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Abstract

Artificial intelligence (AI)-based approaches have had indubitable impact across the sciences

through the ability to extract relevant information from raw data. Recently AI has also seen use

for enhancing the efficiency of molecular simulations, wherein AI derived slow modes are used

to accelerate the simulation in targeted ways. However, while typical fields where AI is used are

characterized by a plethora of data, molecular simulations per-construction suffer from limited

sampling and thus limited data. As such the use of AI in molecular simulations can suffer

from a dangerous situation where the AI-optimization could get stuck in spurious regimes,

leading to incorrect characterization of the reaction coordinate (RC) for the problem at hand.

When such an incorrect RC is then used to perform additional simulations, one could start to

deviate progressively from the ground truth. To deal with this problem of spurious AI-solutions,

here we report a novel and automated algorithm using ideas from statistical mechanics. It

is based on the notion that a more reliable AI-solution will be one that maximizes the time-

scale separation between slow and fast processes. To learn this time-scale separation even from

limited data, we use a maximum caliber-based framework. We show the applicability of this

automatic protocol for 3 classic benchmark problems, namely the conformational dynamics of

a model peptide, ligand-unbinding from a protein, and folding/unfolding energy landscape of

the C-terminal domain of protein G. We believe our work will lead to increased and robust use

of trustworthy AI in molecular simulations of complex systems.
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Introduction

With the development of more accurate force fields and powerful computers, molecular dy-

namics (MD) has become a ubiquitous tool to study complex structural, thermodynamic and

kinetic processes of real-world systems across disciplines. However, the predictive capacity

of the methodology is limited by the large time-scale gap between the conformational dynam-

ics of the complex processes of interest and the short periods accessible to it.1,2 This disparity

is mostly attributed to the rough energy landscape typically characterized by numerous energy

minima with hard to cross barriers between them,1,3,4 which trap the system in metastable states,

leading to an incomplete sampling of the configuration space. Comprehensive sampling of the

configuration space not only provides high temporal and spatial resolutions of the complex

process but also allows us to compute converged thermodynamic properties, sample physio-

logically relevant molecular conformations, and explore complex motions critical to biological

and chemical processes such as protein folding, ligand binding, energy transfer, and countless

others.5–13

To overcome the limitations of time-scales and accurately characterize such complex land-

scapes, a plethora of enhanced sampling techniques have been developed. We can broadly

divide these methods into: (1) tempering based, and (2) collective variable (CV) or reaction

coordinate (RC) based,4 either of which can then also be coupled with multiple replica based

exchange schemes. In tempering based methods, the underlying landscape is sampled by ei-

ther modifying the temperature and/or Hamiltonian of the system through approaches like tem-

perature replica exchange, simulated annealing, and accelerated MD.14–21 On the other hand,

CV based methods involve enhancing fluctuations along pre-defined low-dimensional modes,

through biased sampling approaches like metadynamics,22–24 umbrella-sampling (US),25 adap-

tive biasing force (ABF)26–30 and many others.27,31–33 Although CV-based methods can be
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computationally more efficient than tempering-based approaches, given a poor choice of low-

dimensional modes (a non-trivial task to intuit for complex systems), CV biasing can fail mis-

erably.34 Indeed, one could also argue that one way to make tempering methods more efficient,

is to select a specific part of the system, akin to a CV, which is then subjected to the tempering

protocol.35,36

Artificial intelligence (AI) potentially provides a systematic means to differentiate signal

from noise in generic data, and thus discover relevant CVs to accelerate the simulations.37–41

A number of such AI-based approaches have been proposed recently37–39,42,43 and remain the

subject of extensive research. A common underlying theme in these methods is to exploit AI

tools to gradually uncover the underlying effective geometry, parametrize it on-the-fly, and

exploit it to bias the design of experiments with the MD simulator by emphasizing informative

configuration space areas that have not been explored before. This iterative MD-AI procedure is

repeated until desired sampling has been achieved. Conceptually, these approaches effectively

restrain the 3N-dimensional space to a very small number of dimensions (typically 1 or 2)

which encode all the relevant slow dynamics in the system, effectively discarding the remaining

fast dynamics. Every round of AI estimates the slow modes given sampling so far, and this

information is used to launch new biased rounds of simulations. Biasing along the slow modes

leads to increased exploration, which can then be used in another round of AI to estimate the

relevant slow modes even more accurately. The use of standard reweighting procedures can

then recover unbiased thermodynamic and kinetic information from the AI-augmented MD

trajectories so obtained.

However, there is a fundamental problem in such an approach. Most AI tools are designed

for data-rich systems. It has been argued44–47 that given good quality training data and with a

neural network with infinitely many parameters, the objective function for associated stochastic

gradient optimization schemes is convex. However in enhanced MD, we are per construction
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in a poorly sampled, data-sparse regime, and moreover, it is impractical to use a dense network

with too many parameters. The AI optimization function is therefore no longer guaranteed

to be convex and can give spurious or multiple solutions for the same data set – in the same

spirit as a self-driving car miscategorizing a “STOP” sign as an indication to speed up or some

other action.48 This would happen because gradient minimization got stuck in some spurious

local minima or even a saddle point on the learning landscape. The slow modes thus derived

would be spurious and using them as a biasing CV or RC would lead to incorrect and inefficient

sampling. This could naturally lead one to derive misleading conclusions.

