




Figure 11: NeuroCAAS design diagram. NeuroCAAS is built with an Infrastructure-as-Code design, meaning
that we first write a source repo (top) specifying all of the actual resources we will use to carry out data processing
(bottom). The source repo (top) contains three main types of code: User Profiles, specifying relevant user data;
Analysis Blueprints, describing individual analyses on NeuroCAAS, and Protocols, giving rules that describe
NeuroCAAS job manager function. Each user and each analysis in NeuroCAAS has a dedicated code document,
as specified by indices (u, b). All parts of the source repo can independently be deployed, automatically provisioning
and configuring the infrastructure resources specified therein. Deployment comprehensively generates the resources
necessary to run analyses on NeuroCAAS. Notably, infrastructure stacks (bottom right) are not persistent,
but rather are instantiated every time users request an analysis job, specified as a combination of datasets and
parameter configurations (bottom left). Job managers deploy one infrastructure stack for each requested job, as
specified by the index j. The contrib and interface repo assist in the deployment of resources from the source
repo, and and the management of resulting resources. Section numbers refer to relevant parts of the main text.

5 Materials and methods528

5.1 NeuroCAAS architecture specifics529

The software supporting the NeuroCAAS platform has been divided into three separate Github repositories. The530

first, https://github.com/cunningham-lab/neurocaas is the main repository that hosts the Infrastructure-as-531

Code implementation of NeuroCAAS. We will refer to this repository as the source repo throughout this section.532

The source repo is supported by two additional repositories: https://github.com/cunningham-lab/neurocaas_533

contrib hosts contribution tools to assist in the development and creation of new analyses on NeuroCAAS,534

and https://github.com/jjhbriggs/neurocaas_frontend hosts the website interface to NeuroCAAS. We535

will refer to these as the contrib repo and the interface repo respectively throughout this section. We discuss the536

relationship between these repositories in the following section, and in Figure 11. At the time of submission, we have537

released all three of these repositories (version 1.0.1 for the source and contrib repo, version 1.0.0 for the interface538

repo). All releases are documented on Zenodo, with DOIs 10.5281/zenodo.4885097, 10.5281/zenodo.4884713, and539

10.5281/zenodo.4851187, respectively.540
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5.1.1 Source Repo541

The Platform section gives an overview of how NeuroCAAS encodes individual analyses into blueprints, and542

deploys them into full infrastructure stacks, following the principle of Infrastructure-as-Code (IaC). This section543

presents blueprints in more depth and show how the whole NeuroCAAS platform can be managed through544

IaC, encoding features such as user data storage, credentials, and logging infrastructure in code documents anal-545

ogous to analysis blueprints as well. All of these code documents, together with code to deploy them, make546

up NeuroCAAS’s source repo. There is a one-to-one correspondence between NeuroCAAS’s source repo and547

infrastructure components: deploying the source repo provides total coverage of all the infrastructure needed to548

analyze data on NeuroCAAS (Figure 11, bottom).549

Within the source repo, each NeuroCAAS blueprint (see Figure 14 for an example) is formatted as a JSON550

document with predefined fields. The expected values for most of these fields identify a particular cloud resource,551

such as the ID for an immutable analysis environment, or a hardware identifier to specify an instance within552

the resource bank (Lambda.LambdaConfig.AMI and Lambda.LambdaConfig.INSTANCE TYPE in Figure 14,553

respectively). Upon deployment, these fields determine the creation of certain cloud resources: AWS EC2 Amazon554

Machine Images in the case of IAE IDs, and AWS EC2 Instances in the case of hardware identifiers. One notable555

exception is the protocol specifying behavior of a corresponding NeuroCAAS job manager (Lambda.CodeUri556

and Lambda.Handler in Figure 14). Instead of identifying a particular cloud resource, each blueprint’s protocol is557

a python module within the source repo that contains functions to execute tasks on the cloud in response to user558

input. The ability to specify protocols in python allows NeuroCAAS to support the complex workflows shown559

in Figure 8. Job managers are deployed from these protocols as AWS Lambda functions that execute the protocol560

code for a particular analysis whenever users submit data and parameters.561

Another major aspect of NeuroCAAS’s source repo that is not discussed in the Platform section is the562

management of individual users. NeuroCAAS applies the same IaC principles to user creation and management563

as it does to individual analyses. To add a new user to the platform, NeuroCAAS first creates a corresponding564

user profile in the source repo (Figure 11, right), that specifies user budgets, creates private data storage space,565

generates their (encrypted) security credentials, and identifies other users who they collaborate with. Users566

resources are created using the AWS Identity and Accesss Management (IAM) service.567

5.1.2 Contrib and Interface Repos568

Given only the NeuroCAAS source repo, analyses can be hosted on the NeuroCAAS platform and new users569

can be added to the platform simply by deploying the relevant code documents. However, interacting directly with570

resources provided by the NeuroCAAS source repo can be challenging for both analysis users and developers. For571

developers, the steps required to fill in a new analysis blueprint may not be clear, and the scripting steps necessary572

within an IAE to retrieve user data and parameters requires knowledge of specific resources on the Amazon Web573

