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Abstract12

A major goal of computational neuroscience is the development of powerful data analyses that operate on13

large datasets. These analyses form an essential toolset to derive scientific insights from new experiments. Un-14

fortunately, a major obstacle currently impedes progress: novel data analyses have a hidden dependence upon15

complex computing infrastructure (e.g. software dependencies, hardware), acting as an unaddressed deterrent16

to potential analysis users. While existing analyses are increasingly shared as open source software, the in-17

frastructure needed to deploy these analyses – at scale, reproducibly, cheaply, and quickly – remains totally18

inaccessible to all but a minority of expert users. In this work we develop Neuroscience Cloud Analysis As19

a Service (NeuroCAAS): a fully automated analysis platform that makes state-of-the-art data analysis tools20

accessible to the neuroscience community. Based on modern large-scale computing advances, NeuroCAAS is21

an open source platform with a drag-and-drop interface, entirely removing the burden of infrastructure purchase,22

configuration, deployment, and maintenance from analysis users and developers alike. NeuroCAAS offers two23

major scientific benefits to any data analysis. First, NeuroCAAS provides automatic reproducibility of analyses24

at no extra effort to the analysis developer or user. Second, NeuroCAAS cleanly separates tool implementation25

from usage, allowing for immediate use of arbitrarily complex analyses, at scale. We show how these benefits26

drive the design of simpler, more powerful data analyses. Furthermore, we show that many popular data analy-27

sis tools offered through NeuroCAAS outperform typical analysis solutions (in terms of speed and cost) while28

improving ease of use, dispelling the myth that cloud compute is prohibitively expensive and technically inac-29

cessible. By removing barriers to fast, efficient cloud computation, NeuroCAAS can dramatically accelerate30

both the dissemination and the effective use of cutting-edge analysis tools for neuroscientific discovery.31

1 Introduction32

Driven by the constant evolution of new recording technologies and the vast quantities of data that they generate,33

neural data analysis — which aims to build the path from these datasets to scientific insight — has grown into a34

centrally important part of modern neuroscience, enabling significant new insights into the relationships between35

neural activity, behavior, and the external environment (Paninski and Cunningham, 2018). As a key part of this36

growth, the complexity of neural data analyses has massively increased. Historically, the software implementation37

of a data analysis (what we call the core analysis- Figure 1A) was typically a small, isolated code script with38

few dependencies. In stark contrast, modern core analyses routinely incorporate video processing algorithms39

(Pnevmatikakis et al., 2016, Pachitariu et al., 2017, Mathis et al., 2018, Zhou et al., 2018, Giovannucci et al.,40

2019), deep neural networks (Batty et al., 2016, Gao et al., 2016, Lee et al., 2017, Parthasarathy et al., 2017,41

Mathis et al., 2018, Pandarinath et al., 2018, Giovannucci et al., 2019), sophisticated graphical models (Yu et al.,42

2009, Wiltschko et al., 2015, Gao et al., 2016, Wu et al., 2020), and other cutting-edge machine learning tools43

(Pachitariu et al., 2016, Lee et al., 2017).44
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Figure 1: Data analysis infrastucture. A. Core analysis code sits atop an infrastructure stack (including both
software and hardware) that must be installed and maintained to make analysis viable. B. A number of common
problems arise at each layer of this infrastructure stack; some of these issues are most visible to users, while some
are more visible to software developers. C. Many common management tools deal only with one or two layers in
the infrastructure stack, leaving gaps that users and developers must fill manually or by cobbling systems together.
D. Our surveys of common neural data analysis tools for calcium imaging and behavioral analysis indicate that
many layers of the infrastructure stack are currently not managed by analysis developers, and implicitly delegated
to the user’s responsibility (see Materials and Methods for full details).

Importantly, however, as developers build more powerful analyses, core analysis software becomes increasingly45

coupled to underlying analysis infrastructure (Figure 1A): software dependencies like the deep learning libraries46

PyTorch and TensorFlow (Abadi et al., 2016, Paszke et al., 2019), system level dependencies to manage jobs and47

computing resources (Merkel, 2014), and hardware dependencies such as a precisely configured CPU, access to a48

GPU, or a required minimum amount of device memory. Figure 1A details the way these individual components49

comprise a full infrastructure stack : the necessary – but largely ignored – foundation of resources on which all50

data analyses run (Demchenko et al., 2013, Jararweh et al., 2016, Zhou et al., 2016).51

The immediate implications of neglected infrastructure are a set of problems all too familiar to the neuro-52

science community: for every novel analysis, labor and financial resources must be spent on hardware setup,53

software troubleshooting, unexpected interruptions during long analysis runs, processing constraints due to lim-54

ited “on-premises” computational resources, and more (Figure 1B). However, far from simply being a nuisance,55

neglected infrastructure has wide reaching and urgent scientific consequences. Most prominently, unaddressed56

infrastructure impacts analysis reproducibility. As data analyses become more dependent on specific, complex in-57

frastructure stacks, it becomes extremely difficult for developers to document and maintain reproducible analyses58

(Monajemi et al., 2019, Nowogrodzki, 2019). It has been noted that the current state of analysis infrastructure is59

a major contributor to the endemic lack of reproducibility suffered by modern data analysis (Crook et al., 2013,60

Hinsen, 2015, Stodden et al., 2018, Krafczyk et al., 2019, Raff, 2019), and that infrastructure-based barriers are61

an unaddressed obstacle to the proliferation of innovative analyses (Magland et al., 2020). Specific cases where62
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infrastructure issues have culminated in critical misrepresentations of big datasets have been well documented in63

adjacent fields (Miller, 2006, Glatard et al., 2015), and similar challenges have been noted in machine learning,64

where deep learning specific infrastructure components can dictate model performance (Radiuk, 2017). Illus-65

tratively, a recent study of the machine learning literature observed that although local compute clusters claim66

to address the issue of hardware availability, none of the studies that required use of a compute cluster were67

reproducible (Raff, 2019).68

Major efforts have been made by journals (Donoho, 2010, Hanson et al., 2011, “Code Share”, 2014) and funding69

agencies (Carver et al., 2018) to encourage the sharing of core analysis software. Additionally, new tools have70

been developed to address scientific challenges like the formatting (Teeters et al., 2015) and storage of data (Dandi71

Team, 2019), or workflow management on existing infrastructure (Yatsenko et al., 2015, Gorgolewski et al., 2011)72

(see Platform and Discussion for a detailed overview). However, these important efforts still ignore the majority73

of the analysis infrastructure stack. Despite calls to improve standards of practice in the field (Vogelstein et al.,74

2016), and work in fields such as astronomy, genomics, and high energy physics (Hoffa et al., 2008, Zhou et al.,75

2016, Chen et al., 2019, Monajemi et al., 2019), there has been little concrete progress in our field towards76

a scientifically acceptable infrastructure solution. Some tools – compute clusters, versioning tools like Github77

(https://github.com), and containerization services like Docker (Merkel, 2014) – provide various infrastructure78

components (Figure 1C), but it is nontrivial to combine these components into a complete infrastructure stack.79

The ultimate effect of these partially used toolsets is a hodgepodge of often slipshod infrastructure practices (Figure80

1D; see supporting data in Tables S1, S2).81

Critically, management of these issues most often falls on trainees who are neither scientifically rewarded82

(Landhuis, 2017, Chan Zuckerberg Initiative, 2014), nor specifically instructed (Merali, 2010) on how to build,83

configure, and install infrastructure stacks. We term this conventional model Infrastructure-as-Graduate-Student84

(IaGS)– infrastructure treated as a scientific afterthought, addressed only with patchwork tools and operating as85

a silent source of errors and inefficency. The IaGS status quo fails any reasonable standard of scientific rigor,86

reduces the accessibility of valuable analytical tools, and impedes scientific training and progress.87

Of course, infrastructure challenges are not specific to neuroscience, or even science generally. Entities that88

deploy software at industrial scale have been empowered in recent years by the Infrastructure-as-Code (IaC)89

paradigm: an emerging toolset that ensures the stability and replicability of infrastructure stacks by automating90

their creation and management (Morris, 2016, Aguiar et al., 2018). An IaC platform first requires a code document91

that completely specifies each infrastructure component (each colored block in Figure 1A) supporting any given92

core software. From this code document, the corresponding infrastructure stack can be activated and assembled93

automatically, in a process called deployment. After deployment, anyone with access to the platform can use the94

core software in question without ever having touched its underlying infrastructure stack. Users and developers95

also have the assurance that core software is functioning exactly as indicated in the corresponding code document,96

skirting all of the issues shown in Figure 1B. However, despite these benefits, there has been no previous effort to97

extend IaC to neuroscience data analyses and their associated infrastructure stacks.98

In response, we developed Neuroscience Cloud Analysis as a Service (NeuroCAAS), an IaC platform that99

pairs core analyses with bespoke infrastructure stacks (i.e. all the components in Figure 1A) in a deployable100

code document. In particular, the infrastructure stack is treated as a set of modular components (§2.1.1-2.1.3)101

corresponding to versions of the software, system, and hardware infrastructure components that can be concisely102

specified in code. NeuroCAAS then stores the specification of this complete data analysis in a document called103

a blueprint (§2.1.4), which can be deployed to analyze data on demand. To maximize the scale and accessibility104

benefits of our platform, we provide a open source web interface to NeuroCAAS (§2.2), available to the neu-105

roscience community at large. The result is drag-and-drop usage of neural data analysis: experimentalists and106

computational neuroscientists can log on to the NeuroCAAS website, set some parameters for an analysis, and107

simply submit their neural or behavioral data. A new infrastructure stack is then automatically deployed on the108

cloud according to a specified blueprint and autonomously used to produce analysis results, which are returned109

to the user. This aspect of NeuroCAAS warrants emphasis, as it diverges starkly from traditional scientific110

practice: NeuroCAAS is not a platform design or suggestion that the reader can attempt to recreate on their111

own; instead, NeuroCAAS is offered as an open source infrastructure platform available for immediate use, via112

a website (www.neurocaas.org).113

Below, we first outline the structure of the NeuroCAAS platform. Next, we present two example analy-114

ses that are enabled by NeuroCAAS’s design, concerning widefield calcium imaging (WFCI) and markerless115
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tracking models for behavioral video. Finally, we quantify the performance of popular neuroscience analyses on116

NeuroCAAS, and find that analyses encoded on NeuroCAAS are cheaper and faster than analogues run on117

on-premises infrastructure (e.g. a university compute cluster), in addition to the major benefits in reproducibility,118

accessibility, and scalability emphasized above.119

2 Platform120

NeuroCAAS is fundamentally a platform that links a collection of customizable infrastructure components121

(§2.1.1-2.1.3) to a library of analysis blueprints (§2.1.4): each blueprint specifies a standardized configuration122

of infrastructure components that can be deployed automatically.123

To process their data, users simply log in to the platform and drag and drop their dataset(s) into the upload124

area of a given analysis (Figure 2, top left). After choosing a set of parameters to apply to this data, they submit125

their data for processing, invoking a NeuroCAAS “job.” No further user input is needed: given the relevant126

dataset and parameters, NeuroCAAS sets up the requested analysis on a new infrastructure stack from the127

corresponding blueprint (Figure 2, black arrows) and analyzes data on this infrastructure (Figure 2, blue arrows),128

providing scalable and reproducible computational processing on demand (Figure 2, bottom right). Analysis129

outputs (including live status logs and a complete description of analysis parameters) are then delivered back to130

the user (Figure 2, bottom left), and finally all created infrastructure is dissolved when data processing is complete131

(Figure 2, bottom right). As an example, the video in Figure 3 shows how users can submit data and track the132

training of three separate DeepGraphPose models (Wu et al., 2020) simultaneously on NeuroCAAS.133

In what follows, we will first describe each part of the NeuroCAAS platform in §2.1. We will then discuss the134

interface to the NeuroCAAS platform in section §2.2. Finally, we survey and contrast related systems in §2.3.135

