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Abstract

Deep learning models can accurately map genomic DNA sequences to associated
functional molecular readouts such as protein–DNA binding data. Base-resolution
importance (i.e. "attribution") scores inferred from these models can highlight
predictive sequence motifs and syntax. Unfortunately, these models are prone
to overfitting and are sensitive to random initializations, often resulting in noisy
and irreproducible attributions that obfuscate underlying motifs. To address these
shortcomings, we propose a novel attribution prior, where the Fourier transform of
input-level attribution scores are computed at training-time, and high-frequency
components of the Fourier spectrum are penalized. We evaluate different model
architectures with and without attribution priors trained on genome-wide binary
or continuous molecular profiles. We show that our attribution prior dramatically
improves models’ stability, interpretability, and performance on held-out data,
especially when training data is severely limited. Our attribution prior also allows
models to identify biologically meaningful sequence motifs more sensitively and
precisely within individual regulatory elements. The prior is agnostic to the model
architecture or predicted experimental assay, yet provides similar gains across
all experiments. This work represents an important advancement in improving
the reliability of deep learning models for deciphering the regulatory code of the
genome.
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1 Introduction

Transcription factors (TFs) are proteins that regulate gene activity with extraordinary specificity by
recognizing and binding to short DNA sequence patterns—or "motifs"—in regulatory elements in the
genome. High-throughput experiments have been used to profile genome-wide regulatory activity
in diverse cell types and tissues [1]. Chromatin immunoprecipitation sequencing experiments (e.g.
ChIP-seq, ChIP-exo, and ChIP-nexus) provide binding readouts of specific targeted TFs at each base
(DNA letter) in the genome [1]. Chromatin accessibility experiments (e.g. DNase-seq and ATAC-seq)
provide aggregate readouts of all protein–DNA contacts at each base in the genome [1]. Deep
neural networks—particularly convolutional neural networks (CNNs)—have achieved state-of-the-art
performance in mapping DNA sequence to TF binding and chromatin accessibility profiles [2, 3, 4].
These models accept fixed length DNA sequence segments of the genome as an input, and—through
a series of convolutional layers—predict molecular labels as measured by a regulatory profiling
experiment. A common goal of these genomic deep learning models is to ultimately identify the
regulatory sequence code (i.e. motifs and their syntax) underpinning genomic regulation, and this
has motivated the development of a wide suite of tools to infer base-pair-resolution importance (i.e.
"attribution") scores in the input DNA sequences to reveal the regulatory code [5, 6, 7, 4].

Unfortunately, the high capacity of these models make them more prone to overfitting on training
set noise rather than true signal [8]. Querying such models for their attribution scores often reveals
their reliance on regions of the input sequence that are not biologically relevant to the task at hand.
Perhaps worse, their attributions are irreproducible and highly sensitive to random initializations
(Figure 1). This poses a hindrance to the reliable identification of motifs driving genomic regulation
from the attribution scores.

There is a need to improve the interpretation of high-capacity genomic deep learning models with
the goal of downstream motif discovery. To address this need, we propose a novel attribution prior
[9, 10] based on Fourier transforms to directly reward the notion of interpretability during model
training. That is, at training time, we impose a secondary loss function that penalizes the network for
improper attributions, thereby explicitly training the model to maximize interpretability along with
correctness of predictions. We show that our Fourier-based attribution prior can be flexibly applied to
different model architectures using a diverse set of real experimental data, and offers improvements
in interpretability, motif discovery, and learning stability (Figure 1).

Figure 1: Models trained with the standard approach (left) irreproducibly miss motifs in the underlying
sequence and noisily rely on irrelevant regions of the input. When training with the Fourier-based
attribution prior (right), models consistently and cleanly identify the driving motifs. The examples
shown are from binary binding models of the SPI1 TF from TF ChIP-seq experiments [1]. See
Supplementary Figures S14–S15 for more examples.

2 An attribution prior for genomics based on Fourier transforms

2.1 Formulation of the Fourier-based attribution prior

Regulatory DNA sequences are sparsely composed of short functional sequence motifs (∼6–20 bases
in length) with soft syntactic constraints on motif combinations, density, spacing and orientation.
To maximize interpretability with the goal of motif recovery, CNNs trained on regulatory data
would ideally place importance (i.e. attribution) only on informative motifs, and little importance
on the irrelevant background sequence. Let x represent a one-hot encoded input sequence to the
model, y represent the true labels, and f represent the model prediction function. Let g(x, f)
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represent the per-position attribution scores on the input x, where g(x, f) is a vector of attributions
of length equal to the length of x. We train our models with a two-part loss function: L(x, y, f) =
Lc(f(x), y) + λLp(g(x, f)), where Lc is the standard correctness loss for the model, and Lp is the
attribution prior loss. The choice of g depends on the model type (Supplementary Methods Sec. 2.3).
In this work, we formulate g using input gradients for computational efficiency, and subsequently
show that the improvements granted by the prior follow through to an alternative reference-based
attribution method.

