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 21 

Abstract: Transposable elements are an important element of the complex genomic ecosystem, 22 

proving to be both adaptive and deleterious - repressed by the piRNA system and fixed by 23 

selection. Transposable element insertion also appears to be bursty – either due to invasion of 24 

new transposable elements that are not yet repressed, de-repression due to instability of 25 

organismal defense systems, stress, or genetic variation in hosts. Here, we characterize the 26 

transposable element landscape in an important model Drosophila, D. serrata, and investigate 27 

variation in transposable element copy number between genotypes and in the population at large.  28 

We find that a subset of transposable elements are clearly related to elements annotated in D. 29 

melanogaster and D. simulans, suggesting they spread between species more recently than other 30 

transposable elements. We also find that transposable elements do proliferate in particular 31 

genotypes, and that often if an individual is host to a proliferating transposable element, it is host 32 

to more than one proliferating transposable element. In addition, if a transposable element is 33 

active in a genotype, it is often active in more than one genotype. This suggests  that there is an 34 

interaction between the host and the transposable element, such as a permissive genetic 35 

background and the presence of potentially active transposable element copies.  In natural 36 

populations an active transposable element and a permissive background would not be held in 37 

association as in inbred lines, suggesting the magnitude of the burst would be much lower. Yet 38 

many of the inbred lines have actively proliferating transposable elements suggesting this is an 39 

important mechanism by which transposable elements maintain themselves in populations.  40 

 41 
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Introduction 43 

Transposable elements (TEs) are short sequences of  DNA that multiply within genomes despite 44 

potential deleterious impacts to the host (McClintock 1950). TEs are widespread across the tree 45 

of life, often making up a significant portion of the genome (Piegu et al. 2006; Schnable et al. 46 

2009; Lee and Langley 2012). TEs also impose a severe mutational load on their hosts by 47 

producing insertions that disrupt functional sequences and mediate ectopic recombination 48 

(McGinnis et al. 1983; Levis et al. 1984; Lim 1988). TEs can spread through horizontal transfer 49 

between non-hybridizing species, allowing them to colonize new host genomes (Kidwell 1983; 50 

Kofler et al. 2015; Peccoud et al. 2017). For example, the spread of the P-element was 51 

documented in D. melanogaster from D. willistoni in the 1950’s, and its subsequent spread into 52 

D. simulans around 2010 (Daniels et al. 1990b; Kofler et al. 2015).  53 

 TEs have also been implicated in adaptation. In Drosophila, insertion of TEs has been 54 

linked to resistance to pesticides and viral infection (Wilson 1993; Daborn et al. 2002; 55 

Aminetzach et al. 2005; Magwire et al. 2011; Mateo et al. 2014). In ants and Capsella rubella, 56 

TEs  provide genetic diversity in invading populations which are generally depleted of variation, 57 

facilitating adaptation to novel environments (Schrader et al. 2019; Niu et al. 2019). In fission 58 

yeast, TE activity was increased in response to stress and TE insertions were associated with 59 

stress response genes, supporting the supposition that TEs provide a system to modify the 60 

genome in response to stress (Esnault et al. 2019). There is also evidence from vertebrates that 61 

TEs provide the raw material for assembling new protein architectures through capture of their 62 

transposase domains (Cosby et al. 2020). In summary there is extensive evidence that TEs 63 

provide genetic material for adaptation through a variety of mechanisms.  64 
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Despite the evidence for an adaptive role for TEs, most TE insertions are thought to be 65 

deleterious, and the host has a dedicated defense mechanism termed the PIWI-interacting 66 

(piRNA) system. piRNAs bind to PIWI-clade proteins, such as Argonaute 3 in D. melanogaster, 67 

and suppress transposon activity transcriptionally and post-transcriptionally (Brennecke et al. 68 

2007). The majority of these piRNAs originate from genomic regions which are enriched for TE 69 

fragments, termed piRNA clusters (Brennecke et al. 2007; Malone et al. 2009). These piRNA 70 

clusters are large, and there is at some evidence that insertion of a TE into a piRNA cluster is 71 

enough to initiate piRNA mediated silencing of the TE (Josse et al. 2007; Zanni et al. 2013). 72 

Therefore a newly invading TE would proliferate in the host until a copy jumps into a piRNA 73 

cluster, which then triggers piRNA silencing of the TE (Bergman et al. 2006; Malone and 74 