2.1 NeuroCAAS Structure136

The structure of NeuroCAAS naturally circumvents the issues of reproducibility, accessibility, and scale that137

burden existing infrastructure tools and platforms. NeuroCAAS breaks the infrastructure stack into three138

decoupled parts that together are sufficient to support virtually any given core analysis. Critically, the configuration139

of each of these parts is designed to be concisely summarizable in a blueprint (§2.1.4). First, to address all software140

level infrastructure, NeuroCAAS offers all analyses as immutable analysis environments (§2.1.1). Second, to141

address system configuration, each NeuroCAAS analysis has a built-in job manager (§2.1.2) that automates all142

of the logistical tasks associated with analyzing data: configuring hardware, logging outputs, parallelizing jobs143

and more. Third, to provide specific computing hardware on demand, NeuroCAAS manages a resource bank144

(§2.1.3) of hardware and operating systems built on the public cloud, making the service globally accessible and145

effectively limitless. We describe the value of each of these components in depth in §5.1.146

2.1.1 Immutable analysis environments for software infrastructure147

To make software infrastructure concisely summarizable in code, NeuroCAAS serves analyses to users exclusively148

through immutable analysis environments (IAEs). An IAE is an isolated environment containing the installed149

core analysis code and all necessary software dependencies, similar to a Docker container (Merkel, 2014). An IAE150

also contains a workflow script that parses input and parameters in a prescribed way and runs the steps of a151

given analysis (Figure 2, right; Figure 5, top left). In stipulating immutability (data analysis cannot be altered152

once started), IAEs automate analysis installation and workflow, eliminating the possibility of bugs resulting153

from incompatible dependencies, mid-analysis misconfiguration (Figure 4A, installation and troubleshooting), or154

other so-called “user degrees of freedom” and ensure that analyses are run within developer -defined parameters.155

Immutability has a long history as a principle of effective programming and resource management in computer156

science (Bloch, 2008, Morris, 2016), and in this context is closely related to the view that data analysis should157

be automated as much as possible (Tukey, 1962, Waltz and Buchanan, 2009). These views are motivated by the158

observation that immutability and automation allow applications to scale easily as they become more complex, a159

feature we make use of in our NeuroCAAS native analyses.160

Each IAE has a unique ID from which it can be set up on almost any computer, transforming the computer161

into an input-output machine for the corresponding analysis. We have currently implemented 13 different analyses162
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Figure 2: Overview of NeuroCAAS User Workflow. Left indicates the user’s experience; right indicates
the work that NeuroCAAS performs. The user begins by choosing from the analysis encoded in NeuroCAAS.
They then modify corresponding configuration parameters as needed. Finally, the user uploads dataset(s) and a
configuration file for analysis. NeuroCAAS detects this upload event and deploys the requested analysis using an
infrastructure blueprint. NeuroCAAS builds the appropriate number of immutable analysis environments and
sets up corresponding resources. Multiple analysis environments may be deployed in parallel if the user uploads
multiple datasets- and the job manager automatically handles input and output scaling. The deployed resources
persist only as necessary, and results, as well as diagnostic information, are automatically routed back to the user.
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Figure 3: Example workflow run on NeuroCAAS website. Demonstration run of DeepGraphPose (Wu
et al., 2020) training three separate models at the same time. This is a truncated run where the model is trained
for only a few iterations on each step of DeepGraphPose training (for details see Wu et al. (2020)). Caption text
at screen bottom explains each step of processing. Video is dgp-train-triple-fulldemo.mp4.

in immutable analysis environments (Table 1).163

2.1.2 Job managers for system infrastructure164

Although many parts of system level infrastructure can be summarized in the IAE or the resource bank (discussed165

next), one crucial aspect that must be treated independently is setup of a communication channel between the166

user, who provides analysis inputs, and the NeuroCAAS infrastructure stack that processes these inputs. This167

setup is the responsibility of the NeuroCAAS job manager, which associates user submitted datasets to the168

appropriate IAEs on the right hardware, writes status messages back to the user, and monitors analysis progress,169

similar to a cluster workload manager like slurm (Yoo et al., 2003) (Figure 2, blue arrows). However unlike cluster170

managers, the NeuroCAAS job manager does not assign jobs to running infrastructure, but rather activates171

and de-activates the relevant infrastructure stack at the beginning and end of the job, circumventing the need for172

manual intervention to manage any part of the infrastructure stack (Figure 2; black arrows). The job manager173

for each analysis is specified with a “protocol” in code that allow it to to configure and take apart infrastructure174

programatically. Job manager protocols can manage complex behavior, handling large scale analyses that span175

multiple hardware instances, as we will demonstrate in our NeuroCAAS native analyses (see Figure 8).176

2.1.3 Resource banks for hardware infrastructure177

Perhaps the most unintuitive infrastructure component to specify in code is computing hardware. The requirement178

that specific computing hardware be allocated on demand from code is handled by NeuroCAAS’s resource bank.179

The NeuroCAAS resource bank can make hardware available through individual instances: bundled collections180

of virtual cpus, memory, and gpus, similar to a compute node on an on-premises cluster. However unlike an on-181

premise computing cluster, the NeuroCAAS resource bank is built upon globally available, virtualized compute182

hardware offered through the public cloud (currently Amazon Web Services). At any time, the resource bank can183

draw on an effectively limitless volume of compute resources to emulate a wide range of familiar hardware instances184

(e.g. personal laptop, on premise cluster) in order to execute a particular task (Figure 2, bottom right). We have185

configured the resource bank with security and privacy features to ensure that hardware can only be accessed186

by the appropriate job manager, and individual instances generate diagnostics that can be used to monitor for187

aberrant behavior, providing easy management at the scale provided on this platform. Furthermore, hardware188
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NeuroCAAS IAEs

Analysis Name Paper Subfield Description

CaImAn (Giovannucci et al.,
2019)

Calcium
Imaging

Integrated python toolbox for large scale Cal-
cium Imaging data Analysis and behavioral
analysis.

DeepLabCut (Mathis et al., 2018) Pose Track-
ing

Markerless pose estimation of user-defined fea-
tures with deep learning for all animals, includ-
ing humans.

PMD (Buchanan et al.,
2018)

Functional
Imaging

Penalized Matrix Decomposition for Denoising
and Compression of Functional Imaging Data.

LocaNMF (Saxena et al., 2020) Widefield
Imaging

Region-based Decomposition for Widefield Cal-
cium Imaging Data.

YASS (Lee et al., 2017) Spike Sort-
ing

YASS is a spike sorting pipeline developed
for high-firing rate, high-collision rate retinal
recordings.

Latent Factor
Analysis for Dy-
namical Systems
(LFADS)

(Sussillo et al., 2016) Probabilistic
inference on
time series

Deep learning method to infer latent dynamics
from single-trial neural spiking data.

DeepGraphPose (Wu et al., 2020) Pose Track-
ing

DGP is a semi supervised model which can run
on top of other tracking algorithms, such as
DLC.

BehaveNet /
Partitioned-
subspace VAE

(Batty et al., 2019)
(Whiteway et al.,
2021)

Behavioral
Video
Analysis

Nonlinear embedding and Bayesian neural de-
coding of behavioral videos.

BarDensr (Chen et al., 2020) Spatial
Transcrip-
tomic
Imaging

BarDensr (BARcode DEmixing through Non-
negative Spatial Regression) for demixing spa-
tial transcriptomic imaging data.

Kalman Filter/S-
moother (Linear
Dynamical Sys-
tem)

(Minka, 1999) Probabilistic
inference on
time series

Time-invariant model for tracking a single ob-
ject in a continuous state space.

Emergent Prop-
erty Inference

(Bittner et al., 2019) Likelihood
free infer-
ence

A method for learning parameter distributions
on models constrained to produce certain desir-
able phenomena in their output.

DLC Tracking
(Polleux)

N/A Pose Track-
ing

Markerless pose estimation with postprocessing
to quantify freezing behavior.

Ensemble DGP N/A Pose Track-
ing

Ensemble DGP independently trains N different
DeepGraphPose models that differ only in the
sequence of minibatches that they see, and gen-
erates a consensus prediction from them.

Table 1: List of existing analyses currently implemented on NeuroCAAS through IAEs.

can be provisioned in a dataset-dependent manner, adjusting the size of storage volumes, memory, or computing189

resources as needed (see §5.1 for more details). Each configuration of a hardware instance is named with a unique190

identifier, allowing identical hardware to be activated at will. Fundamentally, the resource bank allows us to identify191

the hardware lifecycle with the lifecycle of a particular analysis job, providing efficient, custom built compute to192

each processing job and eliminating any upfront costs to users or developers before trying out/developing a new193

analysis (Figure 4B).194
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2.1.4 Blueprints for instant reproducibility195

For any given analysis, each of NeuroCAAS’s infrastructure components has a specification in code (IAEs have196

IDs, job managers have protocols, and the resource bank registers identifiers for specific hardware instances). The197

collection of all infrastructure identifying code associated with a given NeuroCAAS analysis is stored in the198

blueprint of that analysis (Figures 2, 5, top right), from which new instances of the infrastructure stack can be199

deployed at will, providing reproducibility by design. Despite sustained efforts to promote reproducible research,200

Buckheit and Donoho (1995), in many typical cases data analysis remains frustratingly non-reproducible (Crook201

et al., 2013, Gorgolewski et al., 2017, Stodden et al., 2018, Raff, 2019). NeuroCAAS sidesteps all of the typical202

barriers to reproducible research by tightly coupling the creation of infrastructure stacks to their documentation.203

Paired with a simple version control system, blueprints provide instant easy reproducibility across the entire204

development history of any data analysis, to anyone using NeuroCAAS.205

2.2 Using and Developing Analyses on NeuroCAAS206

NeuroCAAS supports any interface that allows users to transfer data files to and from the cloud. The standard207

interface to NeuroCAAS is a website, www.neurocaas.org, where users can sign up for an account, browse core208

analyses, deposit data and monitor analysis progress until results are returned to them. The cost of using these209

analyses is directly proportional to analysis duration and the type of cloud resources used to construct the relevant210

infrastructure stack (Figure 4B).211

For comparison, Figure 4 qualitatively illustrates the accumulating inefficiencies of time and cost in every IaGS212

pipeline (foreshadowing the cost efficiency of NeuroCAAS’s approach, detailed in §3.3). IaGS begins with a213

number of time-consuming manual steps, including hardware acquisition, hardware setup, and software installation214

(Figure 4A). With a functional infrastructure stack in hand, the user must prepare datasets for analysis, manually215

recording analysis parameters and monitoring the system for errors as they work. While parallel processing is216

possible, it must be scripted by the user, and in many cases datasets are run serially. What results from IaGS is217

massive inefficiency of time and resources. Users must also support the cost of new hardware “up front,” before218

ever seeing the scientific value of the infrastructure that they are purchasing. Likewise, labs or institutions must219

pay support costs to maintain infrastructure when it is not being used, and replace components when they fail or220

become obsolete (Figure 4B). Two editorial remarks bear mentioning at this point: first, the stark difference laid221

out in Figure 4 is the essence of IaGS vs IaC, and explains the dominance of IaC in modern industrial settings.222

Second, NeuroCAAS is and will remain an open-source tool for the scientific community, in keeping with its sole223

purpose of improving the reproducibility and dissemination of neuroscience analysis tools.224

To make NeuroCAAS accessible to developers, we built a suite of developer tools that streamlined the process225

of migrating an existing analysis to the NeuroCAAS web service, available as a python package. These developer226

tools abstract away the cloud infrastructure that NeuroCAAS is built on, allowing for analysis development227

entirely from the command line. In brief, the development process can be summarized as incrementally filling228

in the blueprint of a new analysis (Figure 5). First, developers configure existing analysis code (e.g. a Github229

repo) with scripts to be triggered by data and parameter input and stored in an immutable analysis environment230