Our Fourier-based prior loss is computed by taking the Fourier transform of the attribution vector
g(x, f). Let m denote the magnitudes of the positive-frequency Fourier components of (a slightly
smoothed version of) g(x, f), and m̂i denote the ith component of m

‖m‖1 (smaller i correspond to
lower frequencies) (Supplementary Figure S1).

We penalize the high-frequency components in m̂ as follows:

Lp(g(x, f)) = 1−
L∑

i=1

wim̂i

Where

wi =

{
1 i ≤ T

1
1+(i−T )s i > T

This attribution prior penalizes the model for attempting to place importance along the input DNA
sequence in bursts shorter than the limit set by T , which denotes the minimum length of sequence
that can be considered a reasonable motif. This limit is softened by the parameter s, which controls
the rate at which this penalty is smoothly reduced for higher frequencies. T is set based on prior
knowledge by assuming no motif will be shorter than 7 bp, while s is fixed to 0.2 for all models
(Supplementary Methods Sec. 2.3). Note that due to the `1-normalization of m̂, the value of Lp is
bounded between 0 and 1. Fourier transforms are linear and surprisingly fast to calculate, resulting in
an attribution prior Lp that is efficient to compute and differentiate. Furthermore, by using Fourier
transforms, our prior is effectively invariant to the locations and the number of motifs within an input
sequence.

2.2 Training data and model architectures

To demonstrate the flexibility of the Fourier-based prior, we train on four different experimental
datasets over two different model architectures. Our experimental datasets target the SPI1 protein (TF
ChIP-seq) in 4 cell types [1]; the GATA2 protein (TF ChIP-seq) in 3 cell types [1]; the Nanog, Oct4,
and Sox2 proteins (TF ChIP-seq) in mouse embryonic stem cells [4]; and chromatin accessibility
(DNase-seq) in the K562 leukemia cell line [1]. These datasets vary not only in the type of experimen-
tal assay being predicted, but also in the complexity of motif syntax driving the measurements. For
each dataset, we train both binary models and profile models. Binary models predict a binary label
for each 1000-base-pair-long input sequence (i.e. whether or not there is a statistically significant
peak in the TF ChIP-seq or DNase-seq accessibility signal overlapping the mid point of the sequence
[1]) (Supplementary Figure S2). Profile models, however, predict base-resolution TF ChIP-seq or
DNase-seq profiles from each 1346-base-pair (bp) input sequence, and therefore are able to finely
track motifs based on associated patterns in the shape of the output profile (Supplementary Figure
S3) [4].

When we train binary models with the Fourier-based prior, the prior loss weight λ is set to 1. On
profile models, the prior loss weight is selected to be half of the value of the correctness loss on a
model trained without the prior. In both architectures, this ensures that the value of the prior loss is on
a similar scale as the correctness loss (Supplementary Methods Sec. 2.3, Supplementary Figure S4).

3 Fourier-based priors improve signal-to-noise ratio for the detection of
predictive motifs

We consider models trained with and without the Fourier-based prior, and compare the interpretability
of the models using DeepSHAP [11] scores, which extend DeepLIFT [7] backpropagation-based
attributions using Shapely values. While the attribution prior computed at training time operated

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.147272
http://creativecommons.org/licenses/by-nc-nd/4.0/


on input gradients due to efficiency, we rely on DeepSHAP attribution scores to assess a model’s
interpretability because DeepSHAP scores provide base-pair-level attributions against a biologi-
cally meaningful background—in this case, shuffled versions of the input sequence that preserve
dinucleotide frequencies (as recommended by Shrikumar et al. [7]).

Over all of our datasets and model architectures, we find that training with the Fourier-based prior
significantly denoises attribution scores and dramatically improves the detection of predictive motifs
near ChIP-seq/DNase-seq peak summits (local maxima in the profiles around which driver motifs are
expected to be found). A model that elevates attributions only at the motifs—and has flat attributions
outside motif regions—is expected to have a reduction in the high-frequency Fourier components
and the Shannon entropy of the input sequence attributions. We see a reduction in both metrics on
all of our datasets and architectures (Supplementary Table S1, Supplementary Figure S5). Using a
Wilcoxon rank test, all improvements in test-set interpretability when training with the Fourier-based
prior are significant at the 1× 10−6 level.