Hannon 2009; Zanni et al. 2013; Goriaux et al. 2014; Yamanaka et al. 2014; Ozata et al. 2019). 75 

These piRNA clusters are preferentially located in heterochromatic regions and usually have low 76 

recombination rates (Brennecke et al. 2007). This reduces the efficacy of purifying selection and 77 

may serve as ‘safe harbors’ for TEs to accumulate and develop into piRNA clusters (Brennecke 78 

et al. 2007; Kofler 2019; Zhang and Kelleher 2019). piRNA evolution is thought to be rapid 79 

enough that adaptation to a novel TE could occur within the lifetime of an individual (Khurana et 80 

al. 2011).  The transposition rate of TEs is also controlled by other mechanisms, including 81 

regulation of promotor activity, chromatin structure, and splicing (Guerreiro 2019).  In some 82 

cases the mechanism is unknown, such as the accumulation of copia in the genomes of inbred D. 83 

melanogaster, suggesting that there is still more to know about the regulation of TE copy number 84 

(Pasyukova 2004).  85 

This apparent contradiction, between the existence of a dedicated repression machinery, 86 

and an apparent important role for TEs in adaptation, also complicates inferences about the 87 
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tempo and mode of TE transposition. For a long time, active TEs variants were thought to be rare 88 

in natural populations (Kaplan et al. 1985; Ronsseray et al. 1991; Brookfield 1991; 1996; 89 

Nuzhdin et al. 1997).  Or, it was not active TEs which are rare but individuals with ‘permissive’ 90 

genetic backgrounds, such that TEs would remain inactive until encountering a permissive 91 

genetic background and then proliferate (Nuzhdin 2000). Either way, these models assumed a 92 

transposition – selection balance such that TEs proliferated at approximately the rate that they 93 

were removed by selection. Since then, TEs have been observed to undergo bursts of activity, 94 

which could occur for multiple reasons such as colonization, hybridization, and stress (Vieira et 95 

al. 1999; Romero-Soriano and Garcia Guerreiro 2016; Guerreiro 2019). These bursts are 96 

documented in Drosophila, rice, fish, and other systems (Vieira et al. 1999; Piegu et al. 2006; de 97 

Boer et al. 2007; Bourgeois and Boissinot 2019; Signor 2020). In most cases, transposition bursts 98 

in Drosophila include few individuals and TEs (Biémont et al. 1987; 1990; Nuzhdin et al. 1997; 99 

Yang et al. 2006). The underlying explanation for this burstiness is unclear, including the 100 

potential role of burstiness in adaptation. Bursts of transposition would be expected upon 101 

invasion of a new TE, prior to silencing by the piRNA system, however TEs also appear to 102 

become reactivated in response to stress, or potentially variation in the host suppression system.  103 

Recently an inbred panel of 110 genotypes was created for D. serrata, a member of the 104 

montium subgroup (Reddiex et al. 2018). The montium group contains 98 species and represents 105 

a significant fraction of known Drosophila species (Lemeunier et al. 1986; Reddiex et al. 2018). 106 

The D. serrata panel was sampled from a single large population within its endemic distribution 107 

in Australia (Reddiex et al. 2018). D. serrata is a model system for understanding latitudinal 108 

clines and the evolution of species boundaries (Blows 1993; Jenkins and Hoffmann 1999; Hallas 109 

et al. 2002; Hoffmann and Shirriffs 2002; Liefting et al. 2009). While the development of a panel 110 
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represents a new opportunity for genomic investigation in the group, such as GWAS, very little 111 

work has been done understanding the landscape of repetitive elements in this group. For 112 

example, D. serrata was found to contain a domesticated P-element, though no evidence of 113 

active P-elements was noted (Nouaud and Anxolabéhère 1997; Nouaud et al. 1999). Screens for 114 

the presence of the Drosophila hobo element in the montium group were mixed, and 115 

inconclusive for D. serrata (Daniels et al. 1990a). copia and 412 were not detected in D. serrata, 116 

though the DNA transposon Bari-1 was (Biémont and Cizeron 1999), and evidence for the 117 

presence of the mariner element is equivocal (Maruyama and Hartl 1991; Brunet et al. 1994). 118 

Here we will characterize the TE landscape in the Drosophila serrata Genetic Reference panel. 119 