(Figure 5, top left). Next, developers can interactively configure their immutable analysis environment with231

hardware available in the resource bank (Figure 5, middle). Finally, developers can simulate user accounts, and232

test the process of submitting data and awaiting results in an end-to-end manner using the job manager (Figure233

5, bottom). See https://neurocaas.readthedocs.io/en/latest/index.html for a detailed developer guide.234

2.2.1 Testing the NeuroCAAS usage model235

Over a period of 10 months, we opened the NeuroCAAS platform to a group of alpha testers (users and devel-236

opers), and analyzed their development and usage patterns to optimize the design of NeuroCAAS. We recorded237

the number, duration, and parallelism (number of individual datasets analyzed) of jobs launched by users, and238

collected the results in Figure 6. This graph suggests the co-occurrence of different usage patterns: a large number239

of single dataset jobs are suggestive of one-off exploratory use, while there is also a considerable proportion of240

jobs that leverage parallelism, running analyses on anywhere from 2 to 70 datasets at a single time. These results241

motivated us to offer unlimited parallelism as part of the NeuroCAAS platform by default (see Figure 8A), as242

long as users adhered to a pre-determined cloud compute budget (initially fixed at $300 per user).243
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Figure 4: Infrastructure-as-grad-student vs infrastructure-as-code. A. Local processing via IaGS requires
a number of time-consuming steps from the user (hardware setup, software installation and maintenance, etc.)
before any analyses are run. Then typically analyses of large datasets are run serially (due to resource constraints),
leading to longer processing times. On NeuroCAAS, user interaction is only required at the beginning of the
analysis (to upload the data), then NeuroCAAS processes the data using large-scale parallel compute resources,
leading to faster overall processing times. B. On NeuroCAAS, some costs are incurred with each analysis run:
the user must upload the datasets (incurring a small job monitor cost), and then each dataset incurs some compute
cost. For local processing, the bulk of the costs are paid upfront, in purchasing hardware; then additional labor
costs are incurred for maintenance, support, and usage of limited local resources. If the per-dataset costs are low
and the total number of datasets to be processed is limited then NeuroCAAS can lead to significantly smaller
total costs than local processing.

During this test period, we also observed that NeuroCAAS benefits collaborative work between experimen-244

talists and analysis developers. If users found bugs in the course of running analyses, this bug was very easily245

communicated to developers, as the only variables needed to reproduce the bug are the dataset and configuration246

file run by the user (without needing to know details of the user’s local operating system or software environment).247

In response, the developer modified the analysis blueprint accordingly, solving the issue for all future use. The248

replicability of errors is a major issue in open source software development, and we found that blueprint based error249

correction significantly eased the burden of supporting analyses on developers. In several cases, individual users250

also moved from exploring the generic analyses we made available on NeuroCAAS to customized versions with251

tailor-made pre and post processing routines, which were quickly developed by copying and modifying existing252

blueprints. Many of these can be found as “custom analyses” on the NeuroCAAS website.253

2.3 Existing infrastructure tools and platforms254

Figure 1 illustrates that the infrastructure stack for any analysis pipeline has many codependent parts. Existing255

approaches to infrastructure in neuroscience consist of platforms that group together some subset of infrastructure256

components and package together an existing set of analyses that rely on this shared infrastructure. Although we257

do not attempt an exhaustive review here, these platforms generally focus on a particular subfield of neuroscience258

data analysis tools (cell segmentation, human brain imaging, genomics, image processing). In Figure 7, we plot259
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Figure 5: Overview of NeuroCAAS Developer Workflow. Left indicates the developer’s experience; right
indicates the work that NeuroCAAS performs. The developer begins by downloading the developer package
https://github.com/cunningham-lab/neurocaas_contrib and building an immutable analysis environment
script on their local machine. After determining workflow and optionally installing analysis software into an
IAE, the developer locally tests that sample data and config files yield expected logs and results. Once satisfied,
the developer updates a blueprint with IAE specifications. Next, developers configure system and hardware
settings by setting up their IAE, complete with sample data and parameters, on the NeuroCAAS resource bank.
Configuration and updates to an IAE are done identically to initial local build, allowing for IAEs custom-built
for powerful cloud resources. Finally, developers simulate NeuroCAAS user accounts and trigger analyses with
their blueprint to ensure that the blueprint they have written function as intended end-to-end before publishing
their blueprint for use.
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Figure 6: Usage of NeuroCAAS Plat-
form (Top) Aggregated job count across
all analyses offered on the NeuroCAAS
web service as a function of job parallelism-
i.e. number of individual IAEs and hard-
ware instances deployed per job. (Bottom)
Corresponding aggregate compute hours
devoted to analysis as a function of job par-
allelism.

a variety of popular neuroscience analyses onto a space defined by 1) their place in the adoption lifecycle and 2)260

corresponding infrastructure needs. We overlay several exemplar platforms, covering those portions of analysis261

space that they support. The degree to which a platform’s support extends to the right defines its accessibility, or262

the ease with which developers can set up/update their analyses on the platform, and the ease with which users263

can begin to process data with them. Accessibility is especially important for analyses that are still early in the264

adoption lifecycle with active development and a growing user base. Likewise, the degree to which a platform’s265

support extends upwards defines its scale, a one dimensional approximation of the infrastructure needs for which266

it can provide. While the exact positioning of these analyses and platforms is subjective and dynamic, there are267

general characteristic features of the analysis platform landscape that we discuss in what follows.268

Platforms like CellProfiler (Carpenter et al., 2006), Ilastik (Sommer et al., 2011) (cell-based image processing),269

Icy (Chaumont et al., 2012), ImageJ (Schneider et al., 2012) (generic bioimage analysis), BIDS Apps (Gorgolewski270

et al., 2017) (MRI analyses for Brain Imaging Data Structure format), and Bioconductor (Amezquita et al., 2019)271

(genomics) have all achieved success in the field by packaging together well developed analyses with necessary272

software dependencies, and system management tools offered through intuitive streamlined user interfaces. These273

platforms can all be downloaded and installed on a user’s local infrastructure. Most of these local platforms also274

have an open contribution system for interested developers to build or extend custom analyses. Local platforms275

are thus highly accessible to both developers and users, but are in the large majority of cases installed on local276

hardware, limiting their scale (Figure 7, bottom).277

In contrast, platforms like the Neuroscience Gateway (NSG) (Sanielevici et al., 2018) (specializing in neural278

simulators), Flywheel (flywheel.io) (emphasizing fMRI and medical imaging), and neuroscience-focused research279

computing clusters host computation remotely, allowing them to offer hardware at scale (through the XSEDE280

[Extreme Science and Engineering Discovery Environment] portal (Towns et al., 2014), the public cloud and on-281

premises hardware, respectively). These remote platforms offer powerful compute, but at the cost of accessibility282

to users, who must adapt their software and workflow to new conventions (i.e. wait times for jobs to run on283

shared resources, prepackaged coding environments, limitations on concurrency) in order to make use of offered284

hardware. As a particular example, NSG requires users to submit a script that they would like to have run on285

a compute node in the language of their chosen analysis, making it more similar to a traditional on-premises286

cluster in usage than NeuroCAAS. NSG also restricts jobs to run on one compute instance at a time, making it287

incompatible with the usage model and novel analyses we will present. Finally, NSG does not have an open system288

for contributing new analyses, making it more suitable for established analysis tools with stable, indepenently289

maintained documentation. Likewise, Flywheel (Flywheel Exchange, 2020) (with a focus on human brain imaging290

tools), requires a paid subscription in order to access its services for both analysis use or development, making it291

more suitable to support specific groups and collaborations with a clear interest in using or developing a shared292
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Figure 7: Landscape of cellular/circuit-level neuroscience analysis platforms. We organize a variety of
popular analyses (denoted by crosses) in terms of their place in the adoption lifecycle (number of users, rate of
software updates), and their infrastructure needs. We overlay a representative collection of analysis platforms,
indicating the parts of analysis space that are covered by a given platform. Notably, there is a significant gap in
the existing landscape that NeuroCAAS addresses with an IaC approach. (Example analyses: (Goodman and
Brette, 2009, Pnevmatikakis et al., 2016, Mathis et al., 2018, Pachitariu et al., 2016, Pandarinath et al., 2018,
Januszewski et al., 2018, Saxena et al., 2020, Buchanan et al., 2018, Graving et al., 2019); representative platforms:
(Sanielevici et al., 2018, Chaumont et al., 2012, Schneider et al., 2012).

set of analysis tools, rather than the general purpose infrastructure goals of NeuroCAAS. These platforms are293

best for committed, experienced users who already work with the analyses available on the remote platform. It is294

also more difficult to contribute new analyses to these platforms than their locally hosted counterparts (see Figure295

7, left side). This difficulty makes them less suitable for actively developing or novel analyses, as updates may be296

slow to be incorporated, or introduce breaking changes to user written scripts.297

Although undeniably useful, local and remote platforms operate on a tradeoff that forces researchers to choose298

between accessibility and scale. While these platforms often concentrate on applications that mitigate the effects299

of this tradeoff, there are many popular analyses that would not be suitable for existing analysis platforms (see300

Figure 7, center). Furthermore, with both types of platforms, users are still required to work directly with301

analysis infrastructure, whether by installing new tools onto one’s personal infrastructure or preparing code and302

dependencies to run in a remote (and sometimes variably allocated) infrastructure stack. Both situations can303

introduce problematic IaGS issues and impact the reproducibility of derived results.304

Beyond platforms that explicitly offer analysis infrastructure, there are tools that make given infrastructure305

more reproducible, offering automated documentation and logging tools (Greff et al., 2017), tracing the system call306

of an analysis run (Chirigati et al., 2016), or aggregating data analyses onto an open source operating system/-307

Docker container (Halchenko and Hanke, 2012). Though admirable, these projects all require a non-trivial effort308

by users and developers to learn and integrate a new tool into their work. Furthermore, the evolving landscape of309
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new analysis tools and platforms makes it difficult to develop standalone reproducibility tools that can cover the310

variety of analyses and infrastructure stacks used in our field.311

3 Results312

NeuroCAAS’s comprehensive approach to analysis infrastructure solves issues that IaGS based approaches can313

not. Here, we demonstrate how IaC enables simple, powerful infrastructure design for the analysis of large datasets314

(§3.1) and for the deployment of large-scale deep learning pipelines (§3.2), and show that the cost and accessibility315

of NeuroCAAS offers distinctive benefits to popular analyses across the tested range of use cases (§3.3).316

3.1 IaC for Large Data: Protocol for Widefield Imaging317

Some of the most infrastructure-intensive analyses in neuroscience are preprocessing techniques that work directly318

on big data. The high degree of automation required to work with large datasets demands many separate prepro-319

cessing steps, creating the need for unwieldy multi-analysis infrastructure stacks- individual stacks that support320

the infrastructure needs of multiple core analyses at the same time. A notable example is data generated by wide-321

field imaging of calcium indicators (WFCI)- a high-throughput imaging technique that collects activity dependent322

fluorescence signals across the entire dorsal cortex of an awake, behaving mouse (Couto et al., 2020), potentially323

generating terabytes of data across chronic experiments. The protocol paper Couto et al. (2020) describes a324

complete WFCI analysis that links together cutting edge data compression/denoising with demixing techniques325

designed explicitly for WFCI (via Penalized Matrix Decomposition, or PMD (Buchanan et al., 2018) and Lo-326

caNMF (Saxena et al., 2020), respectively). Each of these analyses depends upon its own specialized hardware327

and requires operating system dependent installation, creating many competing requirements on a multi-analysis328

infrastructure stack that are difficult to satisfy in practice. While we offer a NeuroCAAS implementation of329

the described WFCI analysis in Couto et al. (2020), we do not discuss how NeuroCAAS addresses the issue of330

multi-analysis infrastructure stacks, which can pose IaGS challenges even to our blueprint based infrastructure.331