Services cloud. For users, the NeuroCAAS source repo on its own does not support an intuitive interface or574

analysis documentation, requiring users to interact with NeuroCAAS through generic cloud storage browsers,575

forcing them to engage in tedious tasks like navigating file storage and downloading logs before examining them.576

Collectively, these tasks lower the accessibility that is a key part of NeuroCAAS’s intended design. To handle577

these challenges, we created two additional code repositories, the NeuroCAAS contrib repo and interface repo,578

for developers and users, respectively.579

The NeuroCAAS contrib repo supports a command line tool and python code to streamline the process of580

developing and creating new NeuroCAAS analyses. During the development process, the NeuroCAAS contrib581

repo can create infrastructure stacks independently of input-triggered job managers for a limited time, allowing582

developers to build and test IAEs interactively on powerful hardware instances (Figure 11, bottom right), and583

populate the analysis blueprint as they go. Then, when a new analysis is ready to be used on NeuroCAAS, the584

NeuroCAAS contrib repo automatically versions the entire source repository after integrating and deploying the585

new blueprint, generating a unique analysis version ID. All NeuroCAAS analyses can be updated only by directly586

editing blueprints, and blueprints are assigned a new analysis version ID every time that they are updated. By587

enforcing a tight correspondence between blueprints and analyses, we ensured the reproducibility of all analyses588

conducted via NeuroCAAS, regardless of ongoing updates to the underlying infrastructure or algorithm (Figure589

11, top right). With an analysis version ID, it is possible to replicate results that were generated with older versions590

of some analysis algorithm, making this a particularly useful feature for users processing data with an analysis591
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NeuroCAAS Benchmarked Analyses

Analysis
Name

Storage Memory GPU CPU
count

OS Job
Monitor

Resource
Usage

Version
Control

Packages

CaImAn 500 GB
SSD

275 GB N/A 64
vCPU1

Ubuntu
16.04
(Linux
HVM)

stdout CPU
Utiliza-
tion

Github pip
require-
ments
file

DeepLabCut 200 GB
SSD

65 GB Nvidia
Tesla
K80

4
vCPU2

Ubuntu
16.04
(Linux
HVM)

stdout CPU
Utiliza-
tion

Github conda
environ-
ment
file

PMD 75 GB
SSD

275 GB N/A 64
vCPU1

Ubuntu
18.04
(Linux
HVM)

stdout CPU
Utiliza-
tion

Github Conda
Package

LocaNMF 75 GB
SSD

65 GB Nvidia
Tesla
V100

8
vCPU3

Ubuntu
16.04
(Linux
HVM)

stdout CPU
Utiliza-
tion

Github Conda
Package

1 Intel Xeon Platinum 8000 series (Skylake-SP): https://aws.amazon.com/ec2/instance-types/m5/
2 Intel Broadwell (AWS): https://aws.amazon.com/blogs/aws/new-p2-instance-type-for-amazon-ec2-up-to-

16-gpus/
3 Intel Xeon E5-2686v4: https://aws.amazon.com/blogs/aws/new-amazon-ec2-instances-with-up-to-8-

nvidia-tesla-v100-gpus-p3/
Table 2: Infrastructure details for benchmarked algorithms. Job Monitor refers to the mechanisms used to track
the status of ongoing jobs. Resource Usage refers to the hardware diagnostics tracked by NeuroCAAS. Version
Control refers to the version control mechanisms used to maintain fidelity of core analysis code. Packages refers
to the mechanisms used to handle analysis dependencies.

that is still actively being developed. The NeuroCAAS contrib repo contains a detailed guide for developers to592

get started with NeuroCAAS.593

The NeuroCAAS interface repo supports the website interface to NeuroCAAS, hosted at www.neurocaas.594

org. In addition to providing documentation and a simpler user interface, (Figure 11, bottom left) the interface595

repo automatically creates and deploys user profiles when users sign up, significantly increasing the potential scale596

of the platform (Figure 11, top left). This website based user credentialing system can be referenced by other user597

interfaces as well, as is done in https://github.com/jcouto/wfield. If users wish to share analysis access and598

data with other users, they can also use the website to create and request unique ”group codes” at sign up, that599

they can use to invite other users into the same group. Doing so allows them to easily share analysis access with600

others.601

5.2 Novel Analyses602

For each novel analysis, we provide some details on its component infrastructure stacks, as well as details on603

relevant development outside the NeuroCAAS framework we have already presented.604

5.2.1 Widefield Imaging605

The Widefield Calcium Imaging analysis that we present involves two independent infrastructure stacks, with606

the second taking as input the results of the first. The first infrastructure stack performs motion correction,607

denoising, compression, and hemodynamic correction, and is performed on an instance with 64 virtual cores608

(further infrastructure details are identical to the ”PMD” row of Table 2). The second infrastructure stack609

performs demixing of denoised, corrected widefield imaging data, and is performed on an instance with a Tesla610