This will have two goals: 1) To understand the TE content of D. serrata and its relationship to 120 

existing TE annotations 2) To understand variability in TE content between individuals in the 121 

population and how this relates to the tempo and mode of TE movement. This will provide the 122 

groundwork for understanding the role of TEs in evolution in D. serrata, as well as provide 123 

another investigation into the proliferation of TEs in individual genetic backgrounds.  124 

Methods 125 

Fly lines and data 126 

110 genotypes of D. serrata were collected from a wild population in Brisbane Australia in 2011 127 

and inbred for 20 generations (Reddiex et al. 2018). The libraries were sequenced using 100 bp 128 

paired-end reads on an Illumina Hi-seq 2000. The raw reads were downloaded from NCBI SRA 129 

PRJNA410238. 104 genotypes were used for analysis. 4 genotypes were excluded based on 130 

unusually high relatedness, as described in (Reddiex et al. 2018), while the remaining 2 131 

genotypes were excluded based on library quality issues.  132 

Classification of TEs 133 
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TEs are a diverse group, and the taxonomy of TEs is contentious and still developing (Wicker et 134 

al. 2007; Kapitonov and Jurka 2008; Platt et al. 2016). Here, we will rely only on broad 135 

classifications in Class I and Class II elements, including Helitrons and miniature inverted-repeat 136 

TEs (MITES).  Class I elements are retrotransposons which use an RNA intermediate in their 137 

‘copy and paste’ transposition. Class I can be divided into long terminal repeat (LTR) and those 138 

that lack LTRs (SINEs and LINEs) (Okada et al. 1997; Havecker et al. 2004; Wicker et al. 2007; 139 

Kramerov and Vassetzky 2011; 2019). However, here we will only focus on LTRs in Class I, as 140 

benchmarking of software designed to detect non-LTRs is unreliable (Ou et al. 2019).  Within 141 

the LTRs, there are two major superfamilies – copia and gypsy – which have distinct terminal 142 

sequences (Marlor et al. 1986). Class II elements are known as DNA transposons, or terminal 143 

inverted repeat transposons  (TIR), and use DNA intermediates in a ‘cut and paste’ mechanism 144 

of transposition  (McClintock 1984). Among the TIRs are also non-autonomous small DNA 145 

transposons such as miniature inverted-repeat TEs (MITES) (Fattash et al. 2013; Makałowski et 146 

al. 2019). These can belong to any of the described TIR superfamilies, but they lack coding 147 

potential and rely on other autonomous DNA transposons for transposition. Lastly, the Helitron 148 

TIR was discovered in 2001 and has a different mechanism of transposition, referred to as a 149 

rolling circle, which frequently captures nearby genes or portions of them in the process 150 

(Kapitonov and Jurka 2001; Kapitonov and Jurka 2007). 151 

Mapping and copy number estimation 152 

The D. serrata 1.0 assembly available from the Chenoweth lab was used for genomic mapping 153 

and TE identification (http://www.chenowethlab.org/resources.html) (Allen et al. 2017). The TE 154 

library was constructed using the Extensive de-novo TE Annotator pipeline (EDTA) (Ou et al. 155 

2019). This pipeline is intended to create a high quality non-redundant TE library based off of a 156 
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reference genome. Reads from the D. serrata reference panel were mapped to the genome and 157 

the TE library using bwa mem version 0.7.15 (Figure 1; Li 2015). Bam files were sorted and 158 

indexed with samtools v.1.9 and optical duplicates were removed using picard MarkDuplicates 159 

(http://picard.sourceforge.net) (Li et al. 2009; McKenna et al. 2010).  Reads with a mapping 160 

quality of below 15 were removed (this removes reads which map equally well to more than one 161 

location). Using read coverage to determine copy number has been compared to other methods 162 

and is neither permissive nor conservative (Srivastav and Kelleher 2017). TE copy number was 163 

estimated using the average counts of reads mapping to the TE sequences and the genome with 164 

bedtools counts (Quinlan and Hall 2010; Hill et al. 2015). Then, copy number of the TEs could 165 

be normalized using the average counts from a 7 MB contig from D. serrata which corresponds 166 

to a portion of D. melanogaster 3L. This is one of the largest contigs in the D. serrata assembly.   167 

