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2Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Amphipôle, Lausanne 1015, Switzerland

3Life Science Zurich Graduate School, PhD Program Molecular & Translational Biomedicine, Winterthurerstrasse
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ABSTRACT

Motivation: Recent technological advances have led to an increase in the production and availability of single-cell
data. The ability to integrate a set of multi-technology measurements would allow the identification of biologically or
clinically meaningful observations through the unification of the perspectives afforded by each technology. In most
cases, however, profiling technologies consume the used cells and thus pairwise correspondences between datasets
are lost. Due to the sheer size single-cell datasets can acquire, scalable algorithms that are able to universally match
single-cell measurements carried out in one cell to its corresponding sibling in another technology are needed.
Results: We propose Single-Cell data Integration via Matching (SCIM), a scalable approach to recover such corre-
spondences in two or more technologies. SCIM assumes that cells share a common (low-dimensional) underlying
structure and that the underlying cell distribution is approximately constant across technologies. It constructs a
technology-invariant latent space using an auto-encoder framework with an adversarial objective. Multi-modal
datasets are integrated by pairing cells across technologies using a bipartite matching scheme that operates on the
low-dimensional latent representations. We evaluate SCIM on a simulated cellular branching process and show that
the cell-to-cell matches derived by SCIM reflect the same pseudotime on the simulated dataset. Moreover, we apply
our method to two real-world scenarios, a melanoma tumor sample and a human bone marrow sample, where we pair
cells from a scRNA dataset to their sibling cells in a CyTOF dataset achieving 93% and 84% cell-matching accuracy
for each one of the samples respectively.
Availability: https://github.com/ratschlab/scim

1 Introduction

The ability to dissect a tissue into its cellular components to study them individually or to investigate the interplay
between the different cell-type fractions is an exciting new possibility in biological research that has already yielded
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important insights into the dynamics of various diseases including cancer (Tirosh et al., 2016; Chevrier et al., 2017).
Recent advances in single-cell technologies enable molecular profiling of samples with greater granularity at the
transcriptomic, proteomic, genomic as well as the functional assays level (Rozenblatt-Rosen et al., 2017; Irmisch
et al., 2020). Each data modality produces different types and levels of information that need to be integrated and
related to one another to truly grasp the mechanisms at play in the tissue microenvironment and to obtain a more
comprehensive molecular understanding of the studied sample. Although technologies capable of measuring two
modalities simultaneously are emerging (Stoeckius et al., 2017; Zhu et al., 2020), their scalability and widespread use
are still limited. While multiple data integration tools have been developed recently, most approaches either depend
on feature correspondences (Stuart et al., 2019; Welch et al., 2019) or are limited to a specific input type, for instance,
scRNA and scDNA data (Campbell et al., 2019; McCarthy et al., 2020). To the best of our knowledge only two other
approaches have been published (Amodio and Krishnaswamy, 2018; Welch et al., 2017) with similar capabilities to
SCIM. MAGAN (Amodio and Krishnaswamy, 2018) is a Generative Adversarial Network (GAN) capable of aligning
the manifold between two technologies that relies on a feature correspondence loss. MATCHER (Welch et al., 2017)
is based on a gaussian process latent variable model (GPLVM) (Lawrence, 2004) that can integrate technologies if
their underlying latent structures can be represented in one dimension, applicable, for example, to model monotonic
temporal processes. Other yet unpublished methods, such as MMD-MA (Liu et al., 2019) and UnionCom (Cao et al.,
2020), rely on large kernel matrices which limit their scalability when using datasets of the sizes generally produced
by molecular profiling.

Here, we propose SCIM, a method to match cells across different single-cell ’omics technologies. Our approach con-
sists of two parts. First, we build an integrated latent space where representations are invariant to their corresponding
technologies inspired by a model proposed previously (Yang and Uhler, 2019) and further extended in Yang et al.
(2019). Then, we apply a cell-to-cell matching strategy that efficiently extracts cross-technology cell matches from
the latent space. SCIM assumes a shared latent representation between technologies but, unlike other approaches, does
not require one-to-one or overlapping correspondences between feature sets. Individual technologies often consume
samples thus, the input material provided to each profiling approach typically is an aliquot from a common sample
cell suspension. Notwithstanding, given that the technology-specific datasets come from the same sample, (i.e., cell
mix), expecting the same underlying distribution is an appropriate assumption. SCIM scales well in the number of
cells in the input through the use of neural-nets, end-to-end training, and an efficient bipartite matching algorithm. The
training scheme allows for the addition of an arbitrary number of technologies, which can be trained in parallel (see
Figure 1).

Figure 1: SCIM performs a pairwise matching of cell across multiple single-cell ’omics technologies. We assume that the input
of each technology comes from the same (or similar) heterogeneous cell mix, depicted on the left. Technologies generate a set
of single cell ’omics datasets (violet polygons) in parallel (e.g. XA, XB , XN ). SCIM proceeds to map cells into a technology-
invariant latent space (left box) using an autoencoder framework and an adversarial term to keep technologies well integrated.
Here the latent representations capture the underlying structure in the cell mix (colored clouds) and analogous codes from different
technologies (colored polygons) are placed in proximity. To integrate datasets, a fast bipartite matching scheme is applied, matching
cells pairwise among datasets to cross-technology analogs, using their latent representations (right box).

2 Methods

SCIM matches cells from a source technology to cells in one or multiple target technologies in two main steps. First,
an integrated, technology-invariant latent space is produced using an encoder/decoder framework based on Yang and

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.11.146845doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.146845
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - JUNE 11, 2020

Uhler (2019). Then, cells are paired across different technologies via their latent representations using a version of the
fast bipartite matching algorithm.