V100 GPU (further infrastructure details are identical to the ”LocaNMF” row of Table 2). In addition to these611
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NeuroCAAS Local Simulation

Analysis
Name

Storage Memory GPU CPU
count

OS Job
Monitor

Resource
Usage

Version
Control

Packages

CaImAn 500 GB
SSD

17 GB N/A 4
vCPU1

Ubuntu
16.04
(Linux
HVM)

stdout None github Pip
require-
ments
file

DeepLabCut 200 GB
SSD

65 GB Nvidia
Tesla
K80

4
vCPU2

Ubuntu
16.04
(Linux
HVM)

stdout None github Conda
Package

PMD 75 GB
SSD

131 GB N/A 16
vCPU3

Ubuntu
18.04
(Linux
HVM)

stdout None Github Conda
Package

LocaNMF 75 GB
SSD

65 GB Nvidia
Tesla
K80

4
vCPU2

Ubuntu
16.04
(Linux
HVM)

stdout None github Conda
Package

1 AMD EPYC 7000 Series: https://aws.amazon.com/ec2/instance-types/m5/
2 Intel Broadwell (AWS): https://aws.amazon.com/blogs/aws/new-p2-instance-type-for-amazon-ec2-up-to-

16-gpus/
3 Intel Xeon E5 Broadwell Processors: https://aws.amazon.com/blogs/aws/new-next-generation-r4-

memory-optimized-ec2-instances/
Table 3: Details of infrastructure used to simulate local processing. The column labels mirror those in Table 2

.

Pricing List

Resource Metrics Rate

EC2 (Compute) Time Hardware Depen-
dent, Fluctuates

Lambda
(Workflow)1

Data Size × Time $1.66667 × 1e−5
per GB-second

S3 (Data Transfer
Out)2

Data Size $0.09 per GB

1 AWS Lambda is also priced for number of requests, but
this is a negligible cost for a single analysis run.

2 Data Transfer is only priced out of Amazon Web Services,
i.e. in returning results to the end user.
Table 4: Pricing details for implemented algorithms

two infrastructure stacks, we developed a custom graphical user interface (available for download at https:612

//github.com/jcouto/wfield). This user interface integrates with the credentials generated for users on the613

NeuroCAAS website, allowing users who have signed up via the website to use the GUI with an existing account.614

The GUI hosts a number of initialization steps on the user’s local machine, involving selection of parameters615

and alignment of data to landmarks on a given brain atlas. The GUI is also able to upload data directly to616

NeuroCAAS cloud storage, submit jobs, and monitor their progress. Next, the GUI is able to detect when the617

first step of processing is completed, and submits the relevant results files as input to the second step, mimicking618

the steps a user would take manually to manage this process. Finally, when all processing is complete the GUI619

retrieves analysis results back to the user’s local machine. For more details on implementation of each analysis620

step, please see Couto et al. (2020).621
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Dataset Details

Analysis Format Size (Small) Dim (Small) Size
(Medium)

Dim
(Medium)

Size (Large) Dim (Large)

CaImAn zipped
tiff

8.39GB 8000×512×
5121

35.84GB 41000 ×
458× 4771

78.70GB 90000 ×
463× 4722

DeepLabCut mpeg 5× 214.8MB 5 × 36000 ×
340× 4203

10×214.8MB 10×36000×
340× 4203

15×214.8MB 15×36000×
340× 4203

PMD +
LocaNMF

numpy
array

1× 20.1GB [500× 600×
1697, 1697 ×
8979]4

3× 20.1GB [500× 600×
1697, 1697 ×
8979];
[500× 600×
1652, 1652 ×
9000];
[500× 600×
2298, 2298 ×
8988]4

5× 20.1GB [500× 600×
1697, 1697 ×
8979];
[500× 600×
1652, 1652 ×
9000];
[500× 600×
2298, 2298 ×
8988];
[500× 600×
2304, 2304 ×
8992];
[500× 600×
1910, 1910×
8952]4

1 [Time × X × Y] at 7 hz Giovannucci et al. (2019)
2 [Time × X × Y] at 30 hz Giovannucci et al. (2019)
3 [Batch × Time × X × Y ] at 30 hz
4 [X × Y × Rank, Rank × Time] at 30 Hz

Table 5: Details of the datasets used to benchmark performance. Sizes given for the three datasets tested for
each pipeline shown. Dataset dimensionality labels are included in footnotes provided.