While the concerns stated above and the approach in this work to address them should be

applicable to more general instances of AI application in molecular simulations, here we focus

on the problem of enhanced sampling through MD-AI iterations. We report a new and com-

putationally efficient algorithm designed to screen the spurious solutions obtained in AI-based

methods. Our central hypothesis is that spurious AI solutions can be identified by tell-tale

signatures in the associated dynamics, specifically through poor time-scale separation between

slow and fast processes. Thus, different slow mode solutions obtained from different instances

of AI applied to the same data set can be ranked on the basis of how much slower the slow

mode is relative to the fast modes. This difference between slow and fast mode dynamics is

known as spectral gap. We would like to emphasize that the concept of largest spectral gap cor-

relating with CV optimality is a well-founded and theoretically justified concept at the heart of

many previous studies.49–53 However, it has not yet been applied in a computationally tractable

manner to representations arising from AI frameworks used on biased datasets, as is done in

this work. Here this is made feasible through the use of the “Spectral Gap Optimization of

Order Parameters (SGOOP)” framework.54 This builds a maximum caliber or path entropy55

based model of the unbiased dynamics along different AI based representations even when the

underlying observables arise from biased simulations, which then yields spectral gaps along dif-
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ferent slow modes obtained from AI trials. We demonstrate this path entropy based screening

procedure in the context of our recent iterative AI-MD scheme “Reweighted Auotencoded Vari-

ational Bayes for enhanced sampling (RAVE)”.40 Here we show how this automated protocol

can be applied to the study of a variety of molecular problems of increasing complexity. These

include conformational dynamics in a model peptide, ligand unbinding from a protein, and ex-

tensive sampling of the folding/unfolding of the C-terminal domain of protein G (GB1-C16).

We believe the presented algorithm marks a major step forward in the use of fully automated

AI-enhanced MD for the study of complex bio-molecular processes.

Theory

AI can mislead

In this work our starting point is the recent AI-based method RAVE.37,40,56 RAVE is an iterative

MD-AI approach wherein rounds of MD for sampling are alternated with rounds of AI for learn-

ing slow modes. Specifically, RAVE begins with an initial unbiased MD trajectory comprising

values of some order parameters s = (s1, s2, ..., sd). These could be generic variables such as

dihedrals or protein-ligand distances,57 as well as other CVs deemed to best describe the be-

havior of the system of interest. This trajectory is then treated with the past-future information

bottleneck (PIB) framework.58–62 Per construction, the PIB is a low-dimensional representa-

tion with the best trade-off between minimal complexity and maximal predictive capability of

the trajectory’s evolution slightly ahead in future. RAVE uses the PIB as a computationally

tractable approximation for the RC which is traditionally considered as the definition of a slow

mode.63 PIB is then used in an importance sampling framework to perform the next round of

biased MD. Assuming that the biased PIB is close enough to the true slow mode or modes of

the system, one expects the exploration of the configuration space in this new biased round of
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MD to be greater than in the previous round. The biased MD itself can be performed using one

of the many available biased sampling schemes.40,64,65

In order to learn the PIB, RAVE uses an encoder-decoder framework. The PIB or RC χ is

expressed as a linear combination of order parameters χ =
∑

i cisi where the order parameters

are s = (s1, s2, ..., sd), ci denotes different weights57 and d denotes the dimension of the order

parameter space. The PIB objective function which is then minimized in every training round

can be written as a difference of two mutual informations: 66

L ≡ I(s, χ)− γI(s∆t, χ) (1)

where I(.) denotes the mutual information between two random variables.66 The term

I(s∆t, χ) describes the predictive power of the model which is quantified by the amount of

information shared by the information bottleneck χ and the future state of the system s∆t when

the information bottleneck is decoded back to the order parameters space. To optimize the ob-

jective function, the information bottleneck χ should be as informative as possible about the

future state of the system, quantified through increasing I(s∆t, χ). At the same time, we seek

to minimize the complexity of the low dimensional representation. Therefore, when the en-

coder maps the present state of the system s to information bottleneck χ, we aim to minimize

the amount of information shared between them by decreasing I(s, χ). The parameter γ is

introduced to tune the trade-off between predictive power and the complexity of the model.

In Eq. 1, the encoder is a linear combination of the input coordinates, thereby keeping it

interpretable and relatively robust to overfitting. The decoder is a deep artificial neural net-

work (ANN). Due to the principle of variational inference40,67 wherein optimizing the decoder

is guaranteed to lead to a convex optimization problem, we are not concerned with over-fitting

in the decoder. It is fitting the encoder, which directly leads to an interpretable RC, that is of
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concern to us here. This can be best illustrated through a simple numerical example involving

protein conformational dynamics, which we describe in detail in Methods and in Fig. 1. We

performed 6 different, independently initialized trials of PIB learning using the same input tra-

jectory for a model peptide (alanine dipeptide), each running for same number of epoches. The

RC was expressed as a linear combination of the sines and cosines of various Ramachandran

dihedral angles. As can be seen in Fig. 1B, we obtain different RCs with different trials even

though they are all stopped at the same low value of the loss function (within 4 decimal digits

of precision). Given the use of an interpretable linear encoder, one can see a sense of symmetry

even in the at first glance different looking RCs in Fig. 1B. However as we show later, the situ-

ation exemplified here exacerbates quickly with more complicated systems, and we expect this

degeneracy to get only worse in more ambitious AI-based applications where even the encoder

is non-linear,37,41,51 and/or where one does not really know a priori when to stop the training.

Figure 1: Spurious AI solutions for RCs describing conformational dynamics of alanine
dipeptide. (A) Molecular representation of alanine dipeptide showing relevant Ramachandran
dihedral angles, φ and ψ. (B) Table highlights the insensitivity of the objective function towards
the changes in the weights of the order parameters. Six independently initiated trials of RAVE,
on the same input trajectory, resulted in different RCs. The RCs are expressed as a linear
combination of sines and cosines of φ and ψ with coefficients/weights listed in the table.

The above numerical example demonstrates the problem at heart of what we wish to tackle

in this manuscript: how does one screen through spurious solutions resulting from attempts to
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optimize an objective function in AI applications to molecular simulations, and more broadly

in chemistry and other physical sciences? The problem is especially difficult in two scenarios.