2.1 Model

Autoencoders produce low dimensional representations of data by learning a pair of encoder and decoder functions,
with parameters φ and ψ respectively. The encoder maps input data into a lower-dimensional space, called the latent
space, while the decoder tries to reconstruct the input data from its latent representation. The popular Variational
Autoencoders (VAEs) take a generative approach to this problem (Kingma and Welling, 2013). Here φ parameterizes
the likelihood of the data given the latent representation pφ(x|z) and ψ parameterizes the posterior probability of its
latent representation qψ(z|x). VAEs jointly learn φ and ψ to maximize a lower bound to the probability of the data
p(x;φ, ψ), achieved in practice by minimizing

Lvae(φ, ψ;x) = − log pφ(x|ẑ) +DKL(qψ(z|x)||p(z)) (1)

where ẑ ∼ qψ(z|x), DKL is the Kullback-Leibler (KL) divergence, and p(z) is a prior distribution over latent repre-
sentations. Often p(z) and qψ(z|x) are restricted to Gaussian forms since the KL divergence then has a closed-form
solution.

2.1.1 Constructing a Technology-Invariant Latent Space

SCIM encodes datasets into a shared latent space, which has ideally two properties. As in the VAE, inputs should be
able to be reconstructed from their latent representations. Additionally, the latent representations of each technology
should be integrated well such that they are indistinguishable from each other. In a successful integration the resulting
latent space will have corresponding cells across all technologies represented in close proximity.

To construct an integrated latent space, SCIM employs the following networks: a pair of encoder (φk) and decoder (ψk)
networks for each technology k and a single discriminator network (γ) acting on the latent space. The discriminator
is a binary classifier trained to identify the latent representation of a source technology from latent representations of
all other technologies using a binary cross entropy loss.

SCIM yields an integrated latent space by minimizing the reconstruction error while adversarially fooling the discrim-
inator. For notational brevity we now let φk and ψk also represent the probability distributions they parameterize.
Given the measurements of a batch of cells from the target technology, xt, and the (fixed) latent representations of a
batch of cells from the source technology, ẑs ∼ ψs(xs), SCIM minimizes the following objective

L(xt, ẑs;φt, ψt) = Lnll(xt;φt, ψt) + βLadv(ẑs, ẑt;φt) (2)

Lnll(xt;φt, ψt) is the negative log-likelihood of the inputs under their reconstruction. Ladv is the discriminator’s
classification error when trying to classify the latent representation samples ẑs/ẑt as the target/source technology. β is
a hyperparameter weighing the influence of the adversarial loss. At the same time, γ is trained to correctly classify the
technology of the ẑs and ẑt samples.

More intuitively, this framework can be seen as learning a VAE on each technology where the prior distribution is
defined by the latent representations of the other technologies. Ladv can be interpreted as a divergence measure where,
through the use of adversarial techniques, samples may be used in lieu of their potentially intractable probability
distributions. Thus, the framework is equivalent to a set of Adversarial Autoencoders (Makhzani et al., 2015) or
Wasserstein Autoencoders (Tolstikhin et al., 2017) which share a single discriminator.

2.1.2 The Orientation of Latent Space

Correctly orienting the latent space in an unsupervised manner is a challenging task (Locatello et al., 2018; Yang
and Uhler, 2019). Consider, for example, a simple monotonic temporal process. The latent representations for one
dataset could be oriented from start to end, while another could be oriented from finish to start (Welch et al., 2017).
Equation 2 is satisfied, the representations are well integrated and inputs can be correctly reconstructed from them,
yet the inter-dataset relationships are misaligned.

Makhzani et al. (2015) address a similar problem by concatenating one-hot representations of labels reflecting intra-
technology structure (e.g. cell type is an appropriate choice for ’omics datasets) to the discriminator inputs, showing
that this supervision is necessary to orient the latent space. Recently, Locatello et al. (2019) argued that only a small
number of labels are actually needed to achieve orientation. To this end, we adopt a semi-supervised approach by
adding a ”censored” label and randomly relabel cells in the training set.
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2.1.3 Model Architecture

Unless specified otherwise, we adopt the following architecture settings. All networks use the ReLU activation. We
set the latent dimension of all models to 8, but observed this choice to be flexible. We use discriminator networks
with 2 layers and 8 hidden units each. The Spectral Normalization framework (Miyato et al., 2018) is used during
training, which has been argued to stabilize discriminator training by effectively bounding its gradients. We use a
Gaussian activation for all decoders, a 2 layer architecture with 64 hidden units for all simulated data networks, a 2
layer architecture with 8 hidden units for all CyTOF networks, and a 2 layer architecture with 64 hidden units for all
scRNA networks. The number of features and complexity of data is considered when choosing capacity and depth.

2.1.4 Optimization

Optimization proceeds by iteratively fixing one technology as the source and one technology as the target. In the case
of more than two technologies, the technology corresponding to the discriminator’s positive class must either be the
source or target technology. The codes of the source technology are fixed and Equation 2 is minimized with gradient
updates to the encoder and decoder, φt and ψt, of the target technology using gradients computed on the batch xt.
After each update, the discriminator is trained to correctly classify ẑs and ẑt. All networks in SCIM are optimized
using the ADAM algorithm (Kingma and Ba, 2014).