SNPs and summary statistics 168 

We called SNPs within the TEs using GATK Haplotypecaller (McKenna et al. 2010). SNPs were 169 

not filtered for missing calls given that not all individuals will share insertions. However, they 170 

were filtered for a coverage of at least 4 reads to be called in an individual. The site frequency 171 

spectrum (SFS) of SNPs in the TEs was estimated with VCFtools as the frequency of each SNP 172 

in the population, and then the frequency of the SNP frequencies was estimated in R (Danecek et 173 

al. 2011). The SFS was then folded in R, replacing any frequency i over 0.5 with 1-i. This was 174 

done because we could not determine the derived allele. 175 

Relationship to TEs in the EMBL TE library 176 

The TE library from D. serrata was compared to TEs from the EMBL library using DFAM 177 

(Hubley et al. 2016). Hits were required to have a bit score of greater than 350. Multiple hits to 178 

the same TE were considered as a single hit, and if more than one EMBL TE was listed the best 179 
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bit score was retained. In general there were no TEs from the D. serrata library that had similar 180 

bit scores between different EMBL TEs.  181 

Relationship between TEs annotated by EDTA 182 

Potentially related TEs from the EDTA library were identified using ncbi blastn 2.8, with the 183 

minimum criteria being an alignment of greater than 400 bp for LTRs and TIRs, and 200 bp for 184 

MITEs (Camacho et al. 2009). The sequences were aligned and oriented using the R package 185 

DECIPHER (Wright 2016). The fasta alignments were converted to nexus format, and indels 186 

were coded as binary characters, using the perl script 2matrix (Salinas and Little 2014). Trees 187 

were made if there were four or more related TEs using MrBayes 3.2.7 (Ronquist et al. 2012). 188 

The trees were built using a GTR substitution model and gamma distributed rate variation across 189 

sites. The markov chain monte carlo chains were run until the standard deviation of split 190 

frequencies was below .01. The consensus trees were generated using sumt conformat=simple. 191 

The resulting trees were displayed with the R package ape (Paradis et al. 2004).  192 

 193 
Results 194 

  195 

EDTA 196 
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EDTA identified 676 TEs in the D. serrata reference genome. The sequences of these TEs are 197 

available at https://github.com/signor-molevol/serrata_transposable. The classification of the TEs 198 

into superfamilies is broadly correct, and in many cases there is no clear relationship to an 199 

existing TE. However, some errors are evident, for example, element 444 is classified as copia, 200 

but aligns quite well with the 297 element in D. melanogaster, which is a member of the 17.6 201 

clade/gypsy superfamily. In addition, some unknown elements such as 69 align well with 202 

existing D. melanogaster 203 

annotations, in this case 17.6. In 204 

all 6 elements that were classified 205 

as unknown or copia align well 206 

with members of the gypsy 207 

superfamily from D. 208 

melanogaster. Therefore 209 

classification below the 210 

superfamily level is generally 211 

ambiguous, though MITEs, 212 

Helitrons, and TIRs are 213 

distinguishable. This may be due 214 

to deletion of canonical sequences, 215 

nested insertions, or other 216 

ambiguities of TEs. 217 

Population frequency of TEs  218 

Figure 1: A. Mean and variance of copy number as well as folded 
SFS in transposable elements of Australian D. serrata. On the top, 
the majority of identified transposable elements have low mean copy 
number and variance within the population. The top three most 
variable elements are excluded from all graphs so as not to compress 
the y-axis. B. The 52 most variable transposable elements (top) with 
variance greater than 50 versus all of the transposable elements 
(bottom). Overall the number of LTRs represent fewer of the total 
identified TEs, however of those that are highly variable they are 
equally likely to be LTRs or TIRs.   
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An average of 17% of reads from individual D. serrata lines mapped to TE sequences. The 219 

average number of TEs per genome in this population of D. serrata is 19,909, however almost 220 

50% of that total (9,036) are from a single repetitive uncharacterized sequence (Supplemental 221 

File 1). This  sequence is classified as an LTR, though it does not share sequence similarity to 222 

other well characterized LTRs. This element shares a 36 bp segment with D. melanogaster INE-223 