5.2.2 Ensemble Markerless Tracking622

The deep ensembling analysis that we present is also performed is two separate infrastructure stacks, but both the
initial training and the consensus output generation steps are performed on the same type of infrastructure. In
both cases, we use an instance equipped with a Tesla V100 GPU, otherwise identical to the infrastructure shown
in the DeepLabCut row of Table 2). We trained DeepGraphPose with the default training settings provided in the
file run dgp demo.py, on the “twomice-top-down” data from the DeepGraphPose paper (Wu et al., 2020). That
paper provides full videos of analysis of this dataset using a single DeepGraphPose model. To enable ensembling,
we built a separate set of ensembling tools that work with DeepGraphPose (Wu et al., 2020) - they can be found
at https://github.com/cunningham-lab/neurocaas_ensembles. In order to create a consensus output, we
averaged the confidence maps from each model in an ensemble in the following way: Given a set of N trained DGP
networks, φi, i ∈ 1 . . . N , and a video frame, F ∈ RX×Y×3. Assume that the network has been trained to track a
single body part (the general case follows immediately), and take the scoremap outputs (unnormalized likelihoods)
on this image from the output convolutional layer, denoted φsci (F ), where each scoremap φsci (F ) ∈ RX×Y×3. These
scoremap outputs are unnormalized likelihoods representing the probability that the body part of interest is located
in any individual pixel of the image. Then, we can compute the mean scoremap for a given image as:

φ̄sc(F ) = S−1(
1

N

∑
i

S(φsci (F ))) (1)

Where S is the elementwise sigmoid function. The consensus output is then calculated from the softargmax623

function of this mean scoremap.624

Furthermore, to calculate the rmse error, we use the following metric: Assume we have detections for all of the
test frames in a video as a tensor, x ∈ RT×D×C , with entries xtdc, where t represents the frame index, d the part
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index, and c the coordinate ∈ [x, y]. Likewise, we have groundtruth data g with entries gtdc of the same dimension.
Then the error is calculated as follows:

RMSE(x, g) =

√∑
t,d,c[(xtdc − gtdc)2]

T
(2)

Details and implementation can be found in the repository https://github.com/cunningham-lab/neurocaas_625

ensembles, and the full analysis is available for use at http://neurocaas.org/analysis/14.626

5.3 Benchmarking algorithms on NeuroCAAS627

For each analysis currently on NeuroCAAS, the specific infrastructure choices in the corresponding blueprint628

(Figure 11, right) are given in Table 2. To meaningfully benchmark NeuroCAAS against current standards, we629

simulated corresponding local infrastructure. Local infrastructure was also built on AWS, and spans resources630

comparable to personal hardware and cluster compute, depending on the use case (see Table 3). As a general631

guideline, we chose local infrastructure representatives that would reasonably be available to a typical researcher,632

unless the datasets we considered required more powerful resources. To account for the diversity of resources633

available to neuroscience users, we offer alternative quantifications to those presented in Figure 10 in the supple-634

mentary methods (see Figure 15), and make performance quantification data and calculations available to users635

who would like to compare to their own infrastructure through a custom tool on our project repository (see636

README: https://github.com/cunningham-lab/neurocaas).637

For each analysis that we benchmarked on NeuroCAAS, we chose three datasets of increasing size as rep-638

resentative use cases of the algorithms in question. The size differences of these datasets reflect the diversity of639

potential use cases among different users of the same algorithm. The CaImAn benchmarking data consists of640

datasets N.02.00, J 123, J 115 from the data shared with the CaImAn paper (Giovannucci et al., 2019). Bench-641

mark analysis is based on a script provided to regenerate Figure 10 of the CaImAn paper. Note that although this642

data could be batched, we choose to maintain all three datasets as contiguous wholes. DeepLabCut benchmarking643

data consists of behavioral video capturing social interactions between two mice in their home cage. Data is pro-644

vided courtesy of Robert C. Froemke and Ioana Carcea, as analyzed and presented in Carcea et al. (2019). Data645

processing consisted of analyzing these videos with a model that had previously been trained on other images from646

the same dataset. The same dataset was used to benchmark PMD and LocaNMF as a single analysis pipeline647

with two discrete parts. Input data consist of the dataset (“mSM30”), comprising widefield calcium imaging data648

videos, provided courtesy of Simon Musall and Anne Churchland, as used in Musall et al. (2019) and Saxena et al.649

(2020). The full dataset is available in a denoised format at http://repository.cshl.edu/id/eprint/38599/.650

Data processing on NeuroCAAS consisted of first processing the raw videos with PMD, then passing the resulting651

output to LocaNMF. Further details on the datasets used can be found in Table 5.652

We split the time taken to run analyses on NeuroCAAS into two separate quantities. First, we quantified the653

time taken to upload data from local machines to NeuroCAAS, denoted as NeuroCAAS (Upload) in Figure654

10. This time depends upon the specifics of the internet connection that is being used. It is also a one time655

cost: once data is uploaded to NeuroCAAS, it can be reanalyzed many times without incurring this cost again.656

Upload times were measured from the same NeuroCAAS interface made available to the user. (This upload657

time was skipped in the quantification of local processing time.) Second, we automatically quantified the total658

time elapsed between job submission and job termination, when results have been delivered back to the end user659

in the NeuroCAAS interface (denoted as NeuroCAAS (Compute) in Figure 10) via AWS native tools (see660