Instead of working with multi-analysis infrastructure stacks, NeuroCAAS introduces a new way to design332

analyses that span multiple independent steps. On NeuroCAAS, existing analysis components stored in inde-333

pendent blueprints can be linked together through their inputs and outputs (Figure 8B). We employ this design334

to build a complete analysis for WFCI, where the initial steps of motion correction, denoising, and hemodynamic335

correction of the data are performed on a stack that emphasized multicore parallelism (64 cores) to suit the matrix336

decomposition algorithms employed by PMD. Upon termination of this first step, analysis results are not only337

returned to the user, but also used as inputs to a create a second stack, performing demixing with LocaNMF on338

infrastructure supporting a high performance GPU. This modular organization improves the performance and effi-339

ciency of each analysis component (see Figure 10), and also allows users to run steps individually if desired, giving340

them the freedom to interleave existing analysis pipelines with the components offered here. This complete WFCI341

analysis can be controlled through a custom built graphical user interface (GUI), where the user can interactively342

initialize data processing, submit jobs to NeuroCAAS, and explore analysis results, providing a high degree of ac-343

cessibility for this complex, multi-step pipeline. Importantly, NeuroCAAS balances this accessibility with scale,344

as the performance of our WFCI analysis does not depend on the infrastructure available to the user. For example,345

users can simultaneously launch many analyses and have them run in parallel through the GUI, easily conducting346

a formal, well documented hyperparameter search across all parts of their analysis simultaneously. Researchers347

can find the GUI for this WFCI analysis with NeuroCAAS integration at https://github.com/jcouto/wfield.348

Additionally, for developers the separation of different analysis components into different blueprints vastly349

simplifies the effort required to combine different cutting edge analysis components. Existing domain specific350

projects such as CaImAn (Giovannucci et al., 2019) for cellular resolution calcium imaging or SpikeInterface351

(Buccino et al., 2020) for electrophysiology data demonstrate that making big data analyses compatible with352

standard hardware can require significant revision of the original analysis implementation. In contrast, our WFCI353

analysis is made directly available to users on powerful remote hardware without the need to revise existing354

analysis components, and can easily be extended to subsequent processing steps. To our knowledge, there is no355

other system with the accessibility and scale to link together cutting edge analyses across separate infrastructures,356

and make them available directly to the research community.357
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Figure 8: NeuroCAAS supports multi-stack design patterns. NeuroCAAS allows analyses to easily span
multiple infrastructures as is most appropriate for a given task with flexible job manager protocols. A. Default
workflow on NeuroCAAS specifies that infrastructure should be created on demand when datasets and analyses
are submitted. If more than one dataset is submitted, we automatically create separate infrastructure for each. B.
We can also specify in blueprints that the output of one analysis should feed input to another. With this chained
structure, multiple analysis components with different infrastructure needs are seamlessly combined on demand.
Intermediate results are returned to the user so that they can be examined and visualized as well. This is the job
structure for widefield imaging analysis, §3.1. C. The easy parallelism of panel A and the chained structure of
panel B can be combined in a single workflow to support batch processing pipelines with a separate postprocessing
step. This is the job structure for ensemble markerless tracking, §3.2.

3.2 IaC for Deep Learning Models: Ensemble Markerless Tracking358

The black box nature of deep learning can generate sparse, difficult to detect errors that reduce the benefits of359

deep learning based tools for sensitive applications. For modern markerless tracking analyses built on deep neural360

networks (Mathis et al., 2018, Graving et al., 2019, Nilsson et al., 2020, Wu et al., 2020), these errors can manifest361

as “glitches” (Wu et al., 2020), where a marker point will jump to an incorrect location, often without registering362

as an error in the network’s generated likelihood metrics (see Figure 9).363

One general purpose approach to combat the unreliable nature of individual machine learning models is en-364

sembling (Dietterich, 2000): instead of working with a single model, a researcher simultaneously prepares multiple365

models on the same task, subsequently aggregating their outputs into a single consensus output. Ensemble meth-366

ods have been shown to be effective for deep networks in a variety of contexts, (Lakshminarayanan et al., 2016,367

Fort et al., 2019, Ovadia et al., 2019), but they confer a massive infrastructure burden if run on limited local368

compute resources: researchers must simultaneously train, manage, and aggregate outputs across many different369

deep learning models, incurring either prohibitively large commitments to deep learning specific infrastructure370

and/or infeasibly long wait times.371

In contrast, NeuroCAAS enables easy and routine deployment of ensemble methods. Using NeuroCAAS,372

we designed an analysis which takes input training data, and distributes it to N different instances of the same373

base tracking model (Figure 8C). For the application shown here, we used DeepGraphPose (Wu et al., 2020)374

as our base tracking model; the N instances differ only in the minibatch order used for training. The results375

from each trained model are then used to produce a consensus tracking output, taking each individual model’s376

estimate of part location across the entire image (i.e. the confidence map output) and averaging these estimates.377

Even with this relatively simple approach, we find the consensus tracking output is robust to the errors made by378

individual models (Figure 9A,C). Furthermore, consensus performance is maintained even when we significantly379

reduce the size of the training set (Figure 9B). Finally, in Figure 9C, we can see that there are portions of the380

dataset where the individual model detections fluctuate around the consensus detection. This fluctuation offers381
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Figure 9: Ensemble markerless tracking. A) shows an example frame from a mouse behavior dataset (courtesy
of Erica Rodriguez and C. Daniel Salzman) tracking keypoints on the top down view of a mouse, as analyzed in
Wu et al. (2020). Each marker shape corresponds to a different body part, with blue markers representing the
output of individual tracking models, and orange markers representing the consensus. Inset image shows tracking
performance on the nose and ears of the mouse. Across body parts, certain networks in the ensemble converge to
a solution that causes them to incorrectly localize keypoints (see inset, bottom left), while the aggregate detection
(labeled consensus) stays close to the true body part locations. B) shows consensus test performance vs. test
performance of individual networks on a dataset with ground truth labels. Performance on the test set improves
as a function of training set size, but individual networks can behave very differently, even trained on the same
data. In comparison, the consensus detection reliably finds solutions close to the optimum for a given training set
size. C) shows traces from 9 networks (blue) + consensus (orange). Traces from individual networks diverge on
challenging portions of the video, while consensus tracking remains smooth due to aggregation of detections from
individual networks. Across the entire figure, ensemble size = 9. A and C correspond to traces taken from the
100% split in B with 20 training frames.

an empirical readout of tracking difficulty within any given dataset; frames with large diversity in the ensemble382

outputs are good candidates for further labeling, and could be easily incorporated in an active learning loop.383

Overall, Figure 9 shows that with the scale of infrastructure available on NeuroCAAS, ensembling can easily384

improve the robustness of markerless tracking, naturally complementing the infrastructure reproducibility provided385

by the platform.386

NeuroCAAS is uniquely capable of providing the flexible infrastructure necessary to support a generally387

available, on-demand ensemble markerless tracking application. To our knowledge, none of the remote platforms388

with the scale to support an IaGS approach to markerless tracking (e.g. on premise clusters, Google Colab, NSG389
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Figure 10: Quantitative comparison of NeuroCAAS versus local processing for three different analysis
pipelines. A. Simple quantifications of NeuroCAAS performance. Left graphs compare total processing time on
NeuroCAAS vs. local infrastructure (orange). NeuroCAAS processing time is broken into two parts: Upload
(yellow) and Compute (green). Repeated analyses of data already in NeuroCAAS need only consider Compute
times (see main text for details). Right graphs quantify cost of analyzing data on NeuroCAAS with two different
pricing schemes: Standard (dark blue) or Save (light blue), offering the same analyses at a reduced price if the
approximate duration of an analysis job is known beforehand. B. Cost comparison with local infrastructure. Local
Cost Crossover gives the minimum per-week data analysis rate required to justify the cost of a local infrastructure
compared to NeuroCAAS. We consider local pricing against both Standard and Save prices, and with Realistic
(2 year) and Optimistic (4 year) lifecycle times for local hardware. C. Achieving Crossover Analysis Rates. Local
Utilization Crossover gives the minimum utilization required to achieve crossover rates shown in B. Dashed vertical
line indicates maximum feasible utilization rate at 100%.

(Sanielevici et al., 2018)) can satisfactorily alleviate the burden of a deep ensembling approach, still forcing the390

user to accept either long wait times or tedious manual management of infrastructure. These limitations also391

prohibit use cases involving the quantification of ensemble behavior across different parameter settings (c.f. Figure392

9B, where we trained 45 networks simultaneously).393

3.3 NeuroCAAS is faster and cheaper than local “on-premises” processing394

NeuroCAAS offers a number of major advantages over IaGS: reproducibility, accessibility, and scale, whether395

we compare against a personal workstation or resources allocated from a locally available cluster. However, since396

NeuroCAAS is based on a cloud computing architecture, one might worry that data transfer times (i.e., uploading397

and downloading data to and from the cloud) could potentially lead to slower overall results or that the cost of398

cloud compute could outweigh that of local infrastructure.399

Figure 10 considers this question quantitatively, comparing NeuroCAAS to a simulated personal workstation400
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(see §5.3 for details). For the analogous comparisons against a simulated local cluster, see Figure 15. Figure 10401

presents time and cost benchmark results on four popular analyses that cover a variety of data modalities: CaImAn402

(Giovannucci et al., 2019) for cellular resolution calcium imaging; DeepLabCut (DLC) (Mathis et al., 2018) for403

markerless tracking in behavioral videos; and a two-step analysis consisting of PMD (Buchanan et al., 2018) and404

LocaNMF (Saxena et al., 2020) for analysis of widefield imaging data. To be (extremely) conservative, we assume405

local infrastructure is set up, neglecting all of the time associated with installing and maintaining software and406

hardware.407

Across all analyses and datasets considered in Figure 10, analyses run on NeuroCAAS were significantly faster408

than those run on the selected local infrastructure, even accounting for the time taken to stage data to the cloud409

(Figure 10A, left panes). For CaImAn, we took advantage of the fact that the algorithm was built to parallelize410

across multiple cores of the same machine, and chose hardware to make effective use of this implementation across411

data sizes (for details see Giovannucci et al. (2019), Figure 8). For DLC and PMD+LocaNMF, the NeuroCAAS412

compute time was effectively constant across increasing total dataset size, as we assumed data was evenly batched413

into subsets of approximately equal size and each batch was analyzed in its own independent instance (as in Figure414

8A). These examples show that many analyses can be used efficiently on NeuroCAAS regardless of the degree to415

which they have been intrinsically optimized for parallelism. Finally, NeuroCAAS upload time can be ignored if416

analyzing data that has already been staged for processing — for example if there is a need to reprocess data with417

an updated algorithm or parameter setting — leading to further speedups. Next we turn to cost analyses. Over418

the range of algorithms and datasets considered here, we found that the overall NeuroCAAS analysis cost was on419

the order of a few US dollars per dataset (Figure 10A, right panels). In addition to our baseline implementation,420

we also offer an option to run analyses at a significantly lower price (indicated as “Std” and “Save” respectively421

in the cost barplots in Figure 10), if the user can upper bound the expected runtime of their analysis to anything422

lower than 6 hours (i.e. from previous runs of similar data, or complexity estimates).423

Finally, we compare the cost of NeuroCAAS directly to the cost of purchasing local infrastructure. We424

use a total cost of ownership (TCO) metric (Morey and Nambiar, 2009) that includes the purchase cost of local425

hardware, plus reasonable maintenance costs over estimates of hardware lifetime; see §5.3 for full details. We426

first ask how frequently one would have to run the analyses presented in Figure 10 before it becomes worthwhile427

to purchase dedicated local infrastructure. This question is answered by the Local Cost Crossover (LCC): the428

threshold weekly rate at which a user would have to analyze data for NeuroCAAS costs to exceed the TCO of429

local hardware. As an example, the top two bars of Figure 10B, left, show that in order for a local machine to430

be cost effective for CaImAn, one must analyze ∼100 datasets of 8.39 GB per week, every week for several years431