We initialize SCIM by first training a VAE (Kingma and Welling, 2013) on a single source technology, and use the
latent representations as the first set of ẑs. Unless specified otherwise the VAE is trained for 256 epochs using β = 0.01
and a learning rate of 0.0005. A small value of β is needed for structure to be retained in the latent representations.

2.1.5 Latent Space Evaluation and Model Selection

Due to the min-max nature of adversarial training, model comparison is challenging since one cannot directly compare
the minimized objective functions of converged models (Lucic et al., 2017). The computer vision community has
introduced a number of metrics specific to the image domain to help compare models (Heusel et al., 2017; Salimans
et al., 2016). Here we need to validate the quality of a set of lower dimensional latent representations.

Therefore we use a k-Nearest Neighbor (kNN) based divergence estimator (Wang et al., 2009) to quantitatively evalu-
ate the quality of the integrated latent space. The divergence score between two sets of codes Zs and Zt is calculated
as:

D̂(Zs||Zt) =
1

2
D̂KL(Zs||Zt) +

1

2
D̂KL(Zt||Zs) (3)

Where

D̂KL(P ||Q) =
d

|P |
∑
pi∈P

log
νk(pi)

ρk(pi)
+ log

|P |
|Q| − 1

(4)

where νk(pi) and ρk(pi) are the distances from pi to the kth nearest neighbor in the sets P and Q respectively and
all pi ∈ Rd. This estimator approximates a symmetric variant of a Kullback-Leibler (KL) divergence, a measure of
how much two distributions differ, using only empirical data. The divergence estimate is computed between the latent
representations of the source technology and the target technology.

This approach draws inspiration from a proposed framework from (Yang and Uhler, 2019), where expression profiles
are decoded from the latent space. We were able to utilize a kNN based divergence estimator (Wang et al., 2019), to
address typical problems in adversarial training. Further, SCIM does not decode values from latent space, but the low-
dimensional representation is used solely to match the cells. Thus, the true observed marker abundances per cell pair,
measured with different technologies, can be used for any downstream analysis. Moreover the latent space matching
matching may compensate for sub-optimal integration, providing an additional advantage over bare decoding.

2.2 Bipartite Matching of Latent Representations

The obtained shared latent representation can be used for finding corresponding cells across technologies. Each cell
is now characterized by a low-dimensional vector of latent codes, which are in one-to-one correspondence across
technologies. We first represent the data as a graph, where the nodes correspond to cells and edge weights correspond
to the Euclidean distances in latent space between the cells. To find the best pairwise matching efficiently, we phrase
the task as a combinatorial bipartite matching problem (Ahuja et al., 1993; Dell’Amico and Toth, 2000). In other
words we identify edges connecting the cells that would result in a minimal total cost of all matches. In order to
achieve this, we build a k-Nearest Neighbors (kNN) graph to identify a set of potential matches and reduce the
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complexity of the problem. Then, we extend the graph to account for single-cell data characteristics and solve the
bipartite matching within a general framework of Minimum-Cost Maximum-Flow problems (Ahuja et al., 1993;
Klein, 1967).

2.2.1 k-Nearest Neighbor Approximation

Given the large number of cells profiled in single-cell data, we reduce the search space to the k most likely potential
matches. Two kNN graphs are built: 1) using source data queried by the target technology cells, and 2) using target
data queried by the source technology cells. A union of the established connections is used for further analysis.
The sparsity of connections, regulated by the choice of hyperparameter k, corresponds to the trade-off between the
computational performance (memory usage, run time) and the matching accuracy.

2.2.2 Bipartite Matching via Minimum-Cost Maximum-Flow

Based on a cost matrix, we aim at finding the maximum number of cell pairs with minimum cost. This corresponds to
finding a maximum flow that can be pushed through the graph, where each edge between cells has capacity 1, while
minimizing the overall cost. To solve the Minimum-Cost Maximum-Flow problem in a computationally efficient way
we use an implementation of the network simplex algorithm (Király and Kovács, 2012).

Figure 2: Fast bipartite matching using a customized Minimum-Cost Maximum-Flow framework. Nodes correspond to cells and
edges to the sparse connections between them, resulting from a kNN search. R and S represent root and sink nodes. Edge labels (a,
b) indicate matching cost and edge capacity, respectively. Many-to-one matches in unbalanced datasets are enabled by increasing
the capacities ui (for i ∈ 1, . . . ,m). The null node, colored in grey, captures matches of cells (from the bigger dataset on the
left-hand side of the graph) that lack a close enough analog in the other technology. Its capacity equals the cardinality of the bigger
dataset and the cost c∗0, i.e., null match penalty, is relatively high. The thicker lines linking the nodes represent the actual matches
selected by the algorithm.

2.2.3 Relaxation of One-to-One Matching by Graph Extensions

Bipartite matching approach makes the assumption that each cell has one and only one direct corresponding sibling in
the other technology. To allow for mismatches due to expected variation in cellular composition, we expand the kNN
graph with sparse connections by adding a densely connected null node with high capacity and high assignment cost.
This allows to capture potentially poorly matched cells. The magnitude of the null match penalty corresponds to a
given percentile p of the overall costs and is a hyperparameter. The extended graph structure is depicted in Figure 2,
where R and S refer to the root and sink nodes, respectively. Furthermore, to account for differences in the number of
cells between modalities (n, m), we allow for one-to-many matches by increasing the capacity of the edges incoming to
the sink (ui for i ∈ {1, . . . ,m}), assuming the nodes linked to the sink correspond to the smaller dataset (m ≤ n). To
prevent all matches from collapsing onto a very small set of nodes, we constrain the sum of incoming sink capacities,
excluding the null node, to equal the cardinality of the bigger dataset (n).