Supplementary Methods for details, and use of this data for Figure 6). Local timings were measured on661

automated portions of workflow in the same manner as NeuroCAAS (Compute).662

We quantified the cost of running analysis on NeuroCAAS by enumerating costs of each of the AWS resources663

used in the course of a single analysis. Costs can be found in Table 4. We provide the raw quantification data and664

corresponding prices in Table 4. To further reduce costs, we also offer the option to utilize AWS Spot Instances665

(dedicated duration); these are functionally identical to standard compute instances, but are provisioned for666

a pre-determined amount of time with the benefit of significantly reduced prices. We provide the estimated667

cost of running analyses with both of these options in Figure 10, with quantifications labeled “NeuroCAAS668

Save” corresponding to analyses run with dedicated duration spot instances, and those labeled “NeuroCAAS669
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Std” corresponding to those run with standard instances. For more on Spot Instance price quantification, see670

Supplementary Methods.671

With simulated local infrastructures on AWS in hand, costs were calculated by pricing analogous computing
resources as if the user had purchased them for a personal workstation, or as if they had been allocated to the user
on an on-premises cluster (Table 8). In Figure 10, we assume that the local infrastructures considered are hosted
on typical local laptop or desktop computing resources, supplemented with the resources necessary to run analyses
as they were done on NeuroCAAS (additional storage, memory, GPU, etc), while maintaining approximate parity
in processor power. We referred to (Morey and Nambiar, 2009) to convert pricetag costs of local machines to
Equivalent Annual Costs, i.e. the effective cost per year if we assume our local machines will remain in service
for a given number of years, as our implementation of a TCO calculation (as is often done in industry). Given
a price tag cost xlocal, an assumed lifetime n, an annuity rate r, and cs(n) defined as the estimated annual cost
of local machine support given a lifetime n, we follow Mahvi and Zarfaty (2009), Morey and Nambiar (2009) in
calculating the Equivalent Annual Cost as:

EAC(xlocal, n, r) =
xlocal

1−(1+r)−n

r

+ cs(n).

Here cs(n) is provided in the cited paper (Morey and Nambiar, 2009), estimated from representative data across672

many different industries. The denominator of the first term is an annuity factor. We consider two different values673

for n, which we label as “realistic” (2 years) and “optimistic” (4 years) in the text. In industry, 3-4 years is the674

generally accepted optimal lifespan for computers, after which support costs outweigh the value of maintaining an675

old machine (“Pilot Study”, 2004, Mahvi and Zarfaty, 2009, Morey and Nambiar, 2009). Some have argued that676

with more modern hardware, the optimal refresh cycle has shortened to 2 years (J.Gold Associates LLC, 2014).677

By providing quantifications assuming two and four year refresh cycle, we consider the short and long end of this678

generally discussed optimal range.679

Given a per-dataset NeuroCAAS cost xNeuroCAAS, we further derive the Local Cost Crossover (LCC), the
threshold weekly data analysis rate at which it becomes cost-effective to buy a local machine. The LCC is given
by:

LCC(xlocal, n, r, xNeuroCAAS) =
EAC(xlocal, n, r)

52× xNeuroCAAS
.

Furthermore, given the per-dataset local analysis time, we can estimate the corresponding Local Utilization
Crossover (LUC). The LUC considers the LCC in the context of the maximal achievable data analysis rate on
local infrastructure as calculated in the previous section. If the time taken to analyze a dataset on a local machine
is given by tlocal (in seconds), The LUC is given by:

LUC(tlocal, xlocal, n, r, xNeuroCAAS) =
LCC(xlocal, n, r, xNeuroCAAS)× tlocal × 100

604800
.

5.4 Survey of Analyses and Platforms680

We characterized data analysis infrastructure as consisting of three hierarchical parts (Dependencies, System,681

Hardware), segmented consistently with infrastructure descriptions referenced elsewhere (Demchenko et al., 2013,682

Zhou et al., 2016). In several different subfields of neuroscience, we then selected 10 recent or prominent analysis683

techniques, and asked how they fulfilled each component of data analysis infrastructure to generate Figure 1D.684

We denoted a particular infrastructure component as supported if it is referenced in the relevant installation and685

usage guides as being provided in a reliable, automated manner (e.g., automatic package installation via pip).686

Survey details are provided in tables 6, 7. We addressed the question of how data analyses are installed and used687

with these surveys in the tradition of the open source usability literature. Surveys such as these are standard688

methodology in this field, which relies upon empirical data from studies of user’s usage habits (Nichols et al., 2001,689

Zhao and Deek, 2005), developer sentiment (Terry et al., 2010), and observation of user-developer interactions via690

platforms like Github (Cheng and Guo, 2018).691

To generate Figure 7, we first quantified the traffic and infrastructure experienced by individual analyses by692

examining their Github pages, and taking the maximum of the number of forks, stars, and watchers, or downloads693

if listed as well as the listed hardware requirements of each analysis (numbers as of September 2020). We then694

overlaid several exemplar platforms based on the analyses that they supported, as well as restrictions based on695
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Calcium Imaging
Algorithm Name Publication Software