Firstly, when one does not know the ground truth against which different AI solutions could be

ranked, as is expected in any application where one seeks to gain new insight. Secondly, as is

the case in AI-augmented MD, this problem will have critical, unquantifiable ramifications in

iterative learning scenarios when any such AI-derived insight is used to make new decisions and

drive new rounds of biased simulations. For instance in RAVE, we have yet another parameter

that is not obvious how to select, namely the choice of the predictive time-delay ∆t in Eq. 1.

As shown in Ref.,68 theoretically speaking the method is robust to the choice of this parameter

as long as it non-zero yet small enough. In practice, it can be hard to judge whether it is indeed

small enough or not.

Path entropy model of dynamics can be used to screen AI solutions

In order to rank a set of AI-generated putative RCs, we appeal to the fundamental notion of

time-scale separation, which is ubiquitous across physics and chemistry for example through

concepts such as Born-Oppenheimer approximation69 and Michaelis-Menten principle.70 We

posit that given a basket of RC solutions generated through AI, we can rank them as being

closer to the true but unknown RC if they have a higher time-scale separation between slow

and fast modes. Thus, a spurious AI solution should have a tell-tale signature in its dynam-

ics, with poor separation between slow and fast modes. Indeed, one of the many definitions

of an RC in chemistry is one that maximizes such a time-scale separation.71 To estimate this

time-scale separation efficiently and rank a large number of putative AI based solutions for the

true RC or PIB, here we use the SGOOP framework,54 which uses a maximum path entropy or

caliber model55,72 to construct a minimal model of the dynamics along a given low-dimensional

projection. To construct such a model, SGOOP requires two key inputs. First, it needs the sta-
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tionary probability density along any putative RC, which we directly obtain after each round of

RAVE.40,68 Second, it needs estimates of unbiased dynamical observables which we obtained

from short MD simulations. With these two key sets of inputs, SGOOP can construct a ma-

trix of transition rates along any putative RC. Diagonalizing this matrix gives the eigenvalues

for the dynamical propagator. The spectral gap from these eigenvalues is then our estimate of

the time-scale separation.73 While improving the quality of the dynamical observables can lead

to increasingly accurate eigenvalues,74 here we use a computationally inexpensive dynamical

observable denoted 〈N〉 and defined as the average number of nearest neighbor transitions per

unit time along any RC. SGOOP protocol requires a standard grid parameter (also used for his-

togramming) which in all the studied systems was set to 20. We use pn to denote the stationary

probability density along any suitably discretized putative RC at grid index n. With these in-

puts, the SGOOP transition probability matrix K for moving between two grid points m and n

is given by:55,73

Kmn =
< N >∑√

pnpm

√
pn
pm

(2)

Our net product is an iterative framework that leverages the predictive power of RAVE and the

fundamental notion of time-scale separation of SGOOP to generate an optimal RC. The use

of AI in RAVE allows one to generate several possible candidate RCs, and by constructing

a minimal path entropy based dynamical model we efficiently screen out spurious solutions

generated from AI. We would like to note that maximum path entropy does not require any

additional simulations beyond those already available from RAVE, rather its a post processing

protocol which can be employed after each set of RAVE runs to sieve-out spurious solutions.

The RC so identified is then used as a biasing variable in enhanced sampling, and the biased

trajectory itself is fed back to the AI module to further optimize the RC. The iteration between

this framework and sampling continues until multiple transitions between different intermediate
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states are achieved. We also apply this framework to cleanly select the best choice of predictive

time-delay (∆t) in Eq. 1 - the optimal predictive time-delay in our model for PIB is the one that

achieves the highest time-scale separation.
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Figure 2: Flowchart illustrates our novel and computationally efficient protocol to screen
AI solutions. Starting from short unbiased MD simulations, our protocol automatically screen
the spurious solutions obtained in AI-based method and learns the optimal RC. In this work we
demonstrate the applicability of our protocol in the context of RAVE and the screening of the
spurious solutions is achieved by a path entropy based procedure.
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Results

In the previous section we described a path entropy and time-scale separation based paradigm

to capture spurious solutions in AI-enhanced MD. In this section we illustrate the effectiveness

of our framework through three generically relevant biophysical examples of increasing com-

plexity. Specifically, we consider (A) conformational dynamics of a model peptide in vaccum,

(B) dissociation of a millimolar-affinity ligand from FKBP protein, and (C) folding of the GB1-

C16 peptide. All simulations are done at an all-atom resolution, including explicit water in

(B) and (C). In all three systems, starting with an initial unbiased MD trajectory comprising of

generic order parameters s, we perform iterative rounds of RAVE followed by biased enhanced

sampling, using SGOOP to screen RC candidates generated in RAVE and to select the optimal

time-delay ∆t in Eq. 1. Apart from the starting choice of order parameters which are kept quite

generic (Table S1), all steps are carried out with minimal use of human intuition. To display

the versatility of our framework, we combined it with two different enhanced sampling algo-

rithms.75 In systems (A) and (B), we employ static biases to further enhance the conformational

sampling of the model peptide and ligand dissociation along the reaction path.76 These static

biases were directly obtained by inverting the probability distribution learnt during RAVE.40,56

In system (C), we employ time-dependent biasing through well-tempered metadynamics24,65 to

capture folding of the GB1-C16 peptide. All the simulations were performed with GROMACS

version 5.077 patched with PLUMED version 2.4.2.78,79

A. Conformational dynamics of alanine dipeptide

The first system we consider here is the well-studied case of alanine dipeptide in vacuum. It can

exist in multiple conformations separated by barriers and commonly characterized by differing

values of its backbone dihedral angles φ and ψ (Fig. 1B). Enabled by the small size of the
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system, we performed 3 independent simulations, each 2 µs long. The corresponding trajecto-

ries along with the dihedral angles φ and ψ are provided as Supplementary Information (SI) in

Fig. S1. In line with standard practice,80,81 the sines and cosines of these two dihedral angles

provide natural input order parameters (OPs) s = (cos φ, sin φ, cos ψ, sin ψ) for RAVE, which

then learns the optimal RC χ as a linear combination of these four. In the three independent tra-

jectories, even with such long simulation times we capture only 1, 2, and 4 transitions between

the axial and the equatorial conformations of the dipeptide. Using such input trajectories with

different number of transitions helps us ascertain robustness of the protocol developed here.