m∑
i=1

ui = n . (5)

The capacities are distributed uniformly across the sink edges. In case of a high disproportion in the number of cells
profiled with different technologies, the penalty and uniformity of capacities may limit the total number of matches.
Therefore, in such cases the capacity of the sink edges remains unbounded and is set to infinity. In case more than
two data modalities are present, the bipartite matching is solved sequentially by obtaining pairwise matches between
technologies.
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2.2.4 Matching Evaluation

The quality of matching is evaluated on different levels. First, the accuracy corresponding to the fraction of true
positives with regards to cell-type label is reported. Cell-types can be determined in a technology specific manner
and the accuracy is reported on a common denominator. If more fine-grained cellular information is available, such
as pseudotime, a direct comparison of this quantity is carried out. Furthermore, in real-world data settings we utilize
the raw marker expression to investigate correspondence of the matched cells. Namely, Spearman’s and Pearson’s
correlation coefficients are computed between the expression values across matches.

3 Data

3.1 Simulated Data

Using PROSSTT (Papadopoulos et al., 2019), we generate three single-cell ’omics-styled technologies which share
a common latent structure without direct feature correspondences. PROSSTT parameterizes a negative binomial dis-
tribution given a tree representing an underlying temporal branching process. By using the same tree and running
PROSSTT under different seeds, we obtain three datasets with a common latent structure yet lacking any correspon-
dences between features. We used a five branch tree with different branch lengths (Figure 3). Each dataset contains
64,000 cells with 256 markers.

3.2 Single-cell Profile of a Melanoma Patient

The motivating dataset for our research questions is generated by the Tumor Profiler (TuPro) Consortium (Irmisch
et al., 2020) as part of a multi-center, multi-cancer study comprising metastatic tumors from a cohort of deeply
phenotyped individuals. Each patient’s data is analyzed with multiple technologies, including scRNA-sequencing
(Tang et al., 2009), Cytometry by Time Of Flight (Bandura et al., 2009, CyTOF), all capable of dissecting the tumor
microenvironment and providing single-cell level, complementary information about the sample of interest. Although
cell identity is lost throughout the process, the cells investigated by both technologies stem from the same population
(i.e., were obtained from an aliquot of a common cell suspension).

3.2.1 CyTOF Data Preparation

The patient’s sample was profiled with CyTOF using a 40-markers panel designed for an in-depth characterization
of the immune compartment of a sample. Data preprocessing was performed following the workflow described
in (Chevrier et al., 2017, 2018). Cell-type assignment was performed using a Random Forest classifier trained on
multiple manually gated samples. To investigate the utility of SCIM , we considered a subset comprising B-Cells and
T-Cells only, for a total of n=135.334 cells. This dataset is further referred to as target dataset.

3.2.2 scRNA Data Preparation

A second aliquot of the same patient sample was analyzed by droplet-based scRNA-sequencing using the 10x Ge-
nomics platform. A detailed description of the data analysis workflow is beyond the scope of this work and will be
published elsewhere. In brief, standard QC-measures and preprocessing steps, such as removal of low quality cells, as
well as filtering out mitochondrial, ribosomal and non-coding genes, were applied. Expression data was library-size
normalized and corrected for the cell-cycle effect. Cell-type identification was performed using a set of cell-type-
specific marker genes (Tirosh et al., 2016). Genes were then filtered to retain those that could code for proteins
measured in CyTOF channels, the top 32 T-Cell/ B-Cell marker genes, and the remaining most variable genes for a
final set of 256. The total number of B-Cells and T-Cells in this dataset amounts to m=4.683. The scRNA dataset is
used as source dataset throughout the manuscript.

Dataset # Markers # Cells T Cells B Cells

CyTOF 41 135.334 70% 30%
scRNA 1.024 4.683 73% 27%

Table 1: Characteristics of the dataset derived from the melanoma sample.
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3.3 Single-cell Profile of Human Bone Marrow

Oetjen et al. (2018) used several bulk and single-cell technologies to comprehensively characterize human bone mar-
row. The data was obtained from 20 healthy donors, whereas all data modalities were acquired for 8 samples. For our
application we consider the single-cell transcriptome profile as well as CyTOF measurements of sample O from this
dataset, that were carried out with the objective of describing in detail a T-Cell population. The data was preprocessed
as described in Oetjen et al. (2018). The cell-type information for scRNA data was obtained directly by the courtesy
of the authors, whereas CyTOF cells were manually gated using the strategy presented in Supplementary Figure S7.
A subpopulation of CD8 naive T-Cells was filtered out due to a very small number of cells. The preprocessed data of
the analysed sample included several T-Cell subtypes.

Dataset # Markers # Cells CD8 effector CD4 naive CD4 memory

CyTOF 34 98.799 57% 26% 17%
scRNA 256 2.388 46% 31% 23%

Table 2: Characteristics of the preprocessed dataset derived from the human bone marrow sample.

4 Experiments

4.1 Three Technology Simulated Data

We apply SCIM to integrate the three simulated datasets. The discriminator is trained to classify the source technology
and is fully supervised using the branch label. The latent space is intialized by training a VAE on the source technology.
The latent representations of the source technology are fixed, and the two target technologies are trained for 256
epochs. Bipartite matching is performed for each pair of datasets, using k = 64 and a null match penalty set to the
95th percentile of edge costs.