We visually show the improvement in interpretability over examples of peak sequences in the test
set, including the ability of models trained with the Fourier-based prior to cleanly highlight motifs
(Figure 2, Supplementary Figure S6).

Figure 2: On K562 DNase-seq profile models, for each sampled test-set sequence, we compare
the: A) sum of high-frequency normalized Fourier components; and B) Shannon entropy of the
DeepSHAP attributions between models trained with versus without the Fourier-based prior. C) At a
particular K562 open chromatin peak, we show the attributions across the entire input sequence, and
the base-pair-level attributions around the summit region. The model trained with the Fourier-based
prior cleanly highlights 3 motifs centered around the peak summit, matching relevant transcription
factors (left to right: SP1, CLOCK, and CTCF).

4 Fourier-based priors improve sensitivity and specificity of motifs

On multi-task models trained to predict binding of the 3 TFs, Nanog, Oct4, and Sox2, we perform
motif discovery and motif instance calling, and compare the calls to independently collected gold-
standard ChIP-nexus experiments [4] that can highlight putative bound motifs at very high resolution
(∼10 bp). We use TF-MoDISco, a motif discovery approach, to distill recurring TF-binding motifs
across multiple input sequences from base-resolution importance scores [6]. TF-MoDISco first finds
predictive subsequences of high importance (called "seqlets") across all input sequences. Seqlets
are subsequently aligned, clustered, and summarized into a non-redundant set of motif patterns. We
then use these motifs to scan test-set peak sequences and their attributions to call high confidence
matches to the motif (i.e. motif instances). For both model architectures, we find that attributions
derived from the models trained with the Fourier-based prior improve the quality of motifs discovered
by TF-MoDISco, as well as the sensitivity and specificity of called motif instances supported by
ChIP-nexus peaks (Supplementary Figures S7–S9).
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We show an example of the improvement in motif discovery and motif calls using the multi-task
Nanog/Oct4/Sox2 profile models. Specifically, on the Nanog prediction task, TF-MoDISco identified
the known ATCAA and GGAAAT Nanog motifs (among others), in addition to the Oct4-Sox2
motif [4]; the Nanog motifs were missed without the prior (Figure 3). Additionally, motif instances
called using discovered motifs with the prior show substantially improved support from independent
high-resolution ChIP-nexus data.

Figure 3: A) We show a subset of relevant motifs for the Nanog binding prediction task discovered by
TF-MoDISco when training with versus without the Fourier-based prior. The ATCAA and GGAAAT
Nanog motifs [4] are missed by the model trained without the prior. B) Using the motifs discovered
by TF-MoDISco, we call motif instances on test-set peak sequences. Ranked by total attribution
magnitude, we compute a cumulative count of motif calls that overlap gold-standard bound motif
instances from independent high-resolution Nanog ChIP-nexus data. The prior substantially improves
the recall of gold-standard motif instances.

5 Fourier-based priors improve prediction performance of binary models

Whereas profile models learn to predict continuous ChIP-seq or DNase-seq read coverage profiles at
base-resolution, the more popular models trained on lower-resolution binary labels (e.g. bound vs.
unbound) do not benefit from profile shape information, and thus are particularly prone to overfitting
[4]. On all of our binary models, we see improvement in validation and test set performance when
training with the Fourier-based prior (Supplementary Figure S11). Table 1 shows the best validation
and test set performance achieved when training with versus without the Fourier-based prior, over 30
random initializations each.

We also show a more detailed depiction of the distribution of performance for binary models trained
to predict SPI1 binding (Figure 4).

Training on only 1% of the training data reveals a similar trend, showing that the Fourier-based
prior assists in improving model generalizability even when the model is trained on sparse data
(Supplementary Figure S12).

Table 1: Binary model performance on test set

Test accuracy Test auROC Test auPRC

No prior With prior No prior With prior No prior With prior

SPI1 87.996% 88.347% 0.954 0.956 0.853 0.858
GATA2 85.519% 86.216% 0.924 0.928 0.733 0.745
Nanog/Oct4/Sox2 84.640% 85.437% 0.906 0.908 0.655 0.661
K562 90.049% 90.362% 0.966 0.968 0.963 0.966
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Figure 4: We train binary models to predict SPI1 binding over 30 random initializations without the
prior, and another 30 with the Fourier-based prior. We show the distribution of the validation loss,
test-set accuracy, test-set auROC, and test-set auPRC across the 30 random initializations in each
condition.

