors 
for their ability to discriminate between pathogenic and putatively benign missense variants. We find 
that one method, FoldX, considerably outperforms all others in the identification of disease variants. 
Moreover, we demonstrate that employing absolute energy change scores improves performance of 
nearly all predictors. Importantly, however, we observe that the utility of computational stability 
predictors is highly heterogeneous across different proteins, and that they are all are inferior to the best 
performing variant effect predictors for identifying pathogenic mutations. We suggest that this is largely 
due to alternate molecular mechanisms other than protein destabilisation underlying many pathogenic 
mutations. Thus, better ways of incorporating protein structural information and molecular mechanisms 
into computational variant effect predictors will be required for improved disease variant prioritisation. 
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Introduction 

Advances in next generation sequencing technologies have revolutionised research of genetic variation, 
increasing our ability to explore the basis of human disorders and enabling huge databases covering 
both pathogenic and putatively benign variants1,2. Novel sequencing methodologies allow the rapid 
identification of variation in the clinic and are helping facilitate a paradigm shift towards precision 
medicine3,4. Despite this, however, it remains challenging to distinguish the small fraction of variants 
with medically relevant effects from the huge background of mostly benign human genetic variation. 

A particularly important research focus is single nucleotide variants that lead to amino acid substitutions 
at the protein level, i.e. missense mutations, which are associated with more than half of all known 
inherited diseases5,6. Thus, a large number of computational methods have been developed for the 
identification of potentially pathogenic missense mutations, i.e. variant effect predictors. Although 
different approaches vary in their implementation, a few types of information are most commonly used, 
including evolutionary conservation, changes in physiochemical properties of amino acids, biological 
function, known disease association and protein structure7. While these predictors are clearly useful for 
variant prioritisation, and show a statistically significant ability to distinguish known pathogenic from 
benign variants, they still make many incorrect predictions8–10, and the extent to which we can rely on 
them for diagnosis remains limited11. 

An alternative approach to understanding the effects of missense mutations is with computational 
stability predictors. These are programs that have been developed to assess folding or protein-protein 
interaction energy changes upon mutation (change in Gibbs free energy – ΔΔG in short). This can be 
achieved by approximating structural energy through linear physics-based pairwise energy scoring 
functions, their empirical and knowledge-based derivatives, or a mixture of such energy terms. 
Statistical and machine learning methods are employed to parametrise the scoring models. These 
predictors have largely been evaluated against their ability to predict experimentally determined ΔΔG 
values. Great effort has been previously made to assess stability predictor performance in producing 
accurate or well-correlated energy change estimates upon mutation, as well as assessing their shortfalls, 
such as biases arising from destabilising variant overrepresentation in training sets and lack of self-
consistency predicting forward-backward substitutions12–18. Moreover, their practical utility has been 
demonstrated through their extensive usage in the fields of protein engineering and design19–21. 

Although computational stability predictors have not been specifically designed to identify pathogenic 
mutations, they are very commonly used when assessing candidate disease mutations. For example, 
publications reporting novel variants will often include the output of stability predictors as evidence in 
support of pathogenicity22–25. This relies essentially upon the assumption that the molecular mechanism 
underlying many or most pathogenic mutations is directly related to the structural destabilisation of 
protein folding or interactions26–29. However, despite their widespread application to putatively 
pathogenic variants, there has been little to no systematic assessment of computational stability 
predictors for their ability to predict disease mutations. A number of studies have assessed the real-
world utility for individual protein targets and families using certain stability predictors30–34. However, 
numerous computational stability predictors have now been developed and, overall, we still do not have 
a good idea of which methods perform best for the identification of disease mutations, and how they 
compare relative to other computational variant effect predictors. 
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In this work, we explore the applicability and performance of 12 methodologically diverse structure-
based protein stability predictors for distinguishing between pathogenic and putatively benign missense 
mutations. We find that FoldX substantially outperforms other stability predictors for the identification 
of disease mutations, and also to demonstrate the value of using absolute ΔΔG values to account for 
potentially stabilising mutations. However, this work also highlights the limitations of stability predictors 
for predicting disease, as they still miss many pathogenic mutations and perform worse than many 
variant effect predictors, thus emphasising the likely importance of considering alternate molecular 
disease mechanisms beyond protein destabilisation.  