Each trajectory was used to perform RAVE with 11 different choices of the predictive time-

delay ∆t in Eq. 1, ranging from 0 to 40 ps. Furthermore, 10 different trials were performed

for each ∆t value corresponding to different input trajectories. This amounts to a total of 330

RAVE calculations, with 110 for each input trajectory. Each trial was stopped after the same

training time, and the loss function value after the training as well as the RC so-obtained were

recorded.

As hinted at in Introduction, we obtain very different RCs for the different ∆t values and

for different independent trials. Furthermore, different trials that were stopped at similar loss

function value gave different RCs and spectral gaps (Fig. 3 and S2). However our protocol

of using spectral gaps to rank these different solutions works well in screening out the RC. In

Figs. 3(A-C) we demonstrate the noisy correlation that we find between the loss function value

and the spectral gap for all 3 input trajectories. In SI (Fig. S2B), we provide an illustrative

figure for one particular trajectory showing how the same loss function value results in RCs

with different free energy profiles, and that the one with the highest spectral gap stands out with

most clearly demarcated metastable states. Similarly, the spectral gap captures the most optimal

RC not just from the set of multiple trials at each time-delay, but it can also be used to select the

optimal time-delay itself (Fig. 3D). In the subsequent calculations optimal time-delay of 8 ps,
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Figure 3: Capturing the spurious AI solutions in alanine dipeptide. Spectral gap and loss
function values were calculated for each of the three unbiased trajectories at multiple time-
delays ∆t between 0 and 40 ps, indicated using circles of different colors in the bottom right
side of the figure. (A-C) show noisy correlation between the loss and the spectral gap for
number of transitions ntrans equaling 1, 2, and 4 respectively. Different circles denote different
independent trials, with color denoting ∆t. For visual clarity, for every ntrans we have plotted
a mean-free version of the loss function value by subtracting out the average of all losses. (D)
Maximum spectral gap (out of 10 different trials of RAVE) vs. ∆t was plotted for 3 different
unbiased trajectories. Optimal time-delay of 8 ps was employed in subsequent calculations.
(E) Free energy surface (FES) along the two dihedrals Φ and Ψ, obtained from 20 ns-long
simulation in the presence of static bias. Energy contours are shown at every 4 kJ/mol.
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corresponding to the maximum spectral gap, was employed. Irrespective of the choice of input

trajectory, we find that the optimal RC shows higher weights for φ (as compared to ψ) (Table

1), in line with previous studies which highlighted φ to be a more important degree of freedom

than ψ.40,82 Using the RC corresponding to the ntrans= 4 and its probability distribution as a

fixed bias,40 we then explored the conformational space of the peptide. The two-dimensional

free-energy landscape along the dihedrals φ and ψ was able to capture axial and equatorial

conformations of the peptide in only 20 ns of biased simulation (Fig. 3E). This is in excellent

agreement with previously published studies for this system.24,40 However, biased simulations

with the RAVE-alone RC result in poorer sampling of the configuration space relative to biased

simulations using the RC further screened with SGOOP, as can be seen from the lesser number

of transitions between the energy basins (Fig S3).

Table 1: Optimal weights of OPs obtained through a combination of RAVE and SGOOP

Trajectory Transitions cosφ sinφ cosψ sinψ
1 1 -0.71 -0.68 0.09 -0.15
2 2 0.35 0.81 0.32 0.34
3 4 0.63 -0.65 0.03 0.42

B. Unbinding of millimolar-affinity ligand from FKBP

In the second example, we applied our framework to a well studied problem of dissociation of

4-hydroxy-2-butanone (BUT), a millimolar affinity ligand, from the FKBP protein (Fig. 4A).

Force-field parametrization83–85 and other MD details are provided in SI. Here, our objective

was to use RAVE to learn the most optimal RC on-the-fly as well as the absolute binding free

energy of this protein-ligand complex. This is a difficult and important problem for which many

useful methods have been already employed with varying levels of success.86 At this stage at

least, our intention is not to compete with these other existing methods, but instead validate

16

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.06.11.146985doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.146985
http://creativecommons.org/licenses/by-nd/4.0/


that our framework works for a well studied benchmark problem. We begin by performing

four independent MD simulations of FKBP in its ligand-bound form (PDB:1D7J).87 The MD

simulations were stopped when the ligand unbound, specifically when it was 2 Å away from the

binding pocket (Fig. 4B). All trajectories were expressed in terms of 8 OPs representing various

distances between the center of mass (COM) of the ligand and the COM of the residues in the

binding pocket (Table S1), which comprise a natural choice for the process of ligand unbinding

from the protein and have been employed in previous studies.57,88 We combined the results of

the four independent MD trajectories to perform RAVE with 11 different choices of predictive

time-delay, ranging from 0 to 40 ps. At each ∆t, 10 different trials were performed resulting in a

total of 110 RAVE calculations. Each trial was stopped after the same training time, and the loss

function value after the training as well as the RC so-obtained were recorded. Different RCs

were screened using a path entropy based model as discussed in Theory and done for alanine

dipeptide. We again find noisy correlation between the loss function values and the spectral gap

(Fig. 4C), for the case of ∆t = 40 ps (additional plots are given in Fig. S4). The same value

of loss function gives rise to very different values of the spectral gap and of the RC (Fig. 4C).