6 Fourier-based priors improve stability of attribution scores

Over all of our datasets and model architectures, we find a dramatic improvement in the stability
of attributions when models are trained with the Fourier-based prior. For each dataset, on a set of
test-set peak sequences, we compute the similarity of DeepSHAP attribution scores between the
models to quantify how consistently the models learned on each particular sequence. We employ
continuous Jaccard similarity—a metric used by TF-MoDISco—as it is designed for comparing
similarity between two importance score tracks, accounting for similarity of both sequence and
attribution scores [6] (Supplementary Methods Sec. 7).

The Fourier-based prior improves the stability of the attribution scores across random initializations,
thereby allowing robust inference of motifs (Table 2; Supplementary Figures S13–S15). The improve-
ments in learning stability are even stronger between models trained on significantly smaller training
sets (i.e. 1% of the original set) versus the entire training set (Table 2; Supplementary Figures S13,
S16). This suggests that the models trained on sparse data learn more similarly to when they are
trained with the full dataset. Using a Wilcoxon rank test, all improvements in test-set stability when
training with the Fourier-based prior are significant at the 1× 10−6 level.

Table 2: Learning stability on test-set sequences (continuous Jaccard similarity)

Similarity across Similarity between
random initializations training on all vs 1% data

No prior With prior No prior With prior

Binary

SPI1 95.6 ± 1.0 134.3 ± 1.0 29.8 ± 0.7 42.0 ± 0.8
GATA2 105.8 ± 1.5 140.5 ± 1.8 29.6 ± 1.3 43.5 ± 1.4
Nanog/Oct4/Sox2 107.0 ± 2.5 129.0 ± 2.2 43.1 ± 1.3 53.1 ± 1.7
K562 121.1 ± 2.0 197.5 ± 2.5 48.3 ± 1.7 67.2 ± 1.8

Profile

SPI1 332.9 ± 11.2 405.6 ± 11.4 77.6 ± 4.4 233.1 ± 9.8
GATA2 369.1 ± 10.1 390.5 ± 9.5 102.9 ± 5.2 121.6 ± 5.9
Nanog/Oct4/Sox2 216.7 ± 5.7 246.5 ± 4.8 66.9 ± 4.5 109.7 ± 6.2
K562 210.2 ± 5.8 236.0 ± 4.2 31.4 ± 1.5 121.3 ± 5.2

7 Fourier-based priors increase specificity of model reliance on regions of
regulatory function

When we train our models with the Fourier-based prior, we generally observe that the models are able
to place higher attribution in high-confidence regions of regulatory significance, and less attribution
on other irrelevant areas (Table 3). To show this, we consider test-set peak sequences, and compute
the Spearman correlation between each base pair’s DeepSHAP importance to its distance from the
peak summit. A more negative correlation implies that the model is placing higher importance closer
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to the most confident region of binding, as determined by the experimental assay. Additionally, we
compute a rank-based measure of specificity by calculating the precision and recall of individual bases
in the input sequences that overlap the precise ∼200 bp peak regions when ranked by importance
(Supplementary Figure S17). A higher area under the precision–recall curve implies that the model
places higher importance in called peaks, and in a more specific/precise manner. Using a Wilcoxon
rank test, all improvements in summit distance correlation when training with the Fourier-based prior
are significant at the 1× 10−6 level.

Table 3: Placement of importance on summit/peak regions in test set

Correlation of importance auPRC of overlap
to distance from summit with called peaks

No prior With prior No prior With prior

Binary

SPI1 −0.433 ± 0.002 −0.442 ± 0.002 0.595 0.616
GATA2 −0.392 ± 0.003 −0.419 ± 0.003 0.608 0.617
Nanog/Oct4/Sox2 −0.509 ± 0.003 −0.544 ± 0.003 0.674 0.669
K562 −0.335 ± 0.005 −0.360 ± 0.005 0.587 0.594

Profile

SPI1 −0.464 ± 0.005 −0.490 ± 0.004 0.398 0.470
GATA2 −0.391 ± 0.006 −0.437 ± 0.005 0.430 0.497
Nanog/Oct4/Sox2 −0.454 ± 0.005 −0.476 ± 0.005 0.464 0.516
K562 −0.392 ± 0.006 −0.411 ± 0.006 0.530 0.548

For the Nanog/Oct4/Sox2 TF binding and the K562 chromatin accessibility datasets, we use additional
independent binding data to further assess the ability of a model to place importance in biologically
relevant regions. For Nanog/Oct4/Sox2 binding, we consider high-resolution binding peaks called
from independently collected ChIP-nexus experiments [4], and for K562 chromatin accessibility,
we consider a set of high-resolution binding footprints explicitly derived from several DNase-seq
profiles using independent signal processing methods [12]. These ChIP-nexus peaks and footprints
define high-confidence, high-resolution regions where bound regulatory motifs are expected to be
found. For these datasets, we further demonstrate that models trained with the Fourier-based prior
are able to place importance more specifically in relevant regions, by quantifying the fraction of
attributions that overlie a ChIP-nexus peak or DNase-seq footprint, and by considering the precision–
recall of important regions overlapping with the ChIP-nexus peaks or DNase-seq footprints (Table
4, Supplementary Figure S18–S19). Using a Wilcoxon rank test, all improvements in importance
overlap fraction with ChIP-nexus peaks or DNase-seq footprints when training with the Fourier-based
prior are significant at the 1× 10−6 level.