Results 

We tested 12 different computational stability predictors on the basis of accessibility, automation or 
batching potential, computation speed, as well as recognition – and included FoldX35, Rosetta35, 
PoPMusic36, I-Mutant37, SDM38, SDM239, mCSM40, DUET41, CUPSAT42, MAESTRO43, ENCoM44 and 
DynaMut45 (Table 1). We ran each predictor against 13,508 missense mutations from 96 different high-
resolution (< 2 Å) crystal structures of monomeric proteins. This included 3,338 missense variants from 
ClinVar2 annotated as pathogenic or likely pathogenic, and 10,170 variants observed in the human 
population, taken from gnomAD1. Each protein structure had at least 10 pathogenic missense mutations 
that could be modelled with the stability predictors. While it is possible that some of the gnomAD 
variants could be damaging under certain circumstances (e.g. if observed in a homozygous state, if they 
cause late-onset disease, or there is incomplete penetrance), the large majority of them are likely to be 
non-pathogenic, and we therefore refer to them as “putatively benign”. 

To investigate the utility of the computational stability predictors for the identification of pathogenic 
missense mutations, we used receiver operating characteristic (ROC) plots to assess the ability of ΔΔG 
values to distinguish between pathogenic and putatively bening mutations (Fig. 1A). This was quantifed 
by the area under the curve (AUC), which is equal to the probability of a randomly chosen disease 
mutation being assigned a higher-ranking score than a random benign one. Of the 12 tested structure-
based ΔΔG predictors, FoldX clearly performs the best as a predictor of human missense mutation 
pathogenicity, with an AUC value of 0.661.  The next best methods, Rosetta and PoPMuSiC, show 
considerably worse, with ranking probabilities of 0.617 and 0.614. Evaluating the performance 
differences through bootstrapping we found that Rosetta and PoPMuSiC significantly underperform 
compared to FoldX, with p-values of 1 x 10-7 and 8 x 10-9, respectively, while the difference between 
them was insignificant. The remaining predictors demonstrated a wide range of lower performance 
values.  

Two predictors, ENCoM and DynaMut, stand out for their unusual pattern in the ROC plots, with a 
rotated sigmoidal shape where the false positive rate becomes greater than the true positive rate at 
higher levels. Close inspection of the underlying data shows that this is indicative of the predicted 
energy change distribution tails for the disease-associated class extending both directions away from the 
putatively benign missense mutation score density. This suggests that a considerable portion of 
pathogenic missense mutations are predicted by these predictors to excessively stabilise the protein. 

While the analysis Fig. 1A assumes that protein destabilisation should be indicative of mutation 
pathogenicity, it also possible for stabilising mutations to be pathogenic46,47. Therefore, we repeated the 
analysis using absolute ΔΔG values, so that both destabilising and stabilising mutations are treated 
equivalently (Fig. 1B). This improved the performance of most predictors, while not reducing the 
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performance of any. The most drastic change was observed for ENCoM, which improved from worst to 
fourth best predictor, with an increase in AUC from 0.495 to 0.619. However, the top three predictors, 
FoldX, Rosetta and PoPMuSiC, improve only slightly and do not change in ranking. 

Using the ROC point distance to the top-left corner48, we establish the best disease classification ΔΔG 
value for each predictor when assessing general perturbation (Table 2). It is interesting to note that 
FoldX demonstrates the best classification performance when utilising 1.58 kcal/mol as the stability 
change threshold, which is remarkably to the value of 1.5 kcal/mol previously suggested and used in a 
number of other works when assessing missense mutation impact on stability13,33,49. Of course, these 
threshold values should be considered far from absolute rules, and there are many pathogenic and 
benign mutations above and below the thresholds for all predictors. For example, nearly 40% of 
pathogenic missense mutations have FoldX values lower than the threshold, whereas approximately 
35% of putatively benign variants are above the threshold. 

We also calculated AUC values for each protein separately and compared the distribution across 
predictors (Fig. 2). FoldX again performs much better than other stability predictors for the identification 
of pathogenic mutations, with a mean ROC of 0.681, compared to Rosetta at 0.627, PoPMuSiC at 0.621, 
and ENCoM at 0.630. Interestingly, the protein-specific performance was observed to be extremely 
heterogeneous across all predictors. While some predictors performed extremely well (AUC > 0.9) for 
certain proteins, each predictor has a considerable number of proteins for which they perform worse 
than random classification (AUC < 0.5). 