4.2 Integration of scRNA and CyTOF Patient Data

We apply SCIM to integrate two sets of scRNA/CyTOF data, one set corresponds to a melanoma tumor from the
Tumor Profiler project (Irmisch et al., 2020) and the other one to a human bone marrow sample from Oetjen et al.
(2018). The scRNA technology was chosen both times as the source technology, and the latent space is initialized
by training a VAE. SCIM is trained for 64 epochs to integrate the CyTOF technologies. The discriminator is trained
in both cases to classify the source technology and supervised with cell type labels. In the Bone Marrow cohort, the
discriminator is fully supervised with the full cell type label. This was necessary as the number of available scRNA
cells was quite small. For the Melanoma dataset we employed a semi-supervised strategy and use only 10% of the
cell type labels. Bipartite matching is performed in both cases using k = 50 and a null match penalty set to the 95th

percentile of edge costs. In both scenarios, CyTOF cells greatly out number the scRNA cells, thus many-to-one scRNA
matches are allowed.

5 Results

We evaluate the SCIM framework on a simulated dataset based on PROSSTT (Papadopoulos et al., 2019) as well as
two real world settings, where we match cells from CyTOF and scRNA measurements taken from a single sample
analyzed within the Tumor Profiler project (Irmisch et al., 2020) and from a human bone marrow sample Oetjen et al.
(2018). We provide an implementation of the proposed approach in python using TensorFlow (Abadi et al., 2015).

5.1 SCIM Aligns Substructure in Simulated data

Branches in PROSSTT define an over-arching structure that mimics cell-types, while the temporal component, i.e.,
pseudotime, provides a continuous interpolation from one branch to another as described by the tree (Figure 3). In
latent space, the branch structure within the data produces large clusters, while the pseudotime structure provides
orientation within each cluster as well as a globally smoothing of the manifold. SCIM is run to integrate the three sim-
ulated datasets producing a technology-invariant latent space (see Figure 4). SCIM embeddings capture the branching
process and furthermore correctly orients the substructure of most branches (see Figure 3). We report 86% of matches
retained the branch label and strong correlations among pseudotime (Pearson: 0.86, Spearman: 0.83) using a null node
penalty of 95th percentile that controls the false/true positive trade-off (see Supplemental Figure S3). Furthermore,
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Figure 3: Evaluation of cross-technology cell matches made by SCIM on the simulated data. Cells are matched across datasets
pairwise using the bipartite matching scheme. The tree defining the temporal branching process is shown on the left and the density
plot for matched pseudotime values between the source technology and the target technology, on the right. Cells matched to the
same branch label are colored (accuracy: 86%), while mismatches are depicted in grey. Marginal distributions of cell pseudotime
for each branch are shown at the bottom and left of the density plot. We report a correlation of 0.83 (Spearman) and 0.86 (Pearson)
for pseudotime label pairs.

Figure 4: Integrated latent space of three synthetic datasets. Three single-cell ’omics datasets are generated (Papadopoulos et al.,
2019) from a shared underlying temporal branching process (as defined in Figure 3). The same branching process was used in
all three cases (as can be seen in the top row), but the parameters governing their feature distributions are drawn with different
seeds. Hence, their latent structure is the same, yet they share no correspondences between features. SCIM is run, fully supervised
using the branch label, and all datasets are embedded into a shared latent space. tSNE embeddings (Maaten and Hinton, 2008) are
computed and visualized on the combined latent representations from all three datasets. Each column shows only the cells from a
single technology. Cells are colored by their branch and pseudotime label in the first and second row, respectively.
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most branch mismatches occur at the nodes of the tree, where the label is ambiguous due to the continuous nature of
the temporal process (see Supplemental Table S4).

The SCIM framework can be applied to a many-technology setting, and we demonstrate this by obtaining pairwise
matches between all three datasets. SCIM successfully aligns the cells, based on evaluations on pseudotime (see
Supplemental Figure S1) as well as branch label (see Supplemental Table S5 and S6), even when using codes from
such an extended latent space.

These results demonstrate that SCIM is capable of accurately identifying the best matching cells across multiple
technologies, based on the shared latent representations in the presence of an underlying branching process but in the
absence of paired features.

5.1.1 MATCHER Comparison: Capturing Complex Latent Structure

We compare SCIM to MATCHER (Welch et al., 2017), which is, to the best of our knowledge, the only other
published work that can integrate multi-modal ’omics datasets in the absence of direct feature correspondences.
MATCHER, however, assumes a one-dimensional latent structure that cannot capture hierarchical relationships, such
as the ones exhibited in the simulated PROSSTT data, and frequently found and studied in single-cell datasets. More-
over, MATCHER is built around a GPLVM (Lawrence, 2004), which limits its scalability. To this end, we set a budget
of 48 hours compute time and limit memory consumption to 40 Gb. Using the latent representations generated by
MATCHER, we solve the bipartite matching problem setting the same hyperparameter configuration. MATCHER
is unable to model the PROSSTT branching structure and is outperformed by SCIM with respect to matching (see
Supplemental Table S7, Supplemental Table S8, and Supplemental Figure S2).

Figure 5: Integrated latent space and matches of scRNA and CyTOF cells from a melanoma sample from the Tumor Profiler
Consortium. Discriminators are semi-supervised using 10% of the cell-type labels. Cells are colored by their cell-type label and
shaded by their technology (dark shades: CyTOF, light shades: scRNA). Matches produced by SCIM are represented by grey lines
connecting cells. tSNE embeddings (Maaten and Hinton, 2008) are computed on the whole dataset and then 10.000 matched pairs
are sampled at random for visualization.