Furthermore, the spectral gap not only captures the most optimal RC, it is also able to select

the most optimal time-delay (Fig 4D). By using this RC and its probability distribution as a

fixed bias,40 we then performed 800 ns of biased simulations starting from the bound pose, but

allowing the ligand to re-associate (Fig. S5A,B). Through this we then calculate the absolute

binding affinity of the protein-ligand complex to be 6.6 kJ/mol (Fig 4E), in good agreement

with values reported through metadynamics.57Interestingly, the binding affinity of the protein-

ligand complex was also in good agreement with the values reported through extended unbiased

simulations by Pan et al.,89 although, the ligand was parameterized with the generalized amber

force field (GAFF).88 It is worth pointing out that the ANTON simulations took 39µs while we

obtained converged estimates in around 800 ns, reflecting roughly a factor of 48 speed-up with
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minimal use of prior human intuition.

Figure 4: Unbinding of 4-hydroxy-2-butanone (BUT) from FKBP. (A) Molecular image of
the bound FKBP/BUT protein–ligand complex, with binding pocket residues highlighted. The
distances to the residues were used as different OPs detailed in Table S1. (B) Time evolution of
the distance between the center of mass (COM) of the bound ligand and COM of residue W59. It
is to be noted that in order to avoid entropy dominant process, only the ligand-bound trajectories
were considered in our protocol. (C) Spectral gap and loss (at time-delay of 40 ps) for 10
different trials were calculated after combining all four independent trajectories at multiple
time-delay ∆t between 0 and 40 ps, indicated using circles. Rest of the time-delays are shown
in Fig. S1. For visual clarity, at each iteration, we have plotted a mean-free version of the
loss function value by subtracting out the average of all losses. (D) Plot of maximum spectral
gap (out of 10 different trials of RAVE) vs time-delay (∆t). (E) Absolute binding free energy
G in kJ/mol of FKBP/BUT system as a function of simulation time with static external bias.
The dotted black and orange line shows the reference value reported through metadynamics57

and long unbiased MD simulations performed on ANTON.89 The shaded region shows the free
energy estimate from long unbiased MD simulations performed on Anton including the±2.092
kJ error reported.89 (F) A visual depiction of the OP weights.

The use of a linear encoder in RAVE allows us to directly interpret the weights of the differ-

ent OPs in the RC (Fig. 4F). The highest weight corresponds to the OP d5, which is the ligand

separation from residue I56. This residue forms direct interactions with the bound ligand in the

crystal structure. Interestingly, previous studies87 have highlighted the importance of I56 as it
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forms hydrogen bonding interactions with the carbonyl group of the bound ligand, our algo-

rithm also captured it as the most significant OP. Followed by this highest weight component,

the second and third highest components are for d1 and d2, denoting respectively distances from

the residues V55 and W59. These are roughly equal in magnitude, reflecting that the ligand

moves closer to V55 and W59 as it moved away from I56.

C. Folding/unfolding dynamics of GB1 peptide

Finally we tested our method on the folding/unfolding dynamics of GB1-C16, which is known

to adopt a β-hairpin structure.90–94 Force-field parametrization and other MD details are pro-

vided in the SI. The free-energy landscape of this peptide has been extensively explored by

replica-exchange MD simulations and clustering based methods.90,94,95 These studies reported

the presence of multiple intermediate conformations by projecting the simulation data along

multiple OPs, such as radius of gyration (Rg), root-mean-squared deviation (RMSD), fraction

of native contacts (NC), and native state hydrogen bonds (NHB). These OPs on their own were

not able to distinguish between intermediate conformations with proper energy barriers. How-

ever, using a combination of these OPs as input in advanced slow mode analysis methods such

as TICA52,96,97 recovers a more superior two-dimensional description.90 That work however

used more than 12 µs of enhanced sampling, specifically replica exchange MD trajectories, for

this purpose. Here instead we use just 1.6 µs of unbiased trajectories as our starting point. From

this point onwards, using the same OPs as in Ref.,90 our work provides a semi-automated so-

lution in deriving an optimal two-dimensional RC for GB1-C16, which is capable of resolving

the intermediate conformations. Here, in contrast to the previous two examples we use well-

tempered metadynamics24,65 simulations as the choice of enhanced sampling engine coupled

with RAVE.

We start by performing four independent 400- ns of unbiased MD simulations of the peptide
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Figure 5: Dynamics of GB1-C16 captured from unbiased MD. One of the four representative
trajectory of the peptide in explicit solvent is projected along different order parameters (A)
number of hydrogen bonds (NHB), (B) native contacts (NC), (C) radius of gyration (Rg), and
(D) root-mean square displacement (RMSD). (E) Molecular image of the GB1-C16. Native
backbone hydrogen bonds are highlighted with green lines.

in explicit solvent. All the simulated systems were observed to be fairly stable when projected

along a library of OPs comprising RMSD, NC, Rg, and NHB, with their detailed construction

described in SI (Fig. 5, Fig. S6). All the unbiased trajectories were mixed and fed into RAVE

for learning the RC. We performed 10 different trials of RAVE for different time-delays ∆t,

ranging from 0 to 20 ps which amounts to a total of 110 RAVE calculations. Different putative

RCs learnt from RAVE were screened using the path entropy based model as discussed in the

Theory and as done for the other two systems. Similar to the previous systems, we find noisy

correlation between the loss function value and the spectral gap (Fig. S7). The most optimal RC

was selected for biased simulations using well-tempered metadynamics (Fig. S7A,B). Based on

the maximum spectral gap, we chose ∆t=8 ps for the next round of 50 ns-long metadynamics

simulation. We then alternatively iterate between the rounds of learning improved RC, using

our framework, and running metadynamics using the optimal RC in every iteration. After two

iterations, we did not find any further improvement in sampling with this one-dimensional RC,
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which we call χ1. With a 1-d metadynamics we were unable to attain back and forth transitions

between different metastable states, suggesting the presence of missing/orthogonal degrees of

freedom not encapsulated by χ1. In order to learn these other degrees of freedom through the

second component of the RC, which we call χ2, we used the protocol from Ref.98 For practical

purposes, this corresponds to ignoring the already learnt χ1 and treating the biased trajectory

without any consideration of the bias along χ1. We would like to note that in the previous

study73 we have extended the scope of SGOOP by employing a the notion of conditional proba-

bility factorization where known features are effectively washed out to learn additional features

of the underlying energy landscape. This is what we have used for RAVE as well in the current

work. In principle RAVE could be directly used to output a two-dimensional or even higher-

dimensional RC, but this protocol ensures that we gradually ensure the RC dimensionality only

when a lower dimension is found insufficient for sampling. We then performed 50 ns long

2D metadynamics simulations (Fig. S7 E,F), which were used to train χ2. The most optimal

2-dimensional RC obtained after three iterations of training χ2 is detailed in (Fig. 6A). The

backbone heavy atom RMSD contribute the most toward the construction of slowest dimension

χ1, whereas Rg contributed more towards the second slowest dimension.