Finally, we compared the performance of protein stability predictors to a variety of different 
computational variant effect predictors (Fig. 3). Importantly, we excluded any predictors trained using 
supervised learning techniques, as well as meta-predictors that utilise the outputs of other predictors, 
thus including only predictors we labelled as unsupervised and empirical in our recent study10. This is 
due to the fact that predictors based upon supervised learning are likely to have been directly trained on 
some of the same mutations used in our evaluation dataset, making a fair comparison impossible10,50. A 
few predictors perform substantially better than FoldX, with the best performance seen for SIFT4G51, a 
modified version of the SIFT algorithm52. Interestingly, FoldX is the only stability predictor to outperform 
the BLOSUM62 substitution matrix53. On the other hand, all stability predictors performed better than a 
number of simple evolutionary constraint metrics. 

Discussion 

The first purpose of this study was to compare different computational stability predictors for their 
ability to identify pathogenic missense mutations. In this regard, FoldX is the winner, clearly 
outperforming the other ΔΔG prediction tools. It also has the advantage of being computationally 
undemanding, fairly easy to run, and flexible in its utilisation. Compared to other methods that employ 
physics-based terms, FoldX introduces a few unique energy terms into its potential, notably the 
theoretically derived entropy costs for fixing backbone and side chain positions54. However, the main 
reason behind its success is likely the parametrisation of the scoring function, resulting from the well 
optimised design of the training and validation mutant sets, which aimed to cover all possible residue 
structural environments55. Interestingly, while the form of the FoldX function, consisting of mostly 
physics-based energy terms, has not seen much change over the years, newer knowledge-based 
methods, which leverage statistics derived from the abundant sequence and structure information, 
demonstrate poorer and highly varied performance. However, it is important to note that the 
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performance of FoldX does not necessarily mean that it is the best predictor of experimental ΔΔG values 
or true destabilisation, as that is not what we are testing here. 

There are two factors likely to be contributing to the improvement in the identification of pathogenic 
mutations using absolute ΔΔG values. First, while most focus in the past has been on destabilising 
mutations, some pathogenic missense mutations are known to stabilise protein structure. As an 
example, the H101Q variant of chloride intracellular channel 2 (CLIC2) protein, which is thought to play a 
role in calcium ion signalling, leads to developmental disabilities, increased risk to epilepsy and heart 
failure56. The CLIC2 protein is soluble, but requires insertion into the membrane for its function, with a 
flexible loop connecting its domains being functionally implicated in a necessary conformational 
rearrangement. The histidine to glutamine substitution, which occurs in the flexible loop, was predicted 
to have an overall stabilising energetic effect due to conservation of weak hydrogen bonding, but also 
the removal of charge that the protonated histidine exerted on the structure56. The ΔΔG predictions 
were followed up by molecular dynamics simulations, which supported the previous conclusions by 
showing reduced flexibility and movement of the N-terminus, with functional assays also revealing 
reduced membrane integration of the CLIC2 protein in line with the rigidification hypothesis57. However, 
other interesting examples of negative effects of over-stabilisation exist in enzymes and protein 
complexes, manifesting through the activity-stability trade-off, rigidification of co-operative subunit 
movements, dysregulation of protein-protein interactions, and turnover46,47,58. 

In addition, it may be that some predictors are not as good at predicting the direction of the change in 
stability upon mutation. That is, they can predict structural perturbations that will be reflected in the 
magnitude of the ΔΔG value, but are less accurate in their prediction of whether this will be stabilising or 
destabilisng. For example, ENCoM and DynaMut predict nearly half of pathogenic missense mutations to 
be stabilising (41% and 44%, respectively), whereas FoldX predicts only 13%. While FoldX, Rosetta and 
PoPMuSiC are all driven by scoring functions consisting of a linear combination of physics- and statistics-
based energy terms, ENCoM is based on normal mode analysis, and relates the assessed entropy 
changes around equilibrium upon mutation to the state of free energy. DynaMut, a consensus method, 
integrates the output from ENCoM and several other predictors (Table 1) into its score45. The creators of 
ENCoM found that their method is less biased at predicting stabilising mutations59. From our analysis, 
we are unable to say anything about what proportion of pathogenic mutations are stabilising vs 
destabilising, or about which methods are better at predicting the direction of stability change, but this 
is clearly an issue that needs more attention in the future. 