(see Table 5 for a conversion to data dimensions). In all use cases, the LCC rates in Figure 10B show that a432

researcher would have to consistently analyze ∼ 10 − 100 datasets per week for several years before it becomes433

cost effective to use local infrastructure. While such use cases are certainly feasible, managing these use cases on434

local infrastructure via IaGS would involve an incredible amount of human labor.435

In Figure 10C, we characterize this labor cost via the Local Utilization Crossover (LUC): the actual time cost436

of analyzing data on a local machine at the corresponding LCC rate. Across the analyses that we considered,437

local infrastructure would have to be dedicated to the indicated analysis for 25-50% of the infrastructure’s total438

lifetime (i.e. ∼6-12 hours per day, every day) to achieve its corresponding LCC threshold, requiring an inordinate439

amount of work on the part of the researcher to manually run datasets, monitor analysis progress for errors, or440

build the computing infrastructure required to automate this process– in essence forcing researchers to perform441

by hand the large scale infrastructure management that NeuroCAAS achieves automatically. These calculations442

demonstrate that even without considering all of the IaGS issues that our solution avoids, it is difficult to use443

local infrastructure more efficiently than NeuroCAAS. Given the variability of infrastructure availability, we444

also provide a tool for users to benchmark their available infrastructure options against NeuroCAAS (see the445

instructions at https://github.com/cunningham-lab/neurocaas).446

3.4 NeuroCAAS is offered as a free service for many users447

In many cases, researchers may use infrastructure available on hand to test out analyses before purchasing a dedi-448

cated infrastructure stack for their analyses. Given the low per-dataset cost and the major advantages summarized449

above of NeuroCAAS compared to the current IaGS status quo, we have decided to mirror this model on the450

NeuroCAAS platform, and subsidize a large part of NeuroCAAS usage by the community. Users do not need451
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to set up any billing information or worry about incurring any costs when starting work on NeuroCAAS; we452

cover all costs up to a per-user cap (intially set at $300). This subsidization removes one final friction point that453

might slow adoption of NeuroCAAS, and protects NeuroCAAS as a non-commercial open-source effort. Since454

NeuroCAAS is relatively inexpensive, many users will not hit the cap; thus, for these users, NeuroCAAS is455

offered as a free service.456
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4 Discussion457

NeuroCAAS integrates rigorous infrastructure practices into neural data analysis while also respecting current458

development and use practices. NeuroCAAS introduces automated infrastructure management methods via459

our immutable analysis environments (IAEs), job managers, and resource banks that can be easily encoded in460

a blueprint to reliably handle the increasingly large and complex infrastructure that has become characteristic461

of modern approaches to neuroscience. As representatives of NeuroCAAS’s potential, we present IaC based462

analyses that address infrastructure issues in ways that are qualitatively distinct from an IaGS approach. Finally,463

we show that the scientific virtues of NeuroCAAS are accompanied by increases in efficiency, reducing both the464

time and cost required to run neuroscience data analyses.465

The fundamental choice made by NeuroCAAS is to provide analysis infrastructure with as much automation466

as possible. This choice naturally makes NeuroCAAS into a service, such that neither analysis users nor analysis467

developers have to introduce a new library or framework into their analysis and development practices; rather,468

NeuroCAAS removes the infrastructure burden entirely. Such a choice is a tradeoff worth making explicit:469

— What NeuroCAAS does. NeuroCAAS provides the user an interface to the analysis method that functions470

exactly as intended by the developer. For the developer, NeuroCAAS provides a user-independent approach to471

analysis configuration that alleviates the burden of maintaining an open source project across diverse computing472

environments, and simultaneously frees developers to design infrastructure to be as powerful or complicated as is473

optimal without being constrained by accessibility concerns. These benefits to analysis users and developers will474

collectively tighten the feedback loop between experimental and computational neuroscientists.475

— What NeuroCAAS does not do. First, NeuroCAAS does not aim to improve the scientific use of neural data476

analysis algorithms. For example, if a user has data that is incorrectly formatted for a particular algorithm, the477

same error will happen with NeuroCAAS as it would with conventional usage. However, this statement does not478

suggest that analyses on NeuroCAAS are a black box. All NeuroCAAS analyses are built from open source479

projects, and the workflow scripts used to parse datasets and config files inside an IAE are made available to480

all analysis users. Furthermore, our novel analyses show that there are means of comprehensively characterizing481

analysis performance that only become available at scale (i.e. full parameter searches over a multi-step analysis,482

or ensembling to generate more reliable uncertainty metrics).483

Second, NeuroCAAS is not a scientific workflow management system. Workflow management systems for484

neuroscience such as Datajoint (Yatsenko et al., 2015) or more general tools like snakemake (Koster and Rahmann,485

2012) and the Common Workflow Language (Amstutz et al., 2016) codify the sequential steps that make up a486

data analysis on given infrastructure, ensuring data integrity and provenance. While the design of NeuroCAAS487

incorporates some level of workflow management, our main goal is not to schematize analysis workflow. Instead,488

our goal is to organize and automate the work that must be done to make a given data analysis functional, efficient,489

and accessible. This goal is orthogonal and complementary to applications that explicitly provide tools to make490

rigorous the data infrastructure connecting experiment to database and data processing.491

Third, NeuroCAAS is not unstructured access to cloud computational resources. The concept of IAEs492

should clarify this fact: NeuroCAAS serves a set of analyses that are configured to a particular specification,493

as established by the analysis developer. This constraint is often ideal, since the specification is in many cases494

established by the analysis method’s original authors. Further, it must been noted that these constraints are the495

source of NeuroCAAS’s benefits to accessibility, scale, and reproducibility. Without specific structure to manage496

the near infinite scale of resources available on the cloud, the management of resources on the cloud easily becomes497

susceptible to the issues of IaGS that motivated the development of NeuroCAAS to begin with (Monajemi et al.,498

2019). This constraint distinguishes NeuroCAAS from data analysis offerings like Google Colab, in keeping with499

their differing intended use cases. With time-limited access to GPU-backed jupyter notebooks, Google Colab is500

useful for one-off interactive jobs, but is limited in scale and reliability of available infrastructure. Colab allows501

access to only one GPU at a time and a timeout of 12 hours per machine assuming constant interaction, and the502

specifics of resource type fluctuate without notice (Google Research, 2017). Although this statistic is unpublished,503

in practice unmonitored GPUs can be reclaimed in as little as 30 minutes.504

By virtue of its open source code and public cloud construction, NeuroCAAS will naturally continue to evolve.505

First, we hope to build a community of developers who will add more analysis algorithms to NeuroCAAS, with an506

emphasis on subfields of computational analysis that we do not yet support. We also plan to add support for real-507

time processing (e.g., Giovannucci et al. (2017) for calcium imaging, or Schweihoff et al., 2019, Kane et al., 2020 for508
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closed-loop experiments, or Lopes et al. (2015) for the coordination of multiple data streams). Second, other tools509

have brought large-scale distributed computing to neural data analyses (Freeman, 2015, Rocklin, 2015) in ways that510

conform to more traditional high performance computing ideas of scalability for applications that are less easily511

parallelized than those presented here. Integrating more elaborate scaling into NeuroCAAS while maintaining512

development accessibility will be an important goal going forwards. Third, to facilitate more interactive workflows513

on larger datasets, we plan further integration with database systems such as Datajoint (Yatsenko et al., 2015)514

and data archives like DANDI (distributed archives for neurophysiology data integration) (Dandi Team, 2019).515

Finally, a major opportunity for future work is the integration of NeuroCAAS with modern visualization tools.516

We have emphasized above that immutable analysis environments on NeuroCAAS are designed with the ideal of517

fully automated data analyses in mind, because of the virtues that automation brings to data analyses. However,518

we recognize that for some of the core analyses on NeuroCAAS, and indeed most of those popular in the field,519

some user interaction is required to optimize results. We will aim establish a general purpose configuration path520

in the spirit of the user interface we have built for our widefield calcium imaging analysis, with which analysis521

developers can also serve an interactive user interface without sacrificing the benefits of cost efficiency, scalability,522

and reproducibility that distinguish NeuroCAAS in its current form.523

Longer term, we hope to build a sustainable and open-source user and developer community around Neu-524

roCAAS. We welcome suggestions for improvements from users, and new analyses as well as extensions from525

interested developers, with the goal of creating a sustainable community-driven resource that will enable new526

large-scale neural data science in the decade to come.527
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Figure 11: NeuroCAAS design diagram. NeuroCAAS is built with an Infrastructure-as-Code design, meaning
that we first write a source repo (top) specifying all of the actual resources we will use to carry out data processing
(bottom). The source repo (top) contains three main types of code: User Profiles, specifying relevant user data;
Analysis Blueprints, describing individual analyses on NeuroCAAS, and Protocols, giving rules that describe
NeuroCAAS job manager function. Each user and each analysis in NeuroCAAS has a dedicated code document,
as specified by indices (u, b). All parts of the source repo can independently be deployed, automatically provisioning
and configuring the infrastructure resources specified therein. Deployment comprehensively generates the resources
necessary to run analyses on NeuroCAAS. Notably, infrastructure stacks (bottom right) are not persistent,
but rather are instantiated every time users request an analysis job, specified as a combination of datasets and
parameter configurations (bottom left). Job managers deploy one infrastructure stack for each requested job, as
specified by the index j. The contrib and interface repo assist in the deployment of resources from the source
repo, and and the management of resulting resources. Section numbers refer to relevant parts of the main text.

5 Materials and methods528

5.1 NeuroCAAS architecture specifics529

The software supporting the NeuroCAAS platform has been divided into three separate Github repositories. The530

first, https://github.com/cunningham-lab/neurocaas is the main repository that hosts the Infrastructure-as-531

Code implementation of NeuroCAAS. We will refer to this repository as the source repo throughout this section.532

The source repo is supported by two additional repositories: https://github.com/cunningham-lab/neurocaas_533

contrib hosts contribution tools to assist in the development and creation of new analyses on NeuroCAAS,534

and https://github.com/jjhbriggs/neurocaas_frontend hosts the website interface to NeuroCAAS. We535

will refer to these as the contrib repo and the interface repo respectively throughout this section. We discuss the536

relationship between these repositories in the following section, and in Figure 11. At the time of submission, we have537

released all three of these repositories (version 1.0.1 for the source and contrib repo, version 1.0.0 for the interface538

repo). All releases are documented on Zenodo, with DOIs 10.5281/zenodo.4885097, 10.5281/zenodo.4884713, and539

10.5281/zenodo.4851187, respectively.540
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5.1.1 Source Repo541

The Platform section gives an overview of how NeuroCAAS encodes individual analyses into blueprints, and542

deploys them into full infrastructure stacks, following the principle of Infrastructure-as-Code (IaC). This section543

presents blueprints in more depth and show how the whole NeuroCAAS platform can be managed through544

IaC, encoding features such as user data storage, credentials, and logging infrastructure in code documents anal-545

ogous to analysis blueprints as well. All of these code documents, together with code to deploy them, make546

up NeuroCAAS’s source repo. There is a one-to-one correspondence between NeuroCAAS’s source repo and547

infrastructure components: deploying the source repo provides total coverage of all the infrastructure needed to548

analyze data on NeuroCAAS (Figure 11, bottom).549

Within the source repo, each NeuroCAAS blueprint (see Figure 14 for an example) is formatted as a JSON550

document with predefined fields. The expected values for most of these fields identify a particular cloud resource,551

such as the ID for an immutable analysis environment, or a hardware identifier to specify an instance within552

the resource bank (Lambda.LambdaConfig.AMI and Lambda.LambdaConfig.INSTANCE TYPE in Figure 14,553

respectively). Upon deployment, these fields determine the creation of certain cloud resources: AWS EC2 Amazon554