5.2 Universal Divergence Scales Model Selection in SCIM

To evaluate the performance of SCIM on real data and to gain a better understanding of the individual components of
our framework, we apply SCIM on a melanoma tumor sample from the Tumor Profiler Consortium (Irmisch et al.,
2020). Model selection in the adversarial setting with real-world data is challenging since there is no metric that
captures model performance, nor does one have access to any ground truth data to evaluate on. To help model selection,
we employ a universal divergence estimator (Wang et al., 2009) to evaluate the quality of the integrated latent space
(see Methods, Supplemental Figure S6). This score measures how well two sets of points are mixed, and it is
computed pairwise between source and target technologies. An optimization is defined as a success if the divergence
and reconstruction errors are below the empirically set thresholds. This allows the evaluation of many model settings
at scale despite operating in the adversarial setting. We find that performance depends on tuning β and the learning
rates for the discriminator and encoder/decoder networks (see Supplemental Table S3).
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5.3 Modified Bi-partite Matching is Scalable

Due to the large number of cells profiled with each individual technology per sample, we precede our bipartite match-
ing with a kNN search (see Section 2.2). This reduces the problem complexity by a priori discarding redundant edges
in the graph. Experiments on the real-world melanoma sample investigating the level of sparsity, governed by a hy-
perparameter k, show that using even a small number of neighbors provides good matching accuracy and performance
saturates past k > 100 (see Supplemental Figure S4, Supplemental Table S2). This is in line with our expectations
since a match to an extremely distant neighbor is hard to justify. In order to maintain a high degree of sparsity, without
sacrificing matching accuracy, we use k = 50 in all further experiments.

5.4 SCIM Pairs Cells Across scRNA and CyTOF in a Melanoma Sample

Integrating data from scRNA and CyTOF technologies applied to a melanoma sample allows for a multi-view perspec-
tive on cell dynamics and, thus, will eventually lead to a more thorough understanding of the undergoing biological
processes. Therefore we have evaluated the aforementioned melanoma sample with the SCIM framework. The bipar-
tite matching on the latent codes has a 93% accuracy in recovering the cell-type label, calculated as the fraction of True
Positives over all matches. A more fine-grained visual evaluation is performed by inspecting the matches on a tSNE
embedding of the integrated latent space marked by grey lines (see Figure 5). The latent representation is explored
thoroughly as 99.7%, and 99.3% of cells are matched to their analogs, from CyTOF and scRNA datasets, respectively.
Given different cell-type proportions in the data, a certain number of mismatches is expected, which corresponds to the
lines joining points across the two cell types. In comparison, a simple data-space matching approach would only uti-
lize 5% of the scRNA cells (see Supplemental Table S1 and Supplemental Figure S5). To evaluate the latent space
matching further, we used a more fine-grained information of marker expression correlation, to quantitatively assess
the latent-space matching quality. We used the correlation coefficients between the expression of immuno-markers
CD20 and CD3. Both markers are characteristic to a subset of our data, as they are used to differentiate B-Cells and
T-Cells, respectively. We found that matching using shared latent representations provides relatively high correlation
coefficients (Pearson’s coefficient: 0.68 CD20 and 0.55 for CD3 marker, see Figure 6), given the expected low cor-
relation between RNA expression and protein abundance. In conclusion, even in the presence of a subset of paired
features across the technologies, using the shared latent representations proves beneficial for finding cell analogs.

5.5 SCIM Recovers T-CellsSubpopulations Across Multi-Modal Human Bone Marrow Data

We use SCIM to integrate T-Cells derived from one sample in the Human Bone Marrow study, profiled with scRNA
and CyTOF technologies. The tSNE embedding based on the latent space codes implies good integration across
technologies while preserving the cell-subtype structure Supplemental Figure S8. We evaluate the quality of matches
using fine-grained labels indicating one of the T-Cell subtypes identified in gating: CD8 effector, CD4 naive, CD4
memory (see Section 3.3). In a fully supervised approach, using the labels to orient the latent space, we achieve
an accuracy of 88% with less than 1% of matches directed to the null node. Nevertheless, when utilizing only 10%
of the labels in the semi-supervised approach, we note only a slight drop in performance, obtaining 84% correct
matches with less than 1% of cells directed to the null node. Evaluating on higher-level labels of CD8 vs. CD4
T-Cells improves the accuracy to 96% and 91% for the fully supervised and semi-supervised approach, respectively.
As expected, distinguishing cellular subtypes (e.g., CD4 naive versus CD4 memory) is more challenging due to high
overall similarity between the cell populations, but overall SCIM is capable of accurately recovering even such subtle
differences between cell type and states.

6 Discussion

We have developed SCIM, a new technology-invariant approach that pairs single-cell measurements across multi-
modal datasets, without requiring feature correspondences. This development enables real multi-modal single-cell
analysis, and opens up new opportunities to gain a multi-view understanding of the dynamics of individual cells
in various disease or developmental states. The underlying auto-encoder framework, combined with a customized
bipartite matching approach, ensures scalability even with large numbers of cells.