The second purpose of our study was to try to understand how useful protein stability predictors are for 
the identification of pathogenic missense mutations. Here, the answer is less clear. While all methods 
show some utility for discriminating between pathogenic and benign variants, it is notable and perhaps 
surprising that all methods except FoldX performed worse than the simple BLOSUM62 substitution 
matrix, which suggests that these methods may be relatively limited utility for variant prioritisation. 
Even FoldX was unequivocally inferior to multiple variant effect predictors, suggesting that it should not 
be relied upon by itself for the identification of disease mutations. 

One reason for the limited success of stability predictors in the identification of disease mutations is that 
predictions of ΔΔG values are still far from perfect. For example, a number of studies have compared 
ΔΔG predictors, showing heterogeneous correlations with experimental values on the order of R=0.5 for 
many predictors12,13,60. However, a recent work has also revealed problems with the noise in 
experimental stability data used to benchmark the prediction methods, generally assessed through 
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correlation values61. Taking noise and data distribution limitations into account, it is estimated that with 
currently available experimental data the best ΔΔG predictor output correlations should be in the range 
0.7-0.8, while higher values would suggest overfitting61. As such, even assuming that ‘true’ ΔΔG values 
were perfectly correlated with mutation pathogenicity, we would still expect these computational 
predictors to misclassify many variants. 

The existence of alternate molecular mechanisms underlying pathogenic missense mutations is also 
likely to be a major contributor to the underperformance of stability predictors compared to other 
variant effect predictors. At the simplest level, our analysis does not consider intermolecular 
interactions. Thus, given that pathogenic mutations are known to often occur at protein interfaces and 
disrupt interactions62,63, the stability predictors would not be likely to identify these mutations in this 
study. We tried to minimise the effects of this by only considering crystal structures of monomeric 
proteins, but the existence of a monomeric crystal structure does not mean that a protein does not 
participate in interactions. Fortunately, FoldX can be easily applied to protein complex structures, so the 
effects of mutations on complex stability can be assessed. 

Pathogenic mutations that act via other mechanisms are also likely to be missed by stability predictors. 
For example, we have previously shown that dominant-negative mutations in ITPR164 and gain-of-
function mutations in PAX665 tend to be mild at a protein structural level. This is consistent with the 
simple fact that highly destabilising mutations would not be compatible with dominant-negative or gain-
of-function mechanisms. Similarly, hypomorphic mutations that cause only a partial loss of function are 
also likely to be less disruptive to protein structure than complete loss-of-function missense mutations66. 

These varying molecular mechanisms are all likely to be related to the large heterogeneity in predictions 
we observe for different proteins in Fig 2. Similarly, the specific molecular and cellular contexts of 
different proteins could also limit the utility of ΔΔG values for predicting disease mutation. For example, 
even weak perturbations in haploinsufficient proteins could lead to a deleterious phenotype. At the 
same time, intrinsically stable proteins, proteins that are overabundant or functionally redundant could 
tolerate perturbing variants without such high ΔΔG variants being associated with disease. Finally, in 
some cases, mildly destabilising mutations can unfold local regions, leading to proteasome mediated 
degradation of the whole protein32,34,67. 

There could be considerable room for improvement in ΔΔG predictors and their applicability to disease 
mutation identification. Recently emerged hybrid methods, such as VIPUR68 and SNPMuSiC69, show 
promise of moving in the right direction, as they assess protein stability changes upon mutation while 
attempting to increase the interpretability and accuracy by taking the molecular and cellular contexts 
into account. However, none of the mentioned hybrid methods employ FoldX, which, given our findings 
here, may be a good strategy. Rosetta is also promising due to its tremendous benefit demonstrated in 
protein design. It should be noted that the protocol used for Rosetta in our work utilised rigid backbone 
parameters, due to the computation costs and time constraints involved in allowing backbone flexibility. 
An accuracy-oriented Rosetta protocol, or the “cartesian_ddg” application in the Rosetta suite, which 
allows structure energy minimisation in Cartesian space, may lead to better performance35,70.   