Machine Images in the case of IAE IDs, and AWS EC2 Instances in the case of hardware identifiers. One notable555

exception is the protocol specifying behavior of a corresponding NeuroCAAS job manager (Lambda.CodeUri556

and Lambda.Handler in Figure 14). Instead of identifying a particular cloud resource, each blueprint’s protocol is557

a python module within the source repo that contains functions to execute tasks on the cloud in response to user558

input. The ability to specify protocols in python allows NeuroCAAS to support the complex workflows shown559

in Figure 8. Job managers are deployed from these protocols as AWS Lambda functions that execute the protocol560

code for a particular analysis whenever users submit data and parameters.561

Another major aspect of NeuroCAAS’s source repo that is not discussed in the Platform section is the562

management of individual users. NeuroCAAS applies the same IaC principles to user creation and management563

as it does to individual analyses. To add a new user to the platform, NeuroCAAS first creates a corresponding564

user profile in the source repo (Figure 11, right), that specifies user budgets, creates private data storage space,565

generates their (encrypted) security credentials, and identifies other users who they collaborate with. Users566

resources are created using the AWS Identity and Accesss Management (IAM) service.567

5.1.2 Contrib and Interface Repos568

Given only the NeuroCAAS source repo, analyses can be hosted on the NeuroCAAS platform and new users569

can be added to the platform simply by deploying the relevant code documents. However, interacting directly with570

resources provided by the NeuroCAAS source repo can be challenging for both analysis users and developers. For571

developers, the steps required to fill in a new analysis blueprint may not be clear, and the scripting steps necessary572

within an IAE to retrieve user data and parameters requires knowledge of specific resources on the Amazon Web573

Services cloud. For users, the NeuroCAAS source repo on its own does not support an intuitive interface or574

analysis documentation, requiring users to interact with NeuroCAAS through generic cloud storage browsers,575

forcing them to engage in tedious tasks like navigating file storage and downloading logs before examining them.576

Collectively, these tasks lower the accessibility that is a key part of NeuroCAAS’s intended design. To handle577

these challenges, we created two additional code repositories, the NeuroCAAS contrib repo and interface repo,578

for developers and users, respectively.579

The NeuroCAAS contrib repo supports a command line tool and python code to streamline the process of580

developing and creating new NeuroCAAS analyses. During the development process, the NeuroCAAS contrib581

repo can create infrastructure stacks independently of input-triggered job managers for a limited time, allowing582

developers to build and test IAEs interactively on powerful hardware instances (Figure 11, bottom right), and583

populate the analysis blueprint as they go. Then, when a new analysis is ready to be used on NeuroCAAS, the584

NeuroCAAS contrib repo automatically versions the entire source repository after integrating and deploying the585

new blueprint, generating a unique analysis version ID. All NeuroCAAS analyses can be updated only by directly586

editing blueprints, and blueprints are assigned a new analysis version ID every time that they are updated. By587

enforcing a tight correspondence between blueprints and analyses, we ensured the reproducibility of all analyses588

conducted via NeuroCAAS, regardless of ongoing updates to the underlying infrastructure or algorithm (Figure589

11, top right). With an analysis version ID, it is possible to replicate results that were generated with older versions590

of some analysis algorithm, making this a particularly useful feature for users processing data with an analysis591
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NeuroCAAS Benchmarked Analyses

Analysis
Name

Storage Memory GPU CPU
count

OS Job
Monitor

Resource
Usage

Version
Control

Packages

CaImAn 500 GB
SSD

275 GB N/A 64
vCPU1

Ubuntu
16.04
(Linux
HVM)

stdout CPU
Utiliza-
tion

Github pip
require-
ments
file

DeepLabCut 200 GB
SSD

65 GB Nvidia
Tesla
K80

4
vCPU2

Ubuntu
16.04
(Linux
HVM)

stdout CPU
Utiliza-
tion

Github conda
environ-
ment
file

PMD 75 GB
SSD

275 GB N/A 64
vCPU1

Ubuntu
18.04
(Linux
HVM)

stdout CPU
Utiliza-
tion

Github Conda
Package

LocaNMF 75 GB
SSD

65 GB Nvidia
Tesla
V100

8
vCPU3

Ubuntu
16.04
(Linux
HVM)

stdout CPU
Utiliza-
tion

Github Conda
Package

1 Intel Xeon Platinum 8000 series (Skylake-SP): https://aws.amazon.com/ec2/instance-types/m5/
2 Intel Broadwell (AWS): https://aws.amazon.com/blogs/aws/new-p2-instance-type-for-amazon-ec2-up-to-

16-gpus/
3 Intel Xeon E5-2686v4: https://aws.amazon.com/blogs/aws/new-amazon-ec2-instances-with-up-to-8-

nvidia-tesla-v100-gpus-p3/
Table 2: Infrastructure details for benchmarked algorithms. Job Monitor refers to the mechanisms used to track
the status of ongoing jobs. Resource Usage refers to the hardware diagnostics tracked by NeuroCAAS. Version
Control refers to the version control mechanisms used to maintain fidelity of core analysis code. Packages refers
to the mechanisms used to handle analysis dependencies.

that is still actively being developed. The NeuroCAAS contrib repo contains a detailed guide for developers to592

get started with NeuroCAAS.593

The NeuroCAAS interface repo supports the website interface to NeuroCAAS, hosted at www.neurocaas.594

org. In addition to providing documentation and a simpler user interface, (Figure 11, bottom left) the interface595

repo automatically creates and deploys user profiles when users sign up, significantly increasing the potential scale596

of the platform (Figure 11, top left). This website based user credentialing system can be referenced by other user597

interfaces as well, as is done in https://github.com/jcouto/wfield. If users wish to share analysis access and598

data with other users, they can also use the website to create and request unique ”group codes” at sign up, that599

they can use to invite other users into the same group. Doing so allows them to easily share analysis access with600

others.601

5.2 Novel Analyses602

For each novel analysis, we provide some details on its component infrastructure stacks, as well as details on603

relevant development outside the NeuroCAAS framework we have already presented.604

5.2.1 Widefield Imaging605

The Widefield Calcium Imaging analysis that we present involves two independent infrastructure stacks, with606

the second taking as input the results of the first. The first infrastructure stack performs motion correction,607

denoising, compression, and hemodynamic correction, and is performed on an instance with 64 virtual cores608

(further infrastructure details are identical to the ”PMD” row of Table 2). The second infrastructure stack609

performs demixing of denoised, corrected widefield imaging data, and is performed on an instance with a Tesla610

V100 GPU (further infrastructure details are identical to the ”LocaNMF” row of Table 2). In addition to these611
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NeuroCAAS Local Simulation

Analysis
Name

Storage Memory GPU CPU
count

OS Job
Monitor

Resource
Usage

Version
Control

Packages

CaImAn 500 GB
SSD

17 GB N/A 4
vCPU1

Ubuntu
16.04
(Linux
HVM)

stdout None github Pip
require-
ments
file

DeepLabCut 200 GB
SSD

65 GB Nvidia
Tesla
K80

4
vCPU2

Ubuntu
16.04
(Linux
HVM)

stdout None github Conda
Package

PMD 75 GB
SSD

131 GB N/A 16
vCPU3

Ubuntu
18.04
(Linux
HVM)

stdout None Github Conda
Package

LocaNMF 75 GB
SSD

65 GB Nvidia
Tesla
K80

4
vCPU2

Ubuntu
16.04
(Linux
HVM)

stdout None github Conda
Package

1 AMD EPYC 7000 Series: https://aws.amazon.com/ec2/instance-types/m5/
2 Intel Broadwell (AWS): https://aws.amazon.com/blogs/aws/new-p2-instance-type-for-amazon-ec2-up-to-

16-gpus/
3 Intel Xeon E5 Broadwell Processors: https://aws.amazon.com/blogs/aws/new-next-generation-r4-

memory-optimized-ec2-instances/
Table 3: Details of infrastructure used to simulate local processing. The column labels mirror those in Table 2

.

Pricing List

Resource Metrics Rate

EC2 (Compute) Time Hardware Depen-
dent, Fluctuates

Lambda
(Workflow)1

Data Size × Time $1.66667 × 1e−5
per GB-second

S3 (Data Transfer
Out)2

Data Size $0.09 per GB

1 AWS Lambda is also priced for number of requests, but
this is a negligible cost for a single analysis run.

2 Data Transfer is only priced out of Amazon Web Services,
i.e. in returning results to the end user.
Table 4: Pricing details for implemented algorithms

two infrastructure stacks, we developed a custom graphical user interface (available for download at https:612

//github.com/jcouto/wfield). This user interface integrates with the credentials generated for users on the613

NeuroCAAS website, allowing users who have signed up via the website to use the GUI with an existing account.614

The GUI hosts a number of initialization steps on the user’s local machine, involving selection of parameters615

and alignment of data to landmarks on a given brain atlas. The GUI is also able to upload data directly to616

NeuroCAAS cloud storage, submit jobs, and monitor their progress. Next, the GUI is able to detect when the617

first step of processing is completed, and submits the relevant results files as input to the second step, mimicking618

the steps a user would take manually to manage this process. Finally, when all processing is complete the GUI619

retrieves analysis results back to the user’s local machine. For more details on implementation of each analysis620

step, please see Couto et al. (2020).621
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Dataset Details

Analysis Format Size (Small) Dim (Small) Size
(Medium)

Dim
(Medium)

Size (Large) Dim (Large)

CaImAn zipped
tiff

8.39GB 8000×512×
5121

35.84GB 41000 ×
458× 4771

78.70GB 90000 ×
463× 4722

DeepLabCut mpeg 5× 214.8MB 5 × 36000 ×
340× 4203

10×214.8MB 10×36000×
340× 4203

15×214.8MB 15×36000×
340× 4203

PMD +
LocaNMF

numpy
array

1× 20.1GB [500× 600×
1697, 1697 ×
8979]4

3× 20.1GB [500× 600×
1697, 1697 ×
8979];
[500× 600×
1652, 1652 ×
9000];
[500× 600×
2298, 2298 ×
8988]4

5× 20.1GB [500× 600×
1697, 1697 ×
8979];
[500× 600×
1652, 1652 ×
9000];
[500× 600×
2298, 2298 ×
8988];
[500× 600×
2304, 2304 ×
8992];
[500× 600×
1910, 1910×
8952]4

1 [Time × X × Y] at 7 hz Giovannucci et al. (2019)
2 [Time × X × Y] at 30 hz Giovannucci et al. (2019)
3 [Batch × Time × X × Y ] at 30 hz
4 [X × Y × Rank, Rank × Time] at 30 Hz

Table 5: Details of the datasets used to benchmark performance. Sizes given for the three datasets tested for
each pipeline shown. Dataset dimensionality labels are included in footnotes provided.