Version
Package
Version

OS con-
fig

Batch
Script-
ing

Other
Pro-
cesses

Storage Memory GPU CPU

CaImAn Giovannucci et al.
2017

X X X X X X

CNMF-E Zhou et al. 2018 X X X X X X X

Suite2p Pachitariu et al.
2017

X X X X X X

ABLE Reynolds et al.
2017

X X X X X X

SCALPEL Petersen et al.
2018

X X X X X X X

Min1PIPE Lu et al. 2018 X X X X X X

SamuROI Rueckl et al. 2017 X X X X X X X X

Romano Romano et al.
2017

X X X X X X X

FISSA Keemink et al.
2018

X X X X X X

OASIS Friedrich et al.
2017

X X X X X X X

Percentage Supporting 90% 80% 0% 50% 0% 0% 0% 0% 0%

Table 6: Infrastructure support for Calcium Imaging Algorithms. Labels mirror those in Table 2.

Behavioral Quantification.
Algorithm Name Publication Software

Version
Package
Version

OS con-
fig

Batch
Script-
ing

Other
Pro-
cesses

Storage Memory GPU CPU

DeepLabCut Mathis et al.
2018

X X X X X X

DeepFly3D Günel et al. 2019 X X X X X X X

JAABA Kabra et al. 2012 X X X X X X X

Ctrax Branson et al.
2009

X X X X X X

DeepPoseKit Graving et al.
2019

X X X X X X X X

Ethovision —- X X X X X X X

APT —- X X X X X X

bonsai Lopes et al. 2015 X X X X X X X X

Miceprofiler de Chaumont et
al. 2012

X X X X X X X

LEAP Pereira et al.
2018

X X X X X X X

Percentage Supporting 90% 90% 20% 10% 0% 0% 0% 0% 0%

Table 7: Infrastructure support for Behavioral Quantification Algorithms. Labels mirror those in Table 2.

the accessibility and scale requirements imposed by each (local hardware, limitation to one analysis at a time),696

taking care to include analyses that the platforms supported in practice.697
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Cost (Local)

Algorithm Name vCPU
count

GPU Memory Storage
Capacity

Workstation
Price, US Dollars
(Estimated Price
Tag Cost)

Cluster Price,
US Dollars (Es-
timated Price
Tag Cost from
Amazon TCO
Calculator)

CaImAn 4 N/A 16 GiB 500 GB 16182 1499+1000
DeepLabCut 4 Tesla

K80
61GiB 200 GB 31203 1701+400+15555

PMD + Lo-
caNMF 1

16 Tesla
K80

122 GiB 150 GB 54364 10836+300+15555

1 Cost for PMD and LocaNMF refers to hardware cost for a local instance that can account for
processing done on both.

2 https://www.newegg.com/p/1TS-000D-052P6
3 https://www.newegg.com/p/1VK-001E-1SVY3?Item=9SIADB38AG7178&Description=1080%

20ti%20workstation%2064%20gB%204%20core&cm_re=1080_ti_workstation_64_gB_4_core-_-

1VK-001E-1SVY3-_-Product
4 https://www.newegg.com/p/1VK-001E-1A6V1
5 https://www.vgastore.com/2023019/hp-j0g95a-tesla-k80-24gb-384-bit-gddr5-pci-e-3-

0-x16-graphics-card
Table 8: Instance and hardware cost details for local cost comparisons. Estimated Price tag prices as of May
3rd, 2020. Price tag estimation of workstation style hardware was based on market prices chosen to reflect
the infrastructure implementation as given in Table 3, in particular, CPU make. Estimation of cluster style
hardware cost was based on the AWS TCO calculator (https://awstcocalculator.com), as of January 25th,
2020, incorporating the total server hardware cost (undiscounted) and acquisition cost of SAN storage.
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9 Supplementary Methods987

9.1 Managing users from user profiles988

On NeuroCAAS, users resources were defined in code via JSON documents we call user profiles. New users were989

registered by filling in a corresponding user profile, which was then deployed to automatically generate storage990

space, dedicated login credentials, and permissions to use analyses for the user. The user profile is similar in format991

to the UXData segment of the blueprint as given in Figure 14, and can be found in the NeuroCAAS codebase992

online.993

Deploying user profiles created a secure, virtualized storage location where users could store their data on994

NeuroCAAS before and in between analyses. Data storage on NeuroCAAS is shared within a user group (i.e.995

a lab), but private to all other parties. In Figure 10, NeuroCAAS Upload time refers to the time required to996

upload data from local machines to this storage- once uploaded, data can be deleted post analysis or maintained997

over the course of several analyses. Maintaining data post analysis cuts out NeuroCAAS Upload time on998

subsequent upload events.999

User credentials are automatically generated upon new user sign up. Permissions to use analyses can be1000

managed in a variety of ways. During the active development phase, permissions can be given to individual1001

users by updating NeuroCAAS blueprints with the information of these newly added users, and redeploying the1002

analysis in question- these analysis-centric permissions are best suited to analyses where one wishes to invite a1003

small number of test users. Upon redeployment, the corresponding job manager begins monitoring this new user1004

for analysis requests. Once analyses are stable, they can instead be accessed with user-centric permissions: when1005

new user groups are created, they can have a pre-determined list of analyses that they will have access to from the1006

outset. Importantly, both user centric and developer centric permissions schemes do not disrupt ongoing analysis1007

jobs.1008

9.2 Automatic compute benchmarking1009

The duration of NeuroCAAS Compute and Local analysis time was recorded automatically with cloud native1010

resource monitoring tools (AWS Lambda, AWS Cloudwatch Events, and AWS S3). These tools automatically1011

recorded the creation and destruction of instances, and recorded the relevant timestamps at millisecond resolution.1012