1, and may be misclassified given that INE-1s are generally very abundant. The next closest in 224 

copy number is a TIR with 541 copies, thus 225 

this is a significant outlier. 6 TEs identified in 226 

the reference are likely not present in this 227 

population. 2 of these are present as partial 228 

copies in a subset of individuals. Overall 229 

among the elements identified by EDTA 230 

approximately twice as many are TIRs 231 

compared to LTRs (Figure 1). However, the 232 

majority of the identified TEs have low copy 233 

number and variance. 390 of the identified 234 

elements have an average copy number of 235 

less than 3, and all but 2 of those have a 236 

variance of less than 1 (Figure 1, 237 

Supplemental file 1; the other two have 238 

variances of 3 and 4). Of those remaining, 239 

148 have a variance of 3 or less (Figure 1).  240 

Therefore the vast majority of TEs in this 241 

Figure 2: A. A list of transposable elements with variance of 
at least 2 and either no SNPs or and SFS of 0.05 or less. B. 
Variation in copy number in the population for two 
transposable elements (top) and the folded SFS (bottom).  
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population vary little in copy number (Figure 1). However, among those that do vary 242 

considerably, 52 elements have a variance in the population greater than 50. These represent a 243 

very different subset of TEs than those identified overall – an approximately equal number are 244 

LTRs and TIRs (Figure 1). This suggests that LTRs are more active in the population, which is 245 

consistent with other work on transposable elements that found that LTR insertions were 246 

generally of more recent origin than TIRs (Kofler et al. 2015). 247 

Folded SFS 248 

Overall ~6% of SNPs in TEs have a frequency of higher than 60% in this population. Rather than 249 

determine the ancestral state by adding an outgroup, we chose to fold the allele frequency 250 

spectrum. Overall the folded SFS is low (average of 0.13), however SNPs that are not in TEs 251 

also have excess of low frequency variants genome-wide according to genome-wide Tajima’s D 252 

(Reddiex et al. 2018). There is not a clear relationship between the folded SFS and 253 

mean/variance (Figure 1A). A folded SFS of greater than 0.2 is associated with lower copy 254 

number and variance overall (Figure 1A). 16 elements have a folded SFS of 0.3 or higher, and 255 

the majority of these have low variance in copy number (2 or less) suggesting that they are not 256 

active and have been diverging. There are two obvious types of TEs that have likely been 257 

spreading recently in the population as a whole – those with no SNPs or low SFS, and  258 

with high variance and/or copy number.  5 TEs have no SNPs and therefore no folded SFS can 259 

be calculated (217, 411, 610, 624, 638, Table 1, Figure 2). This includes 610, a gypsy element 260 

which aligns to the internal sequence of Dsim\ninja suggesting it is distantly related, but more 261 

recently moved into D. serrata than TEs with no obvious relatives in related species. As with the 262 

population of TEs as a whole, most TEs with a low SFS (lower than .05) also have low copy 263 

number (less than 3) and low variance (less than 1). Of these 71 elements, 4 are an exception and 264 
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have a low SFS, higher copy number, and higher variance. This includes a MITE element and 265 

three TIRs. A lack of SNPs, or low SFS, along with higher copy number and variance,  suggests 266 

that the TEs have been spreading recently in the population (Table 1). 267 

 However, TEs may also have been in the population for long enough to accumulate 268 

SNPs, but experience bursts of activity. Among the 52 TEs with a variance higher than 50,  17 269 

TEs have an SFS of greater than 0.2 suggesting they have been in the population for longer but 270 

have had active transposition of divergent copies (Supplemental Table 1). This group consists of 271 

15 LTRs, one MITE, and one TIR. This could be due to the presence of older copies 272 

accumulating SNPs compared to younger active copies, or divergence between different active 273 

copies in the population, or both.  274 

  275 

 276 

Outliers in individual 277 

genotypes 278 

TEs tend to proliferate in 279 

particular inbred genotypes. 280 

Out of 104 genotypes, 73 have 281 

no TEs with a number of 282 

insertions that classify them as 283 

outliers. 12 genotypes contain a single TE with a copy number that is considered an outlier, and 284 

the remaining 19 contain 2 or more outliers. This includes 2 genotypes with 13 and 8 TEs with a 285 

copy number that is considered an outlier. This also tends to group by TE, as only 36 TEs have at 286 

least 1 genotype in which they are an outlier, however for 18 of these this is only in 1 genotype. 287 

Figure 3: An example of genotypes with an accumulation of 
transposable elements. In both panels the population average 
is 20-30, while individual genotypes have in excess of 150 
copies. 
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For 5 genotypes, 5 TEs are shared as being outliers, with an additional 2 genotypes which share 288 

outliers for 4 of the 5. Many of these outliers are large, for example for element 512 the majority 289 

of the population has 20-30 copies, while a single individual has > 200 (Figure 3).  290 