5.2.2 Ensemble Markerless Tracking622

The deep ensembling analysis that we present is also performed is two separate infrastructure stacks, but both the
initial training and the consensus output generation steps are performed on the same type of infrastructure. In
both cases, we use an instance equipped with a Tesla V100 GPU, otherwise identical to the infrastructure shown
in the DeepLabCut row of Table 2). We trained DeepGraphPose with the default training settings provided in the
file run dgp demo.py, on the “twomice-top-down” data from the DeepGraphPose paper (Wu et al., 2020). That
paper provides full videos of analysis of this dataset using a single DeepGraphPose model. To enable ensembling,
we built a separate set of ensembling tools that work with DeepGraphPose (Wu et al., 2020) - they can be found
at https://github.com/cunningham-lab/neurocaas_ensembles. In order to create a consensus output, we
averaged the confidence maps from each model in an ensemble in the following way: Given a set of N trained DGP
networks, φi, i ∈ 1 . . . N , and a video frame, F ∈ RX×Y×3. Assume that the network has been trained to track a
single body part (the general case follows immediately), and take the scoremap outputs (unnormalized likelihoods)
on this image from the output convolutional layer, denoted φsci (F ), where each scoremap φsci (F ) ∈ RX×Y×3. These
scoremap outputs are unnormalized likelihoods representing the probability that the body part of interest is located
in any individual pixel of the image. Then, we can compute the mean scoremap for a given image as:

φ̄sc(F ) = S−1(
1

N

∑
i

S(φsci (F ))) (1)

Where S is the elementwise sigmoid function. The consensus output is then calculated from the softargmax623

function of this mean scoremap.624

Furthermore, to calculate the rmse error, we use the following metric: Assume we have detections for all of the
test frames in a video as a tensor, x ∈ RT×D×C , with entries xtdc, where t represents the frame index, d the part
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index, and c the coordinate ∈ [x, y]. Likewise, we have groundtruth data g with entries gtdc of the same dimension.
Then the error is calculated as follows:

RMSE(x, g) =

√∑
t,d,c[(xtdc − gtdc)2]

T
(2)

Details and implementation can be found in the repository https://github.com/cunningham-lab/neurocaas_625

ensembles, and the full analysis is available for use at http://neurocaas.org/analysis/14.626

5.3 Benchmarking algorithms on NeuroCAAS627

For each analysis currently on NeuroCAAS, the specific infrastructure choices in the corresponding blueprint628

(Figure 11, right) are given in Table 2. To meaningfully benchmark NeuroCAAS against current standards, we629

simulated corresponding local infrastructure. Local infrastructure was also built on AWS, and spans resources630

comparable to personal hardware and cluster compute, depending on the use case (see Table 3). As a general631

guideline, we chose local infrastructure representatives that would reasonably be available to a typical researcher,632

unless the datasets we considered required more powerful resources. To account for the diversity of resources633

available to neuroscience users, we offer alternative quantifications to those presented in Figure 10 in the supple-634

mentary methods (see Figure 15), and make performance quantification data and calculations available to users635

who would like to compare to their own infrastructure through a custom tool on our project repository (see636

README: https://github.com/cunningham-lab/neurocaas).637

For each analysis that we benchmarked on NeuroCAAS, we chose three datasets of increasing size as rep-638

resentative use cases of the algorithms in question. The size differences of these datasets reflect the diversity of639

potential use cases among different users of the same algorithm. The CaImAn benchmarking data consists of640

datasets N.02.00, J 123, J 115 from the data shared with the CaImAn paper (Giovannucci et al., 2019). Bench-641

mark analysis is based on a script provided to regenerate Figure 10 of the CaImAn paper. Note that although this642

data could be batched, we choose to maintain all three datasets as contiguous wholes. DeepLabCut benchmarking643

data consists of behavioral video capturing social interactions between two mice in their home cage. Data is pro-644

vided courtesy of Robert C. Froemke and Ioana Carcea, as analyzed and presented in Carcea et al. (2019). Data645

processing consisted of analyzing these videos with a model that had previously been trained on other images from646

the same dataset. The same dataset was used to benchmark PMD and LocaNMF as a single analysis pipeline647

with two discrete parts. Input data consist of the dataset (“mSM30”), comprising widefield calcium imaging data648

videos, provided courtesy of Simon Musall and Anne Churchland, as used in Musall et al. (2019) and Saxena et al.649

(2020). The full dataset is available in a denoised format at http://repository.cshl.edu/id/eprint/38599/.650

Data processing on NeuroCAAS consisted of first processing the raw videos with PMD, then passing the resulting651

output to LocaNMF. Further details on the datasets used can be found in Table 5.652

We split the time taken to run analyses on NeuroCAAS into two separate quantities. First, we quantified the653

time taken to upload data from local machines to NeuroCAAS, denoted as NeuroCAAS (Upload) in Figure654

10. This time depends upon the specifics of the internet connection that is being used. It is also a one time655

cost: once data is uploaded to NeuroCAAS, it can be reanalyzed many times without incurring this cost again.656

Upload times were measured from the same NeuroCAAS interface made available to the user. (This upload657

time was skipped in the quantification of local processing time.) Second, we automatically quantified the total658

time elapsed between job submission and job termination, when results have been delivered back to the end user659

in the NeuroCAAS interface (denoted as NeuroCAAS (Compute) in Figure 10) via AWS native tools (see660

Supplementary Methods for details, and use of this data for Figure 6). Local timings were measured on661

automated portions of workflow in the same manner as NeuroCAAS (Compute).662

We quantified the cost of running analysis on NeuroCAAS by enumerating costs of each of the AWS resources663

used in the course of a single analysis. Costs can be found in Table 4. We provide the raw quantification data and664

corresponding prices in Table 4. To further reduce costs, we also offer the option to utilize AWS Spot Instances665

(dedicated duration); these are functionally identical to standard compute instances, but are provisioned for666

a pre-determined amount of time with the benefit of significantly reduced prices. We provide the estimated667

cost of running analyses with both of these options in Figure 10, with quantifications labeled “NeuroCAAS668

Save” corresponding to analyses run with dedicated duration spot instances, and those labeled “NeuroCAAS669
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Std” corresponding to those run with standard instances. For more on Spot Instance price quantification, see670

Supplementary Methods.671

With simulated local infrastructures on AWS in hand, costs were calculated by pricing analogous computing
resources as if the user had purchased them for a personal workstation, or as if they had been allocated to the user
on an on-premises cluster (Table 8). In Figure 10, we assume that the local infrastructures considered are hosted
on typical local laptop or desktop computing resources, supplemented with the resources necessary to run analyses
as they were done on NeuroCAAS (additional storage, memory, GPU, etc), while maintaining approximate parity
in processor power. We referred to (Morey and Nambiar, 2009) to convert pricetag costs of local machines to
Equivalent Annual Costs, i.e. the effective cost per year if we assume our local machines will remain in service
for a given number of years, as our implementation of a TCO calculation (as is often done in industry). Given
a price tag cost xlocal, an assumed lifetime n, an annuity rate r, and cs(n) defined as the estimated annual cost
of local machine support given a lifetime n, we follow Mahvi and Zarfaty (2009), Morey and Nambiar (2009) in
calculating the Equivalent Annual Cost as:

EAC(xlocal, n, r) =
xlocal

1−(1+r)−n

r

+ cs(n).

Here cs(n) is provided in the cited paper (Morey and Nambiar, 2009), estimated from representative data across672

many different industries. The denominator of the first term is an annuity factor. We consider two different values673

for n, which we label as “realistic” (2 years) and “optimistic” (4 years) in the text. In industry, 3-4 years is the674

generally accepted optimal lifespan for computers, after which support costs outweigh the value of maintaining an675

old machine (“Pilot Study”, 2004, Mahvi and Zarfaty, 2009, Morey and Nambiar, 2009). Some have argued that676

with more modern hardware, the optimal refresh cycle has shortened to 2 years (J.Gold Associates LLC, 2014).677

By providing quantifications assuming two and four year refresh cycle, we consider the short and long end of this678

generally discussed optimal range.679

Given a per-dataset NeuroCAAS cost xNeuroCAAS, we further derive the Local Cost Crossover (LCC), the
threshold weekly data analysis rate at which it becomes cost-effective to buy a local machine. The LCC is given
by:

LCC(xlocal, n, r, xNeuroCAAS) =
EAC(xlocal, n, r)

52× xNeuroCAAS
.

Furthermore, given the per-dataset local analysis time, we can estimate the corresponding Local Utilization
Crossover (LUC). The LUC considers the LCC in the context of the maximal achievable data analysis rate on
local infrastructure as calculated in the previous section. If the time taken to analyze a dataset on a local machine
is given by tlocal (in seconds), The LUC is given by:

LUC(tlocal, xlocal, n, r, xNeuroCAAS) =
LCC(xlocal, n, r, xNeuroCAAS)× tlocal × 100

604800
.

5.4 Survey of Analyses and Platforms680

We characterized data analysis infrastructure as consisting of three hierarchical parts (Dependencies, System,681

Hardware), segmented consistently with infrastructure descriptions referenced elsewhere (Demchenko et al., 2013,682

Zhou et al., 2016). In several different subfields of neuroscience, we then selected 10 recent or prominent analysis683

techniques, and asked how they fulfilled each component of data analysis infrastructure to generate Figure 1D.684

We denoted a particular infrastructure component as supported if it is referenced in the relevant installation and685

usage guides as being provided in a reliable, automated manner (e.g., automatic package installation via pip).686

Survey details are provided in tables 6, 7. We addressed the question of how data analyses are installed and used687

with these surveys in the tradition of the open source usability literature. Surveys such as these are standard688

methodology in this field, which relies upon empirical data from studies of user’s usage habits (Nichols et al., 2001,689

Zhao and Deek, 2005), developer sentiment (Terry et al., 2010), and observation of user-developer interactions via690

platforms like Github (Cheng and Guo, 2018).691

To generate Figure 7, we first quantified the traffic and infrastructure experienced by individual analyses by692

examining their Github pages, and taking the maximum of the number of forks, stars, and watchers, or downloads693

if listed as well as the listed hardware requirements of each analysis (numbers as of September 2020). We then694

overlaid several exemplar platforms based on the analyses that they supported, as well as restrictions based on695
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Calcium Imaging
Algorithm Name Publication Software

Version
Package
Version

OS con-
fig

Batch
Script-
ing

Other
Pro-
cesses

Storage Memory GPU CPU

CaImAn Giovannucci et al.
2017

X X X X X X

CNMF-E Zhou et al. 2018 X X X X X X X

Suite2p Pachitariu et al.
2017

X X X X X X

ABLE Reynolds et al.
2017

X X X X X X

SCALPEL Petersen et al.
2018

X X X X X X X

Min1PIPE Lu et al. 2018 X X X X X X

SamuROI Rueckl et al. 2017 X X X X X X X X

Romano Romano et al.
2017

X X X X X X X

FISSA Keemink et al.
2018

X X X X X X

OASIS Friedrich et al.
2017

X X X X X X X

Percentage Supporting 90% 80% 0% 50% 0% 0% 0% 0% 0%

Table 6: Infrastructure support for Calcium Imaging Algorithms. Labels mirror those in Table 2.

Behavioral Quantification.
Algorithm Name Publication Software

Version
Package
Version

OS con-
fig

Batch
Script-
ing

Other
Pro-
cesses

Storage Memory GPU CPU

DeepLabCut Mathis et al.
2018

X X X X X X

DeepFly3D Günel et al. 2019 X X X X X X X

JAABA Kabra et al. 2012 X X X X X X X

Ctrax Branson et al.
2009

X X X X X X

DeepPoseKit Graving et al.
2019

X X X X X X X X

Ethovision —- X X X X X X X

APT —- X X X X X X

bonsai Lopes et al. 2015 X X X X X X X X

Miceprofiler de Chaumont et
al. 2012

X X X X X X X

LEAP Pereira et al.
2018

X X X X X X X

Percentage Supporting 90% 90% 20% 10% 0% 0% 0% 0% 0%

Table 7: Infrastructure support for Behavioral Quantification Algorithms. Labels mirror those in Table 2.

the accessibility and scale requirements imposed by each (local hardware, limitation to one analysis at a time),696

taking care to include analyses that the platforms supported in practice.697

28

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2020.06.11.146746doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.146746
http://creativecommons.org/licenses/by-nc/4.0/


Cost (Local)

Algorithm Name vCPU
count

GPU Memory Storage
Capacity

Workstation
Price, US Dollars
(Estimated Price
Tag Cost)

Cluster Price,
US Dollars (Es-
timated Price
Tag Cost from
Amazon TCO
Calculator)

CaImAn 4 N/A 16 GiB 500 GB 16182 1499+1000
DeepLabCut 4 Tesla

K80
61GiB 200 GB 31203 1701+400+15555

PMD + Lo-
caNMF 1

16 Tesla
K80

122 GiB 150 GB 54364 10836+300+15555

1 Cost for PMD and LocaNMF refers to hardware cost for a local instance that can account for
processing done on both.

2 https://www.newegg.com/p/1TS-000D-052P6
3 https://www.newegg.com/p/1VK-001E-1SVY3?Item=9SIADB38AG7178&Description=1080%