The two-dimensional RC is then used in longer well-tempered metadynamics simulations

to facilitate movement between different metastable states (SI Video 1) and to obtain converged

free energy surfaces. We performed 1.2µs-long metadynamics simulations at 300 K, starting

from the crystal structure (Fig. S8). The 2-dimensional metadynamics simulations were per-

formed with initial hill height 0.5 kJ, bias factor = 10, Gaussian widths 0.03 for both χ1 and χ2,

and bias added every 4 ps. Additional restraint potential was applied along the RMSD order pa-

rameter preventing very high values from being attained (see details in SI). In principle this step

is not necessary as the simulation would eventually return back to low RMSD states, but in prac-

tice, due to the entropic nature of the high RMSD states, such a restraint significantly helps with
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Figure 6: Free-energy landscape and OPs contribution. (A) Contribution of the different
OPs to the 2-dimensional RC χ. The two components χ1 and χ2 are shown in blue and red
bars, respectively. (B) A highly rugged 2-dimensional free-energy landscape of GB1-C16 fold-
ing/unfolding. We were able to capture multiple states, corresponding to the folded (IS1), un-
folded (IS4), and intermediate states (IS2 and IS3). Interestingly, it is only by projecting the
free energy as a function of the 2 RCs that we were able to capture a partially helical state
(IS3), which otherwise was not easy to distinguish solely using traditional OPs. Representative
snapshots of the captured structures are shown in the bottom panel, and their locations on the
energy landscape shown in B.
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computational efficiency. Fig. 6B shows the 2D free energy landscape as a function of the two

RC components, at 300 K. We find that the system shows multiple energy basins correspond-

ing to the different stable and metastable intermediates. Interestingly, we captured a helical

conformation of this peptide, which was not easy to distinguish by using a combination of con-

ventional OPs like RMSD, Rg, contact map, etc.99 For example, previous metadynamics-based

studies employed Rg and native hydrogen bonds to accelerate the folding process, but they were

not able to clearly demarcate distinct conformational states with energy-barriers.100,101 Interest-

ingly,when the two-dimensional free-energy landscapes when projected along the pair of OPs,

yields results consistent with the previous studies and suggests the presence of two metastable

states (Fig. S9).

Conclusion

To conclude, we have introduced a new approach to sieve out the spurious solutions from AI-

augmented enhanced sampling simulations.37,38 AI-based approaches have had indisputable im-

pact across sciences, including their use in enhancing the efficiency of molecular simulations.

However, when these AI-based approaches are applied to a data sparse regime it can lead to

spurious or multiple solutions. This would happen because gradient minimization can get stuck

in some spurious local minima or even saddle points on the learning landscape, leading to mis-

leading use of AI.

To deal with this issue of trustworthiness of AI in molecular simulations, we report a novel,

automated algorithm aided by ideas from statistical physics.102 Our algorithm is based on the

simple but powerful notion that a more reliable AI solution will be one that maximizes the

time-scale separation between slow and fast processes. This fundamental notion of time-scale

separation was implemented on the basis of maximum caliber- or path-entropy-based method,
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SGOOP.54,55 We would like to emphasize that our approach, and spectral gap based optimiza-

tion in general54 might have as of yet unexplored connections with the Variational Approach for

Markov processes (VAMP) .103 The framework developed here should be applicable to many

recent methods (Ref.37 and references therein) which involve iterating between MD and AI

for sampling and learning respectively. Here we demonstrate its usefulness through our recent

integrated AI-MD algorithm RAVE.40 We illustrate the applicability of our algorithm through

three illustrative examples, including the complex problem of capturing the energetic landscape

of GB1 peptide folding in all-atom simulations. In this last case, we started from a library of

4 order parameters that are generic for folding/unfolding processes and demonstrated how to

semi-automatically learn a 2-dimensional RC, which we then used in well-tempered metady-

namics protocol to obtain folding/unfolding trajectories. This directly allows us to gain atomic

level insights into different metastable states relevant to the folding/unfolding process. We thus

believe that our method marks a useful and much needed step forward in increasing the utility

of machine learning and AI-based methods in the context of enhanced sampling and one can

expect that such an approach could be applicable to molecular simulations in general, although

this is purely speculative at this point and remains to be verified.
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Bottaro, S.; Branduardi, D., et al. Promoting transparency and reproducibility in enhanced molecular simu-

lations. Nat. Methods

(80) Mu, Y.; Nguyen, P. H.; Stock, G. Energy landscape of a small peptide revealed by dihedral angle principal

component analysis. Proteins: Struct., Func., Bioinf. 2005, 58, 45–52.

(81) Altis, A.; Nguyen, P. H.; Hegger, R.; Stock, G. Dihedral angle principal component analysis of molecular

dynamics simulations. J. Chem. Phys. 2007, 126, 244111.

(82) Salvalaglio, M.; Tiwary, P.; Parrinello, M. Assessing the reliability of the dynamics reconstructed from

metadynamics. J. Chem. Theory Comput. 2014, 10, 1420–1425.

(83) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple

Amber force fields and development of improved protein backbone parameters. Proteins: Struct., Func.,

Bioinf. 2006, 65, 712–725.