We demonstrate that our model performs well on simulated data as well as on real-world melanoma and bone marrow
samples profiled with scRNA and CyTOF. The SCIM framework is presented here on two and three data modalities
and easily extends to additional technologies, providing a new and effective solution to the multi-level data integration
problem. Integration of Image Mass Cytometry (Giesen et al., 2014) or single-cell ATAC-seq data (Buenrostro et al.,
2015) for example, could enable the spatial analysis of regulatory and global expression changes not just in cancer
but also in other diseases such as multiple sclerosis, where detailed spatiotemporal information has already shown
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Figure 6: CD20 and CD3 marker abundances measured with scRNA (gene, x-axis) and CyTOF (protein, y-axis) in a melanoma
sample from the Tumor Profiler Consortium. The values on the axes represent normalized expression. Colors (blue, orange)
represent cell-types (B-Cell, T-Cell) while grey marks mismatches with respect to the cell-type label. The linear regression line
is depicted by a dashed light grey line. Pearson’s correlation coefficient equals 0.68 and 0.55 for CD20 and CD3, respectively.
Spearman’s correlation coefficient amounts to 0.6 and 0.45., for CD20 and CD3, respectively.

to provide relevant insights (Ramaglia et al., 2019). Notably, SCIM allows for the integration of cell populations
undergoing branching processes, enabling the study of temporal phenomena, such as developmental and cell fate
determination. The scalability of our framework ensures applicability beyond single samples, facilitating the study of
large cohorts or the integration of SCIM into analytical workflows.

As the low-dimensional representation of the data produced by SCIM is used solely to perform cell matching, it can
be combined with any other analytical methods. The truly observed signals per cell pair measured with different
technologies can be used for any downstream analysis. By adopting a divergence measure (Wang et al., 2009), we
addressed common constraints in adversarial training, such as training instability and convergence problems. To ensure
scalability, we used a modified bipartite matching solution to efficiently match corresponding cells across technologies.
Our extensions guarantee wider applicability of SCIM, since shifts in cell-type composition across disjoint aliquots,
even coming from the same sample, can be expected. Furthermore, the introduction of the null node ensures a higher
quality of matches by avoiding forced mismatches and thus, improving confidence in the cell-to-cell assignments.
With increasing data dimensionality, the number of nearest neighbours (k) should also rise, since more ties are likely
to occur. Nevertheless, the difference in the number of True Positives across various values of k for the same dataset
remains within 5% in our experiments. Hence, we can state that performance is robust against the choice of this
hyperparameter. Furthermore, SCIM is itself inherently modular, and other matching strategies that may be more
suitable to other data types or experimental designs can be easily deployed on the integrated latent codes.

SCIM helps bridge the gap between data generation and integrative interpretation of diverse multi-modal data in the
rapidly expanding field of single-cell biology, providing users with an easily scalable algorithm designed to maximize
the information it provides and not limited to fit a particular analytical approach.
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University Hospital Zürich, and University Hospital Basel. Francesco Locatello is supported by the Max Planck ETH
Center for Learning Systems, by an ETH core grant (to Gunnar Rätsch), and by a Google Ph.D. Fellowship.
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7 Supplement

Figure S1: Evaluation of cross-technology cell matches made by SCIM on the simulated data with three technologies. The pairwise
matching is attained for Source-Target A, Source-Target B, and Target A-Target B, respectively. Here, we show a density plot for
matched pseudotime values between the source technology and the target technology, colored by the branch label. Mismatched
cells are colored in grey. The tree defining the temporal branching process can be found in Figure 4, left. Marginal distributions of
cell pseudotime for each branch is shown on the top and right.
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Figure S2: Evaluation of cross-technology cell matches using latent representation obtained by MATCHER on the simulated
data. Cells are matched across datasets pairwise using the bipartite matching scheme. Here we show a density plot for matched
pseudotime values between the source technology and the target technology, colored by the branch label. Mismatched cells are
colored in grey. Marginal distributions of cell pseudotime for each branch are shown on the top and right.

Figure S3: True Positive, False Positive, and Null matches fraction of all the matched pairs in the PROSSTT Source-Target experi-
ment as a function of the cost for matching to the null node. The cost is specified as the percentile of the costs on all the other edges
in the graph, i.e., Euclidean distance between latent codes of cells from source and target technologies. With decreasing null node
cost, more False Positives are removed, on the trade-off of removing more True Positives.
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Figure S4: Comparison of matching accuracy, with respect to cell-type label as less sparsity of connections, is imposed on the
Tumor Profiler data. The number of considered Nearest Neighbors k is indicated on the x-axis, and the fraction of True Positive
matches, with respect to cell-type label, is depicted on the y-axis. The accuracy level saturates with k = 100.

Figure S5: Matches of scRNA and CyTOF cells from the melanoma patient computed on raw expression values. The latent space
is constructed as in Figure 5, but matches are made using distances computed between the expression of 37 genes and proteins that
could share a correspondence between datasets.
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Figure S6: Training progress of SCIM on a melanoma sample. The latent space is initialized by training a VAE on scRNA data.
SCIM integrates CyTOF representations into the latent space defined by the scRNA codes. The top panel shows the negative log-
likelihood of the CyTOF reconstruction. The middle panel shows the performance of the discriminator to correctly classify scRNA
codes (critic-prior), CyTOF codes (critic-code), and the ability of the encoder to fool the discriminator, i.e., the misclassification
accuracy (generator). The bottom panel shows the divergence of the latent representations. The model is able to converge quickly.
However the divergence score can fluctuate despite still fooling the discriminator. Training took 7815 seconds (just over 2 hours)
and had a peak memory consumption of 1068 MB.