The ambiguity of the relationship between protein stability and function is exacerbated by the biases of 
the various stability prediction methods, which arise in their training, like overrepresentation of 
destabilising variants, dependence on crystal resolution and residue replacement asymmetry. Having 
observed protein-specific performance heterogeneity, we suggest that in the future focus could be 
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shifted to identifying functional and structural properties of proteins, which could be most amenable to 
structure and stability-based prediction of mutation effects. Additionally, a recent work has showcased 
the use of homology models in structural analysis of missense mutation effects associated with disease, 
demonstrating utility that rivals experimentally derived structures, and thus expanding the possible 
resource pool that could be taken advantage of for structure-based disease prediction methods28. 
Further, our disease-associated mutations set likely contains variants causing disease through other 
mechanisms, that do not manifest through strong perturbation of the structure, making accurate 
evaluation impossible. To allow better stability-based predictors, it is important to have robust 
annotation of putative variant mechanisms, which is currently lacking due to non-existent experimental 
characterisation. We hope our results encourage new hybrid approaches, which make full use of the 
best available tools and resources to increase our ability to accurately prioritise putative disease 
mutations for further study, and elucidate the relationship between disease and stability changes. 

Methods 

Pathogenic and likely pathogenic missense mutations were downloaded from the ClinVar2 database on 
2019-04-17, while putatively benign variants were taken from gnomAD v2.11. Any ClinVar mutations 
were excluded from the gnomAD set. We searched for human protein-coding genes with at least 10 
ClinVar mutations occurring at residues present in a single high-resolution (< 2 Å) crystal structure of a 
protein that is monomeric in its first biological assembly in the Protein Data Bank. We excluded non-
monomeric structures due to the fact that several of the computational predictors can only take a single 
polypeptide chain into consideration. All mutations and corresponding structures and predictions are 
provided in Table S1. 

FoldX 5.071 was run locally using default settings. Importantly, the ‘BuildModel’ function was first used 
to repair all structures. Ten replicates were performed for each mutation to calculate the mean. 

The Rosetta suite (2019.14.60699 release build) was tested on structures first pre-minimised using the 
minimize_with_cst application and the following flags: -in:file:fullatom; -ignore_unrecognized_res -
fa_max_dis 9.0; -ddg::harmonic_ca_tether 0.5; -ddg::constraint_weight 1.0; -ddg::sc_min_only false. 
The ddg_monomer application was run according to a rigid backbone protocol with the following 
argument flags: -in:file:fullatom; -ddg:weight_file ref2015_soft; -ddg::iterations 50; -ddg::local_opt_only 
false; -ddg::min_cst false; -ddg::min true; -ddg::ramp_repulsive true ;-ignore_unrecognized_res. 

Predictions by ENCoM, DUET and SDM were extracted from the DynaMut results page, as it runs them 
as parts of its own scoring protocol. mCSM values from DynaMut coincided perfectly with values from 
the separate mCSM web server, and thus the server values were used, as DynaMut calculations yielded 
less results due to failing on more proteins.  

All other stability predictors were accessed through their online webservers with default settings by 
employing the Python RoboBrowser web scrapping library. Variant effect predictors were run in the 
same way as described in our recent benchmarking study10. 

Method performance was analysed in R using the PRROC and pROC packages, and AUC curve differences 
were statistically assessed through 10,000 bootstraps using the roc.test function of pROC. For DynaMut, 
I-Mutant 3.0, mCSM, SDM, SDM2 and DUET, the sign of the predicted stability score was inverted to 
match the convention of increased stability being denoted by a negative change in energy. 
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Figure 1: Using ΔΔG values from protein stability predictors to discriminate between pathogenic and 
putatively benign missense variants. Receiver operating characteristic (ROC) curves are plotted for each 
predictor, with the classification performance being presented next to its name in the form of area 
under the curve (AUC). A)  ROC curves for classification performance using native ΔΔG value scale for 
each predictor. B) ROC curves for predictor classification performance when using absolute ΔΔG values.  
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Figure 2: The heterogeneity of protein-specific missense variant classification performance. All the 
stability predictors exhibit very high degrees of heterogeneity in their protein-specific performance, as 
measured by the ROC AUC on a per-protein basis. Absolute ΔΔG values were used during protein-
specific tool assessment. The mean performance of each predictor is indicated by a red dot and 
numerically showcased below the plot. Boxes inside the violins illustrate the interquartile range (IQR) of 
the protein-specific performance points, with the whiskers measuring 1.5 IQR. Boxplot outliers are 
designated by black dots. 
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Figure 3: Performance comparison of protein stability and variant effect predictors for identifying 
pathogenic variants. Error bars indicate the 95% confidence interval of the ROC AUC as derived through 
bootstrapping. Stability predictors are shown in red, while other variant effect prediction methods are 
shown in green. Absolute ΔΔG values were used for stability-based methods.  
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Table 1. Protein stability predictors used in this study. 