These monitoring tools were also managed via NeuroCAAS blueprints, and their design can be found in the same1013

blueprint codebase. The same tools were used to calculate the usage data shwon in Figure 6. We do not disclose1014

user data at an individual level, but developers can generate the same figures for users of their own analysis by1015

using the NeuroCAAS contrib repo (specific instructions are given in the source repo’s README file).1016

9.3 Spot instance pricing1017

The virtualized hardware underlying a hardware instance can be provisioned at several different prices. We used1018

AWS EC2 Spot Instance pricing to reduce costs, having known beforehands how long the analyses would take. At1019

the moment, we depict prices based on spot instance availability in September 2019. Empirically, we observe that1020

spot instance price fluctuations give standard deviations on the order of cents over a period of months (see source1021

repo for experiments).1022

9.4 Analysis reproducibility1023

Because we designed analysis blueprint to be git versioned, we can reproduce the infrastructure and software1024

configuration used to generate any analysis, up to the reliability of Amazon AWS. Since we returned identifying1025

information about the blueprint to the user in a certificate along with configuration parameters, data is the only1026

portion of an analysis that must be maintained to ensure perfect analysis reproducibility. We update blueprints1027

based on pull requests issued through the source repo’s Github page, providing a centralized way to manage the1028

state of the NeuroCAAS platform. Although not implemented here, AWS offers cheap, glacial storage that can1029

be used to preserve data for long amounts of time under conditions of infrequent access, offering a feasible solution1030

for guaranteed total analysis reproducibility on NeuroCAAS.1031
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NeuroCAAS AWS Specifics

Analysis
Name

Instance
(NeuroCAAS)

Instance (local) AMI ID

CaImAn m5.16xlarge m5a.xlarge ami-
01dc867df8c05aa5a)

DeepLabCut p2.xlarge p2.xlarge ami-
00b1babeb8637f5c3)

PMD m5.16xlarge r4.4xlarge ami-0007adf33fbcf0c1c)

LocaNMF p3.2xlarge p2.xlarge ami-
04ebe747c2e33038c)

Table 9: Instance and Amazon Machine Image (AMI) details for cost comparison
of some implemented algorithms.

9.5 Alternative local crossovers1032

Because the instances offered on AWS are not wholly analogous to either personal hardware or cluster resources,1033

we offer additional comparisons that span the range of prices.1034

Cluster pricing was calculated with the AWS TCO calculator https://awstcocalculator.com/#. We calcu-1035

lated the cost of infrastructure as a subset of the TCO provided by AWS. In particular, we calculated xlocal as1036

the total server hardware cost (undiscounted) and acquisition cost of NAS storage, and the cost of a GPU, with1037

additional yearly recurring costs cs(n) given by storage administration cost, server hardware maintenance cost,1038

and IT Labor costs. We then calculated the LCC and LUC from these quantities as described in the Platform1039

section.1040

The results of these quantifications are given in Figure 15.1041

9.6 AWS details1042

We provide further details on the AWS implementation of analyses used to generate time and cost data in Table1043

9.1044
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#!/bin/bash

set -e

userhome="/home/ubuntu"

datastore="deepgraphpose/data"

outstore="ncapdata/localout"

echo "----DOWNLOADING DATA----"

source activate dgp

neurocaas-contrib workflow get-data -f -o $userhome/$datastore/

neurocaas-contrib workflow get-config -f -o $userhome/$datastore/

datapath=$(neurocaas-contrib workflow get-datapath)

configpath=$(neurocaas-contrib workflow get-configpath)

taskname=$(neurocaas-contrib scripting parse-zip -z "$datapath")

echo "----DATA DOWNLOADED: $datapath. PARSING PARAMETERS.----"

mode=$(neurocaas-contrib scripting read-yaml -p $configpath -f mode -d predict)

debug=$(neurocaas-contrib scripting read-yaml -p $configpath -f testing -d False)

echo "----RUNNING ANALYSIS IN MODE: $mode----"

cd "$userhome/deepgraphpose"

if [ $mode == "train" ]

then

if [ $debug == "True" ]

then

echo "----STARTING TRAINING; SETTING UP DEBUG NETWORK----"

python "demo/run_dgp_demo.py" --dlcpath "$userhome/$datastore/$taskname/" --test

elif [ $debug == "False" ]

then

echo "----STARTING TRAINING; SETTING UP NETWORK----"

python "demo/run_dgp_demo.py" --dlcpath "$userhome/$datastore/$taskname/"

else

echo "Debug setting $debug not recognized. Valid options are "True" or "False". Exiting."