(84) Best, R. B.; Hummer, G. Optimized molecular dynamics force fields applied to the helix- coil transition of

polypeptides. J. Phys. Chem. B 2009, 113, 9004–9015.

(85) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Improved

side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Struct., Func., Bioinf. 2010,

78, 1950–1958.

32

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.06.11.146985doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.146985
http://creativecommons.org/licenses/by-nd/4.0/


(86) Gumbart, J. C.; Roux, B.; Chipot, C. Standard binding free energies from computer simulations: What is

the best strategy? Journal of chemical theory and computation 2013, 9, 794–802.

(87) Burkhard, P.; Taylor, P.; Walkinshaw, M. D. X-ray structures of small ligand-FKBP complexes provide an

estimate for hydrophobic interaction energies. J. Mol. Biol. 2000, 295, 953–962.

(88) Pramanik, D.; Smith, Z.; Kells, A.; Tiwary, P. Can One Trust Kinetic and Thermodynamic Observables

from Biased Metadynamics Simulations?: Detailed Quantitative Benchmarks on Millimolar Drug Fragment

Dissociation. J. Phys. Chem. B 2019, 123, 3672–3678.

(89) Pan, A. C.; Xu, H.; Palpant, T.; Shaw, D. E. Quantitative characterization of the binding and unbind-

ing of millimolar drug fragments with molecular dynamics simulations. Journal of chemical theory and

computation 2017, 13, 3372–3377.

(90) Ahalawat, N.; Mondal, J. Assessment and optimization of collective variables for protein conformational

landscape: GB1 β-hairpin as a case study. J. Chem. Phys. 2018, 149, 094101.

(91) Munoz, V.; Thompson, P. A.; Hofrichter, J.; Eaton, W. A. Folding dynamics and mechanism of β-hairpin

formation. Nature 1997, 390, 196–199.

(92) Fesinmeyer, R. M.; Hudson, F. M.; Andersen, N. H. Enhanced hairpin stability through loop design: the

case of the protein G B1 domain hairpin. J. Am. Chem. Soc. 2004, 126, 7238–7243.

(93) Hazel, A. J.; Walters, E. T.; Rowley, C. N.; Gumbart, J. C. Folding free energy landscapes of β-sheets with

non-polarizable and polarizable CHARMM force fields. J. Chem. Phys. 2018, 149, 072317.

(94) Best, R. B.; Mittal, J. Free-energy landscape of the GB1 hairpin in all-atom explicit solvent simulations with

different force fields: Similarities and differences. Proteins: Struct., Func., Bioinf. 2011, 79, 1318–1328.

(95) Ardevol, A.; Tribello, G. A.; Ceriotti, M.; Parrinello, M. Probing the unfolded configurations of a β-hairpin

using sketch-map. J. Chem. Theory Comput. 2015, 11, 1086–1093.
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Supporting Information

Methods

Molecular dynamics simulations All the systems were simulated with GROMACS version 5.077 patched with

PLUMED version 2.4.2.78,79 We constrained the bonds involving hydrogen atoms using LINCS algorithm and

employed an integraion timestep of 2 fs. More details on individual systems and simulation protocols are provided

below.

(A) Simulation setup for alanine dipeptide in vacuum. We followed Ref.40 to set up our simulations for

alanine dipeptide in vacuum. AMBER03 force field was used for the dipeptide. Three independent 2 µs-long MD

simulations each with randomized initial velocities were performed to improve the sampling. The temperature was

kept constant at 300 K using the velocity rescaling thermostat.104

(B) Simulation setup for the FKBP-BUT complex. As a second system, we studied the dissociation of

4-hydroxy-2-butanone (BUT) from the protein FKBP. AMBER99SB-ILDN force field83–85 was used for the pro-

tein along with TIP3P water, and the ligand was parametrized with the generalized amber force field (GAFF).105

The simulations were initiated from the BUT-bound crystal structure of FKBP (PDB ID: 1D7J). Initial equilibra-

tion was performed in NPT ensemble for 1 ns followed by four independent production runs with Nosé-Hoover

thermostat106 maintaining the temperature at 300 K.

(C) Simulation setup for GB1 peptide. As a third system, we studied the folding dynamics of GB1 peptide in

water. The system was setup and equilibrated following the protocol described in Ref .90 After this we performed

four independent production runs, each lasting for 400 ns.

Metadynamics The central idea behind metadynamics is that by adding a history-dependent biasing potential it en-

courages the given system to escape the free energy minima, and explores various stable and metastable regions of

the energy landscape.24 Following the reweighting procedure, one can then construct the underlying energy land-

scape along any RC.107 To capture the unfolding energy landscape of GB1 peptide, we employed well-tempered

metadynamics using PLUMED implementation.24,78,79 The simulations were performed along the optimal RC ob-

tained through the combination of RAVE and SGOOP. The metadynamics simulations were performed with the

biasfactor of 10, initial hill height of 0.5 kJ/mol, and bias deposition rate of 4 ps. The sigma values of the added

Gaussian bias was set to the standard deviation of the biasing RC obtained from the unbiased simulation 400 ns.

Once a 50 ns metadynamics run was completed, the biased trajectory was reweighted and used as an input for

the second round of RAVE.40 The system in this 50 ns biased runs explored more conformational space than in
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initial 400 ns of unbiased simulations. After this, we performed another round of biased simulations, where we

employed 2D metadynamics along the optimal RCs obtained through the combination of RAVE and SGOOP. To

prevent the peptide from getting trapped in entropic non-physical conformations due to the accumulated bias, we

also restrain the movement of the peptide along the RMSD order parameter by addition of another bias. This bias

had the form of Eq. 3. The final round of 2-dimensional metadynamics simulations were performed for 1200 ns.

VRMSD = 2000(RMSD − 0.7)0.4(kJ/mol) (3)

Definitions of Order Parameters. For each system we first constructed a dictionary of order parameters (OPs),

summarized in Table 2.