20ti%20workstation%2064%20gB%204%20core&cm_re=1080_ti_workstation_64_gB_4_core-_-

1VK-001E-1SVY3-_-Product
4 https://www.newegg.com/p/1VK-001E-1A6V1
5 https://www.vgastore.com/2023019/hp-j0g95a-tesla-k80-24gb-384-bit-gddr5-pci-e-3-

0-x16-graphics-card
Table 8: Instance and hardware cost details for local cost comparisons. Estimated Price tag prices as of May
3rd, 2020. Price tag estimation of workstation style hardware was based on market prices chosen to reflect
the infrastructure implementation as given in Table 3, in particular, CPU make. Estimation of cluster style
hardware cost was based on the AWS TCO calculator (https://awstcocalculator.com), as of January 25th,
2020, incorporating the total server hardware cost (undiscounted) and acquisition cost of SAN storage.
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9 Supplementary Methods987

9.1 Managing users from user profiles988

On NeuroCAAS, users resources were defined in code via JSON documents we call user profiles. New users were989

registered by filling in a corresponding user profile, which was then deployed to automatically generate storage990

space, dedicated login credentials, and permissions to use analyses for the user. The user profile is similar in format991

to the UXData segment of the blueprint as given in Figure 14, and can be found in the NeuroCAAS codebase992

online.993

Deploying user profiles created a secure, virtualized storage location where users could store their data on994

NeuroCAAS before and in between analyses. Data storage on NeuroCAAS is shared within a user group (i.e.995

a lab), but private to all other parties. In Figure 10, NeuroCAAS Upload time refers to the time required to996

upload data from local machines to this storage- once uploaded, data can be deleted post analysis or maintained997

over the course of several analyses. Maintaining data post analysis cuts out NeuroCAAS Upload time on998

subsequent upload events.999

User credentials are automatically generated upon new user sign up. Permissions to use analyses can be1000

managed in a variety of ways. During the active development phase, permissions can be given to individual1001

users by updating NeuroCAAS blueprints with the information of these newly added users, and redeploying the1002

analysis in question- these analysis-centric permissions are best suited to analyses where one wishes to invite a1003

small number of test users. Upon redeployment, the corresponding job manager begins monitoring this new user1004

for analysis requests. Once analyses are stable, they can instead be accessed with user-centric permissions: when1005

new user groups are created, they can have a pre-determined list of analyses that they will have access to from the1006

outset. Importantly, both user centric and developer centric permissions schemes do not disrupt ongoing analysis1007

jobs.1008

9.2 Automatic compute benchmarking1009

The duration of NeuroCAAS Compute and Local analysis time was recorded automatically with cloud native1010

resource monitoring tools (AWS Lambda, AWS Cloudwatch Events, and AWS S3). These tools automatically1011

recorded the creation and destruction of instances, and recorded the relevant timestamps at millisecond resolution.1012

These monitoring tools were also managed via NeuroCAAS blueprints, and their design can be found in the same1013

blueprint codebase. The same tools were used to calculate the usage data shwon in Figure 6. We do not disclose1014

user data at an individual level, but developers can generate the same figures for users of their own analysis by1015

using the NeuroCAAS contrib repo (specific instructions are given in the source repo’s README file).1016

9.3 Spot instance pricing1017

The virtualized hardware underlying a hardware instance can be provisioned at several different prices. We used1018

AWS EC2 Spot Instance pricing to reduce costs, having known beforehands how long the analyses would take. At1019

the moment, we depict prices based on spot instance availability in September 2019. Empirically, we observe that1020

spot instance price fluctuations give standard deviations on the order of cents over a period of months (see source1021

repo for experiments).1022

9.4 Analysis reproducibility1023

Because we designed analysis blueprint to be git versioned, we can reproduce the infrastructure and software1024

configuration used to generate any analysis, up to the reliability of Amazon AWS. Since we returned identifying1025

information about the blueprint to the user in a certificate along with configuration parameters, data is the only1026

portion of an analysis that must be maintained to ensure perfect analysis reproducibility. We update blueprints1027

based on pull requests issued through the source repo’s Github page, providing a centralized way to manage the1028

state of the NeuroCAAS platform. Although not implemented here, AWS offers cheap, glacial storage that can1029

be used to preserve data for long amounts of time under conditions of infrequent access, offering a feasible solution1030

for guaranteed total analysis reproducibility on NeuroCAAS.1031
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NeuroCAAS AWS Specifics

Analysis
Name

Instance
(NeuroCAAS)

Instance (local) AMI ID

CaImAn m5.16xlarge m5a.xlarge ami-
01dc867df8c05aa5a)

DeepLabCut p2.xlarge p2.xlarge ami-
00b1babeb8637f5c3)

PMD m5.16xlarge r4.4xlarge ami-0007adf33fbcf0c1c)

LocaNMF p3.2xlarge p2.xlarge ami-
04ebe747c2e33038c)

Table 9: Instance and Amazon Machine Image (AMI) details for cost comparison
of some implemented algorithms.

9.5 Alternative local crossovers1032

Because the instances offered on AWS are not wholly analogous to either personal hardware or cluster resources,1033

we offer additional comparisons that span the range of prices.1034

Cluster pricing was calculated with the AWS TCO calculator https://awstcocalculator.com/#. We calcu-1035

lated the cost of infrastructure as a subset of the TCO provided by AWS. In particular, we calculated xlocal as1036

the total server hardware cost (undiscounted) and acquisition cost of NAS storage, and the cost of a GPU, with1037

additional yearly recurring costs cs(n) given by storage administration cost, server hardware maintenance cost,1038

and IT Labor costs. We then calculated the LCC and LUC from these quantities as described in the Platform1039

section.1040

The results of these quantifications are given in Figure 15.1041

9.6 AWS details1042

We provide further details on the AWS implementation of analyses used to generate time and cost data in Table1043

9.1044
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#!/bin/bash

set -e

userhome="/home/ubuntu"

datastore="deepgraphpose/data"

outstore="ncapdata/localout"

echo "----DOWNLOADING DATA----"

source activate dgp

neurocaas-contrib workflow get-data -f -o $userhome/$datastore/

neurocaas-contrib workflow get-config -f -o $userhome/$datastore/

datapath=$(neurocaas-contrib workflow get-datapath)

configpath=$(neurocaas-contrib workflow get-configpath)

taskname=$(neurocaas-contrib scripting parse-zip -z "$datapath")

echo "----DATA DOWNLOADED: $datapath. PARSING PARAMETERS.----"

mode=$(neurocaas-contrib scripting read-yaml -p $configpath -f mode -d predict)

debug=$(neurocaas-contrib scripting read-yaml -p $configpath -f testing -d False)

echo "----RUNNING ANALYSIS IN MODE: $mode----"

cd "$userhome/deepgraphpose"

if [ $mode == "train" ]

then

if [ $debug == "True" ]

then

echo "----STARTING TRAINING; SETTING UP DEBUG NETWORK----"

python "demo/run_dgp_demo.py" --dlcpath "$userhome/$datastore/$taskname/" --test

elif [ $debug == "False" ]

then

echo "----STARTING TRAINING; SETTING UP NETWORK----"

python "demo/run_dgp_demo.py" --dlcpath "$userhome/$datastore/$taskname/"

else

echo "Debug setting $debug not recognized. Valid options are "True" or "False". Exiting."

exit

fi

echo "----PREPARING RESULTS----"

zip -r "/home/ubuntu/results_$taskname.zip" "$userhome/$datastore/$taskname/"

elif [ $mode == "predict" ]

then

if [ $debug == "True" ]

then

echo "----STARTING PREDICTION; SETTING UP DEBUG NETWORK----"

python "demo/predict_dgp_demo.py" --dlcpath "$userhome/$datastore/$taskname/" --test

elif [ $debug == "False" ]

then

echo "----STARTING PREDICTION; SETTING UP NETWORK ----"

python "demo/predict_dgp_demo.py" --dlcpath "$userhome/$datastore/$taskname/"

else

echo "Debug setting $debug not recognized. Valid options are "True" or "False". Exiting."

exit

fi

echo "----PREPARING RESULTS----"

zip -r "/home/ubuntu/results_$taskname.zip" "$userhome/$datastore/$taskname/videos_pred/"

else

echo "Mode setting $mode not recognized. Valid options are "predict" or "train". Exiting."

fi

echo "----UPLOADING RESULTS----"

neurocaas-contrib workflow put-result -r "/home/ubuntu/results_$taskname.zip"

Figure 12: DeepGraphPose script, written in bash. Script makes heavy use of neurocaas developer tools to move
data to and from NeuroCAAS data storage; see developer guide for details. Script demo/predict˙dgp˙demo.py has
been adapted to work for any model folder.
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#!/bin/bash

source "/home/ubuntu/.dlamirc"

export PATH="/home/ubuntu/anaconda3/bin:$PATH"

source activate dgp

neurocaas-contrib workflow initialize-job -p /home/ubuntu/contribdata

neurocaas-contrib workflow register-dataset -b "$1" -k "$2"

neurocaas-contrib workflow register-config -b "$1" -k "$4"

neurocaas-contrib workflow register-resultpath -b "$1" -k "$3"

neurocaas-contrib workflow log-command -b "$1" -c "$5" -r "$3"

neurocaas-contrib workflow cleanup

Figure 13: Main script called by NeuroCAAS to trigger workflow runs. The command neurocaas-contrib triggers
developer tools. Declares variables referenced in Figure 12.
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{

"PipelineName":"ncapexamplepipeline",

"REGION":"region of service for users",

"Lambda":{

"CodeUri":"Codebase for \ncap Compute",

"Handler":"Module for \ncap Compute",

"Launch":"Whether or not to launch new pipelines. ",

"LambdaConfig":{

"AMI":"AMI id of the developer-configured instance",

"INSTANCE_TYPE": "virtualized hardware instance id. ",

"REGION": "us-east-1",

"SECURITY_GROUPS":"network configuration",

"IAM_ROLE":"permissions to launch new immutable analysis environments",

"KEY_NAME":"permissions to access immutable analysis environments",

"WORKING_DIRECTORY":"immutable analysis environment code",

"COMMAND":"code to run to initiate processing",

"SHUTDOWN_BEHAVIOR":"destroy immutable analysis environment after processing terminates",

"CONFIG":"location of additional configuration parameters",

"MISSING_CONFIG_ERROR":"We need a config file to analyze data.",

"EXECUTION_TIMEOUT":"Additional parameters for \ncap Compute",

"SSM_TIMEOUT":"Additional parameters for \ncap Compute",

"LOGDIR":"Parameters for \ncap interface",

"OUTDIR":"Parameters for \ncap interface",

"INDIR":"Parameters for \ncap interface",

"LAUNCH":"Launching new pipelines",

"LOGFILE":"Logging location for diagnostic information",

"DEPLOY_LIMIT":"Maximum number of concurrent instances to deploy",

"MONITOR":"Enable or disable detailed monitoring"

}

},

"UXData":{

"Affiliates":[

{

"AffiliateName":"examplegroup1",

"UserNames":["ian","shreya","taiga"],

"UserInput":true,

"ContactEmail":"The email we should notify regarding processing status."

},

{

"AffiliateName":"examplegroup2",

"UserNames":["liam","john"],

"UserInput":true,

"ContactEmail":"The email we should notify regarding processing status."

}

]

}

}

Figure 14: NeuroCAAS blueprint template declaring all relevant resources. Immutable Analysis Environ-
ments can be defined from Variables in the Lambda.LambdaConfig field, the job manager protocol is defined
in Lambda.CodeUri and Lambda.Handler. Users and permissions are defined in UXData.
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Figure 15: Alternative cost quantification of local infrastructure A) provides Local Cost Crossover
Crossover for these resources priced as cluster compute resources, priced according to Amazon AWS’s TCO cal-
culator. B) provides the same for Local Utilization.
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