exit

fi

echo "----PREPARING RESULTS----"

zip -r "/home/ubuntu/results_$taskname.zip" "$userhome/$datastore/$taskname/"

elif [ $mode == "predict" ]

then

if [ $debug == "True" ]

then

echo "----STARTING PREDICTION; SETTING UP DEBUG NETWORK----"

python "demo/predict_dgp_demo.py" --dlcpath "$userhome/$datastore/$taskname/" --test

elif [ $debug == "False" ]

then

echo "----STARTING PREDICTION; SETTING UP NETWORK ----"

python "demo/predict_dgp_demo.py" --dlcpath "$userhome/$datastore/$taskname/"

else

echo "Debug setting $debug not recognized. Valid options are "True" or "False". Exiting."

exit

fi

echo "----PREPARING RESULTS----"

zip -r "/home/ubuntu/results_$taskname.zip" "$userhome/$datastore/$taskname/videos_pred/"

else

echo "Mode setting $mode not recognized. Valid options are "predict" or "train". Exiting."

fi

echo "----UPLOADING RESULTS----"

neurocaas-contrib workflow put-result -r "/home/ubuntu/results_$taskname.zip"

Figure 12: DeepGraphPose script, written in bash. Script makes heavy use of neurocaas developer tools to move
data to and from NeuroCAAS data storage; see developer guide for details. Script demo/predict˙dgp˙demo.py has
been adapted to work for any model folder.
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#!/bin/bash

source "/home/ubuntu/.dlamirc"

export PATH="/home/ubuntu/anaconda3/bin:$PATH"

source activate dgp

neurocaas-contrib workflow initialize-job -p /home/ubuntu/contribdata

neurocaas-contrib workflow register-dataset -b "$1" -k "$2"

neurocaas-contrib workflow register-config -b "$1" -k "$4"

neurocaas-contrib workflow register-resultpath -b "$1" -k "$3"

neurocaas-contrib workflow log-command -b "$1" -c "$5" -r "$3"

neurocaas-contrib workflow cleanup

Figure 13: Main script called by NeuroCAAS to trigger workflow runs. The command neurocaas-contrib triggers
developer tools. Declares variables referenced in Figure 12.

41

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2020.06.11.146746doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.146746
http://creativecommons.org/licenses/by-nc/4.0/


{

"PipelineName":"ncapexamplepipeline",

"REGION":"region of service for users",

"Lambda":{

"CodeUri":"Codebase for \ncap Compute",

"Handler":"Module for \ncap Compute",

"Launch":"Whether or not to launch new pipelines. ",

"LambdaConfig":{

"AMI":"AMI id of the developer-configured instance",

"INSTANCE_TYPE": "virtualized hardware instance id. ",

"REGION": "us-east-1",

"SECURITY_GROUPS":"network configuration",

"IAM_ROLE":"permissions to launch new immutable analysis environments",

"KEY_NAME":"permissions to access immutable analysis environments",

"WORKING_DIRECTORY":"immutable analysis environment code",

"COMMAND":"code to run to initiate processing",

"SHUTDOWN_BEHAVIOR":"destroy immutable analysis environment after processing terminates",

"CONFIG":"location of additional configuration parameters",

"MISSING_CONFIG_ERROR":"We need a config file to analyze data.",

"EXECUTION_TIMEOUT":"Additional parameters for \ncap Compute",

"SSM_TIMEOUT":"Additional parameters for \ncap Compute",

"LOGDIR":"Parameters for \ncap interface",

"OUTDIR":"Parameters for \ncap interface",

"INDIR":"Parameters for \ncap interface",

"LAUNCH":"Launching new pipelines",

"LOGFILE":"Logging location for diagnostic information",

"DEPLOY_LIMIT":"Maximum number of concurrent instances to deploy",

"MONITOR":"Enable or disable detailed monitoring"

}

},

"UXData":{

"Affiliates":[

{

"AffiliateName":"examplegroup1",

"UserNames":["ian","shreya","taiga"],

"UserInput":true,

"ContactEmail":"The email we should notify regarding processing status."

},

{

"AffiliateName":"examplegroup2",

"UserNames":["liam","john"],

"UserInput":true,

"ContactEmail":"The email we should notify regarding processing status."

}

]

}

}

Figure 14: NeuroCAAS blueprint template declaring all relevant resources. Immutable Analysis Environ-
ments can be defined from Variables in the Lambda.LambdaConfig field, the job manager protocol is defined
in Lambda.CodeUri and Lambda.Handler. Users and permissions are defined in UXData.
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Figure 15: Alternative cost quantification of local infrastructure A) provides Local Cost Crossover
Crossover for these resources priced as cluster compute resources, priced according to Amazon AWS’s TCO cal-
culator. B) provides the same for Local Utilization.
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