Relationship to existing TE annotations 291 

123 of the 676 identified elements have a well-292 

supported relationship to existing DFAM TE 293 

annotations (Figure 4). This includes, for example, 294 

27 elements that are related to the D. melanogaster 295 

Max-Element and 10 elements that are related to the 296 

D. simulans ninja element. One of these is also 297 

among the most variable TEs (variance greater than 298 

50), and is most closely related to the Circe element 299 

(Osvaldo family). These are likely to be TEs that 300 

moved between species more recently, and they are 301 

almost exclusively LTRs. The exception being two TIRs from the hobo family, one Helitron 302 

from D. melanogaster, and two Helitrons most closely related to elements from Heliconius. No 303 

evidence of P-elements were found in the population of identified TEs. In addition, jockey 304 

elements (non-LTR retrotransposons) are not intended to be identified as a part of this pipeline 305 

but do appear to be the identity of two transposons. The overall phylogeny of the TEs is not what 306 

we wish to emphasize here, as the structure of TE classification changes frequently (for example 307 

whether something is a clade or a family, etc.). In Drosophila there is evidence that gypsy 308 

elements are infectious, as they can be transferred among strains through exposure or 309 

Figure 4: The classification of transposable 
elements into clades which could be tied to 
annotated D. melanogaster elements. The 
two Helitron elements potentially related to 
those from Heliconius are not included. 
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microinjection (Song et al. 1994; Kim et al. 1994). This makes them more likely to spread 310 

between species.  311 

 312 

Relationship between TEs annotated by EDTA 313 

40 groups of 170 TEs annotated by EDTA are clearly related to one another (Supplemental File 314 

3). For example, 8 TEs (52, 60, 276, 346, 367,  424, 539, 601) share sequence similarity for the 315 

entirety of their length, but are separated by 39 deletions spread across the TE. In the largest 316 

related group of TEs, 23, most of the versions of this TE have low copy number and variance 317 

(Figure 4A, average copy number 2.3, average variance < 1). However, two members of the 318 

group are likely still active and have relatively high copy number  and variance (376 and 672, 319 

copy number 27, 79; variance 10, 102). Note that the more active TEs do not group together 320 

(shown in bold), however because TEs cannot be assumed to follow a standard substitution 321 

model the branch lengths are not meaningful (Figure 4A). In another case, 3 members of the 322 

group are more distantly related, while 7 members are more closely related and form 2 clear 323 

Figure 5: Relatedness between groups of TEs annotated by EDTA. Posterior probabilities of each division is 
shown, however branch lengths are not meaningful given that TEs do not follow a standard substitution model. 
This does not represent only the degradation of old copies of TEs, different members of the TE families continue 
to likely be active, shown in bold.  
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groups of origin (Figure 4B). Yet again, those which are active in the population, as evidenced 324 

by higher copy number and variance, are not the most closely related (Figure 4B, shown in bold) 325 

The distance between TEs cannot be understand in the same way as genomic DNA, 326 

however in some cases the TEs are clearly related by a simple tree of SNPs and indels (as 327 

above), and in others it is more complicated. For example, in a group of 4 TEs (237, 225, 358, 328 

468) the long terminal sequence of the TEs is nearly identical and allies them with Max 329 

elements, however member 468 appears to also carry an unshared insertion of a portion of a 297 330 

element, among other complicated indels. 468 has a copy number of 5, indicating it continued to 331 

be active while carrying a portion of a 297 element, though it has low variance between 332 

individuals. Interestingly, in another case these relationships appear to describe the origin of 3 333 

MITEs (399, 405, 472) from a parental TIR (660). The parental TIR has a high copy number in 334 

the population, with an average of 286 and a variance of more than 6,000. This is not intended to 335 

be an exhaustive accounting of relationships between these TEs, for example at some point all 336 

members of the roo clade shared an ancestor. Rather, this is intended to describe recent 337 

divergence between members of a group within this species.  338 

 339 
Discussion 340 

There is an abundance of evidence from inbred lines that genotypes can vary considerably in 341 

copy number. The question remains – is it due to differences in the permissiveness of the genetic 342 

background, or inheritance of active TEs that segregate at low frequency in the population? In 343 

the former scenario, genes segregating in natural populations modify transcription and the rate of 344 

transposition of specific TEs, including polymorphisms in genes such as Argonaute 3 and 345 

variation in the integration of TEs into piRNA clusters (Birchler et al. 1989; Pélisson et al. 1994; 346 