Predictor Link Description 

DynaMut45 http://biosig.unimelb.edu.au/dynamut/ 

Consensus predictor which uses outputs from Bio3D, 
ENCoM and DUET to assess the impact of mutations on 

protein stability. Due to its nature, the predictor leverages 
multiple methodologies, such as normal mode analysis and 

statistical potentials.  

Ex
tr

ac
te

d 
fr

om
 D

yn
aM

ut
 ENCoM44 No longer available as a stand-alone server  

A prediction method based on normal mode analysis that 
relates changes in vibrational entropy upon mutation to 
changes in protein stability. Uses coarse-grained protein 

representations that accounts for residue properties. 

DUET41 http://biosig.unimelb.edu.au/duet/stability 
A machine-learned consensus predictor that leverages 
output from SDM and mCSM, integrated using support 

vector machines. 

SDM38 No longer available as a stand-alone server 
(succeeded by the SDM2 webserver) 

A knowledge-based energy potential, derived using 
evolutionary environment-specific residue substitution 

propensities. 

FoldX71  http://foldxsuite.crg.eu/ 

A full-atom force field consisting of physics-based 
interaction and entropic terms, parametrised on empirical 

training data. Allows to easily run predictions on multi-
chain assemblies. 

Rosetta35 https://www.rosettacommons.org/home  

Rosetta macromolecular modelling software suite, which 
includes algorithms for stability impact prediction. Driven 

by a scoring function that is a linear combination of 
statistical and empirical energy terms. Highly modular and 

customisable. 

mCSM40 http://biosig.unimelb.edu.au/mcsm/stability 

A machine-learned approach that evaluates structural 
signature changes imparted by mutations. Derives graph 
representation of physicochemical and geometric residue 

environment features. 

SDM239 http://marid.bioc.cam.ac.uk/sdm2/prediction 

Updated version of SDM, a knowledge-based potential, 
which uses environment-specific residue substitution 

tables, information on residue conformation and 
interactions, as well as packing density and residue depth, 

to assess protein stability changes. 

CUPSAT42 http://cupsat.tu-bs.de/ 

 Prediction method that uses a residue torsion angle 
potential and an environment-specific atom pair potential 

(an improvement upon amino acid potentials) to assess 
stability changes. 

PoPMuSiC36 https://soft.dezyme.com/query/create/pop 

A potential consisting of 13 statistical terms, volume 
difference between the wild-type and mutant residues, as 
well as the solvent accessibility of the original residue to 

differentiate core and surface substitutions.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.146068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.146068
http://creativecommons.org/licenses/by/4.0/


16 
 

MAESTRO43 https://pbwww.che.sbg.ac.at/maestro/web 

Combines 3 statistical scoring functions of solvent exposure 
and residue pair distances, as well as 6 protein properties, 

in a machine-learning framework to derive a consensus 
stability impact prediction. 

I-Mutant 3.037 http://gpcr2.biocomp.unibo.it/cgi/predictors/I-
Mutant3.0/I-Mutant3.0.cgi 

A machine-learning derived method that takes into account 
mutated residue spatial environment in terms of 

surrounding residue types and surface accessibility. 

 

 

 

Table 2. Best stability predictor classification thresholds according to ‘distance-to-corner’ metric. The 
performance metrics and their 95% confidence intervals were derived from 2000 bootstraps of the data. 

Predictor Absolute ΔΔG threshold False positive rate (95% 
confidence interval) 

True positive rate (95% 
confidence interval) 

FoldX  1.578 0.339–0.357 0.591–0.623 

Rosetta 1.886 0.390–0.409 0.572–0.605 

PoPMuSiC 0.795 0.417–0.437 0.584–0.618 

CUPSAT 1.455 0.415–0.434 0.549–0.583 

MAESTRO 0.321 0.418–0.437 0.544–0.578 

SDM 1.025 0.350–0.370 0.477–0.511 

SDM2 0.875 0.365–0.385 0.510–0.544 

mCSM 0.889 0.433–0.453 0.542–0.575 

DUET 0.803 0.400–0.421 0.548–0.582 

I-Mutant 3.0 0.915 0.405–0.424 0.545–0.578 

ENCoM 0.221 0.415–0.436 0.598–0.632 

DynaMut 0.476 0.446–0.467 0.570–0.605 
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