Figure S7: Gating strategy for cells profiled with CyTOF from the bone marrow patient.
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Figure S8: A tSNE embedding (perplexity=30) of the integrated latent space with cell matches indicated by the grey lines. The
shared representation was obtained in a semi-supervised fashion, utilizing 10% of the cell-type labels to orient the latent space.
10.000 matched pairs were sampled at random for the plot. Colors (blue, green, orange) represent T-Cellsubtypes (CD8 effector,
CD4 naive, CD4 memory), and color shades correspond to the profiling technology (light: scRNA, dark: CyTOF).
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space #cells matched fraction #cells matched fraction
(source) (source) (target) (target)

latent 4652 0.993 134930 0.997
data 236 0.05 130899 0.967

Table S1: The fraction of the cells from the source (scRNA) and target (CyTOF) datasets in TuPro that are matched using the
Minimum-Cost Maximum-Flow algorithm. The matching is performed using the shared latent codes or the corresponding features
in the data space. The data-space matching results in all the matches collapsing onto very few cells (5% of the source dataset).
Using latent codes allows for exploration of the whole space and providing optimal matches for almost all the cells (less than 1%
left unmatched).

CPU time [s] Max Memory [Mb]
k

5 547.00 1674.16
15 1599.00 3131.53
25 2940.67 4691.31
50 7015.33 8745.39
75 12306.33 12357.72
100 17875.67 17019.24
125 17200.00 20618.30
150 22286.00 24226.19

Table S2: Memory usage and computation time of the optimal matching as k hyperparameter in kNN search increases. The values
were obtained on the whole TuPro dataset using the MCMF algorithm on an extended graph, as described in section 2.2.3. The cost
of matching to the null node was set to 95th percentile, and a union of connections obtained from kNN graphs with k indicated in
the first column was used for matching. The memory and time reports were averaged across three independent runs.
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Fraction Censored β Encoder/Decoders Critic Success Rate Total Runs

0.00 16 0.0010 0.0010 14% 7
16 0.0010 0.0005 14% 7
16 0.0005 0.0005 10% 10
16 0.0005 0.0010 10% 10

0.25 16 0.0010 0.0010 14% 14
16 0.0005 0.0010 12% 17
64 0.0001 0.0005 0% 7
64 0.0001 0.0010 0% 7

0.75 16 0.0005 0.0010 17% 6
32 0.0005 0.0005 12% 8
16 0.0010 0.0005 8% 13
64 0.0001 0.0005 0% 7

0.90 16 0.0005 0.0010 40% 10
16 0.0010 0.0005 10% 10
16 0.0005 0.0005 8% 12
32 0.0010 0.0001 0% 10

0.95 32 0.0010 0.0001 0% 4
64 0.0001 0.0005 0% 4
64 0.0001 0.0010 0% 6
32 0.0010 0.0010 0% 5

0.99 16 0.0005 0.0010 17% 6
32 0.0010 0.0005 0% 6
64 0.0001 0.0005 0% 4
32 0.0010 0.0001 0% 6

Table S3: Ablation study for training SCIM on the Melanoma patient at several levels of semi-supervision. Fraction censored is the
fraction labels removed during training. The top 4 configurations for each level of semi-supervision is shown. β is the regularization
strength of the adversarial loss. Learning rates are the initial settings of the ADAM optimizer. If the latent space divergence is below
0.3 and the negative log-likelihood of the input under the reconstruction is below 47, the training is determined to be a success.
These values were chosen empirically. We see that β and optimizer learning rates were heavily influential on model success.

Target A B C D E
Source

A 8528 583 679 99 23
B 724 6285 758 466 928
C 770 777 18917 48 99
D 42 371 22 7804 266
E 28 1086 41 305 7363

Table S4: Confusion table showing branch labels of the optimal matches of cells in the simulated PROSSTT data, between Source
and Target A. Entries on the diagonal correspond to correct matches whereas off-diagonal elements to mismatches. The overall
accuracy, with respect to the branch label, equals 86%.

Target A B C D E
Source

A 8833 430 709 1 0
B 249 6710 536 526 681
C 925 552 19275 5 0
D 0 326 2 7906 314
E 0 382 0 742 7523

Table S5: Confusion table showing branch labels of the optimal matches of cells in the simulated PROSSTT data, between Source
and Target B. Entries on the diagonal correspond to correct matches whereas off-diagonal elements to mismatches. The overall
accuracy, with respect to the branch label, equals 86%.
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Target A B C D E
Source

A 8833 430 709 1 0
B 249 6710 536 526 681
C 925 552 19275 5 0
D 0 326 2 7906 314
E 0 382 0 742 7523

Table S6: Confusion table showing branch labels of the optimal matches of cells in the simulated PROSSTT data, between Target
A and Target B. Entries on the diagonal correspond to correct matches whereas off-diagonal elements to mismatches. The overall
accuracy, with respect to the branch label, equals 84%.

latent method accuracy #TP #FP #null matches Spearman Pearson

SCIM 86% 53.901 8.509 1.590 0.83 0.86
MATCHER 4% 1.443 37.047 25.510 -0.21 -0.19

Table S7: The matching results on the PROSSTT dataset, where the SCIM matching algorithm was applied to SCIM shared latent
codes and the MATCHER latent representation. The table depicts accuracy with respect to branch label, the number of True and
False positives, as well as null node matches and the correlation coefficients for the pseudotime between matched source and target
cells.

Target A B C D E
Source

A 540 523 116 1133 453
B 713 788 5940 581 208
C 155 4998 100 4026 6526
D 173 274 5278 4 98
E 3162 203 2484 3 11

Table S8: Confusion table showing branch labels of the matched cells in the simulated PROSSTT data. SCIM matching algorithm
was applied to a shared latent representation obtained with MATCHER. Entries on the diagonal correspond to correct matches
whereas off-diagonal elements to mismatches. The overall accuracy, with respect to the branch label, equals 4%.
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