Csink et al. 1994; Lee and Langley 2010; 2012; Zhang and Kelleher 2019). Indeed, variation in 347 
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the integration of TEs into piRNA clusters appears to be quite common, as Zhang and Kelleher 348 

(2019) documented 80 unique independent insertions of P-elements into piRNA clusters in the 349 

Drosophila Genetic Reference Panel (Mackay et al. 2012).  If laboratory lines differ in these 350 

alleles, this can cause between line variability in transposition rates. In the latter scenario, 351 

different lines may have inherited copies of TEs with differences in the propensity to transpose 352 

(Ronsseray et al. 1991; Kim et al. 1994; Nuzhdin et al. 1997; Nuzhdin 2000).   353 

 While we cannot measure the likelihood of individual genotypes inheriting multiple 354 

active copies of TEs while fellow members of the population inherit none, the fact that multiple 355 

TEs are proliferating in individual genotypes supports the idea that these individuals have 356 

polymorphisms in genes or other repressive structures that are more permissive to TE 357 

transposition. Were the genotypes with clear TE proliferation different for every TE family this 358 

would not support either scenario, however it does seem more likely that these genotypes have a 359 

polymorphism which fails to repress more than one type of TE, rather than that they 360 

preferentially inherited multiple active copies. We cannot at this time directly look for 361 

polymorphisms in repressive genes or complexes. Currently we are unable to establish clear 362 

homologs of the D. melanogaster genes known to affect piRNA silencing in D. serrata, but as 363 

the D. serrata assembly improves this may be possible. In addition, the methods developed 364 

recently be Zhang and Kelleher (2019) to measure differences in piRNA cluster integration using 365 

small RNA libraries shows promise for determining whether we can detect polymorphisms in 366 

these individual genotypes for repressive alleles.  367 

 However, the fact that the TEs which are proliferating do not appear to be a unique 368 

population suggests that there is interaction between potentially active TEs and genetic 369 

background – not all TEs are potentially active in all potentially permissive backgrounds. This 370 
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suggests that the transposition rate of TEs in natural populations will be complex, depending 371 

upon differences in the inherited TE population and variation in the host genome. There is 372 

already a lot of evidence that there are multiple pathways and factors that control transposition in 373 

Drosophila. For example, in D. melanogaster strain iso-1 the piRNA pathway produces normal 374 

hobo and I-element specific piRNAs, yet there is a high level of hobo and I-element transposition 375 

(Zakharenko et al. 2007; Shpiz et al. 2014). In D. simulans, there is large amounts of variation in 376 

piRNA pathway genes (Fablet et al. 2014). Therefore there is abundant opportunity for variation 377 

in the host ability to suppress a TE and the ability of the TE to transpose. 378 

Since the discovery of the piRNA repression system for TEs, the lifecycle of a TE in a 379 

host has been envisioned as three steps. First, the TE invades a novel population or species and 380 

amplifies unencumbered. TE proliferation is then slowed by segregating insertions in piRNA 381 

clusters, and finally inactivated by fixation of piRNA cluster insertions (Kofler 2019). However, 382 

clearly bursts, or activity, continues at some level within the population as many of the 383 

potentially active TEs in D. serrata have a high SFS. This indicates that the TEs have been in the 384 

population long enough to accumulate SNPs, potentially including copies with different SNPs 385 

continuing to proliferate in the population. It is true that suppression by piRNA cluster insertion 386 

may be unstable, but exactly why that is or how important it is for TE survival is not clear.   387 

 The accumulation of TEs in laboratory lines should be associated with fitness declines, 388 

and be eliminated by selection (Nuzhdin et al. 1997). However, accumulation of TE insertions in 389 

individual genotypes, or overall, in genotypes kept in small mass cultures appears to be the rule 390 

rather than the exception (Pasyukova 2004; Rahman et al. 2015; Signor 2020). Muller’s rachet 391 

may be responsible for the accumulation of insertions, even if they are deleterious (Muller 1932; 392 

1964). What is clear is that TEs are important sources of spontaneous mutations in Drosophila, 393 
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and that in laboratory lines, over time, they may make up a large fraction of the total number of 394 

mutations in particular genotypes.  395 
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