Table S1: Details of the Pre-Selected Dictionary of Order Parameters (OPs)

system order definition
parameters

dihedral angle cosφ
Alanine dipeptide dihedral angle sinφ

dihedral angle cosψ
dihedral angle sinψ

d1 Y59-BUT
d2 V55-BUT
d3 F46-BUT
d4 Y26-BUT

FKBP-BUT d5 I56-BUT
d6 F99-BUT
d7 Y59-end A
d8 Y59-end B

NHB backbone-backbone
GB1 NC all native contacts

peptide RG backbone heavy atoms
RMSD backbone heavy atoms

redAll the distances in FKBP system was calculated with respect to the center of mass of the residues and the
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ligand. We have calculated NC and NHB using a switching function

S =
∑
i

∑
j

sij (4)

sij =


1−(

rij−do

ro
)6

1−(
rij−do

ro
)12

ifrij > ro

1 otherwise

(5)

where do= 0.05 nm and ro = 0.65 nm were used for NC calculations and do= 0.0 nm and ro = 0.25 nm were used

for NHB calculations. In the case of NC contacts, rij is a distance between i and j heavy atoms in the native state.

While, in NHB, i and j are the pairs of O and HN (amino group) atoms of the backbone. RMSD of all the backbone

heavy atoms with respect to crystal structure and RG of all the backbone heavy atoms were also calculated using

PLUMED.

Neural network architecture Hyper-parameters in this work included the variance of Gaussian noise, the number

of neurons in hidden layers, initializer of weights of each layer, and the learning rate for the RMSprop algorithm.

In the studied examples, all these hyper-parameters are set to be the same. The variance of Gaussians was kept

0.005. Each hidden layer had 128 neurons. The learning rate was set to be 0.003. Initial weights of each layer

were randomly picked from a uniform distribution within range [0.005, 005]. We note that the independent RAVE

trials even when used on the same trajectory are randomized, because

1. We randomly initialized the parameters in neural network.

2. Randomly generated seed was used to shuffle the training data.
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Figure S1: Unbiased MD simulations of model peptide in vacuum. (A-B) Three independent
MD simulations of alanine dipeptide projected along dihedral (φ, ψ) angle space. Differing
number of transitions along the φ order parameter were captured in the different independent
simulations.
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Figure S2: Same loss function can give differing RCs (A) Table highlights the sensitivity of
spectral gap towards changes in the weights of the order parameters. While objective function
remain insensitive to the changes in the weights of the order parameter. (B) Free energy land-
scape of one particular trajectory showing same loss function results in RCs with very different
free energy profiles. The RC with maximum spectral gap highlights distinct metastable state.
The different local minima in this plot correspond to different metastable states which are not
marked here to avoid confusion, and as our main aim is to illustrate how the free energies along
different RCs from RAVE might appear different.
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Figure S3: Time evolution of φ and ψ angles after one round of RAVE. Static biased MD
simulations of alanine dipeptide along (A) optimal RC screened with SGOOP as having high
spectral gap, and (B) less optimal RC without SGOOP screening. The precise RC definitions
are provided in the Results section in the main text. Trajectories are shown for dihedral (φ, ψ)
angle space. We observed more transitions when biased along the optimal RC, while both being
relatively superior to unbiased MD.
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Figure S4: Loss function versus spectral gap for ligand unbinding from FKBP along the
optimal reaction coordinate. Spectral gap and loss was calculated for the unbiased trajectory
at multiple time-delays ∆t between 0 and 40 ps, indicated using circles of different colors. At
each time-delay we observed a noisy correlation between the loss and the spectral gap. For
visual clarity, we have plotted a mean-free version of the loss function by subtracting out the
average of all losses.
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Figure S5: Biased simulation of ligand unbinding from FKBP along the optimal reac-
tion coordinate. Biased simulation of ligand unbinding was performed under static bias. (A)
Distance between the center of mass of the ligand from its binding pocket highlights multiple
unbinding/binding events. (B) Representative snapshots of the trajectory are shown. Ligand
is shown in vdW representation and the protein is shown in new cartoon (orange). Starting
orientation of the ligand is shown in transparent blue vdW representation.
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Figure S6: Unbiased MD simulations of GB1 peptide in explicit solvent. (A-C) Three in-
dependent MD simulations of GB1 peptide projected along different order parameters. Time
evolution of OPs: root-mean square displacement (RMSD), radius of gyration (Rg), native con-
tacts (NC), and number of backbone hydrogen bonds (NHB) suggests that the GB1 peptide was
stable in all the simulated replicas.
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Figure S7: Capturing optimal reaction coordinate for GB1 peptide. Using an iterative ML-
MD approach which incorporates RAVE and SGOOP, we have constructed an optimal RC to
capture folding/unfolding of GB1 peptide. Spectral gap and loss was calculated in each round
at multiple time-delays ∆t between 0 and 20 ps, indicated using circles of different colors.
(A,C,E,G) Show noisy correlation between the loss and the spectral gap at each iteration. Dif-
ferent circles denote different independent trials, with color denoting ∆t. For visual clarity, at
each iteration, we have plotted a mean-free version of the loss function by subtracting out the
average of all losses. Corresponding maximum spectral gap (out of10 different trials of RAVE)
vs. ∆t was plotted at each iteration. (B,D,F) 50 ns-long biased simulation along the constructed
RC (at ieach iteration) was performed and the trajectory was projected along the order different
parameters employed in this study.
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Figure S8: Biased simulation along the optimal 2-d reaction coordinate. The biased simu-
lation was projected along the dictionary of order parameters used in this study. We captured
multiple back and forth movement of the peptide between folded and unfolded states.
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Figure S9: 2-dimensional free-energy profiles along the different OPs: root-mean square dis-
placement (RMSD), radius of gyration (Rg), native contacts (NC), and number of backbone
hydrogen bonds (NHB) used in this study.
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