Table 4: Importance placement on independently derived ChIP-nexus peaks or DNase-seq footprints

Fraction of importance auPRC of overlap with
in ChIP-nexus peak/footprint ChIP-nexus peaks/footprints

No prior With prior No prior With prior

Binary Nanog/Oct4/Sox2 0.806 ± 0.006 0.830 ± 0.006 0.644 0.647
K562 0.272 ± 0.005 0.281 ± 0.005 0.235 0.229

Profile Nanog/Oct4/Sox2 0.689 ± 0.006 0.787 ± 0.006 0.598 0.630
K562 0.236 ± 0.004 0.298 ± 0.004 0.215 0.256

We note that the only conditions where the auPRC of overlap with peaks or footprints did not show
an improvement when training with the Fourier-based prior were binary models trained to predict
Nanog/Oct4/Sox2 binding or K562 chromatin accessibility. These datasets are expected to require
more complex motif sequence syntax. Unlike profile models, binary models by nature do not have
the resolution in the labels to distinguish directly bound primary motifs from secondary motifs that
indirectly contribute to binding and accessibility [13, 14]. For these tasks, the Fourier-based prior
elevates the attribution scores of all motifs that are predictive of TF binding or accessibility, even
when those motifs are not the primary motif underlying a peak or footprint. In concordance with this
observation, we find that for these complex binary tasks, the regions outside ChIP-nexus peaks or
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K562 footprints that are highlighted by the Fourier-based prior contain motifs of important secondary
TFs (Supplementary Figure S20) [4].

Finally, we examine models trained on simulated sequences and evaluate the ability of the Fourier-
based prior to focus importance on specific individual motifs. On simple binary models trained on
simulated binding of the SPI1 TF from synthetic sequences, training with the Fourier-based prior
resulted in a significantly higher fraction of importance being placed in motif instances on average
(0.659 ± 0.027 vs. 0.218 ± 0.010, p < 1× 10−6 by Wilcoxon test). Additionally, models trained
with the Fourier-based prior had a much better auPRC of importance-ranked base overlap with motif
instances (0.607 vs. 0.422) (Supplementary Figure S22).

8 Fourier-based priors improve interpretability beyond standard
regularization techniques

Although attribution priors are technically a form of regularization, their mechanism of directly
penalizing spurious attributions allows them to improve the interpretability of models beyond what
standard regularization techniques can provide. To demonstrate this, we compare SPI1 binary models
trained with L2-regularization (i.e. weight decay) versus the Fourier-based prior. We find that
DeepSHAP attributions from the model trained with the Fourier-based prior have a significantly
lower sum of high-frequency Fourier components (0.377± 0.002 vs. 0.400± 0.002, p < 1× 10−6

by Wilcoxon test) and a significantly lower Shannon entropy (7.891 ± 0.011 vs. 8.908 ± 0.014,
p < 1× 10−6 by Wilcoxon test) (Supplementary Figure S23). Additionally, the model trained with
the Fourier-based prior has a better correlation of base importance to summit distance compared to
L2-regularization (−0.442±0.002 vs. −0.421±0.002, p < 1×10−6 by Wilcoxon test), and a higher
auPRC of ChIP-seq peak overlap on importance-ranked bases (0.616 vs. 0.585) (Supplementary
Figure S24)

9 Fourier-based priors resist reliance on GC content as a feature

The background GC content (i.e. proportion of G/C bases) of DNA sequences can be an informative
feature to differentiate regulatory DNA sequences from other genomic contexts, but reliance on
it reduces the interpretability of genomic models, as it obfuscates the underlying motifs driving
biological processes. Using simulated DNA sequences with varying amounts of GC bias in the
positive training set, we show a simple binary SPI1 binding model trained with the Fourier-based
prior resists relying on GC content as a feature, even when surrounding GC content becomes more
and more informative (Figure 5).

Figure 5: Over different levels of GC bias in the positive training set, we show how heavily models
rely on distinguishing G/C and A/T in the background. Background GC content in the positive
training set ranges from +0% (the same as the negative set) to an additive +4% more than the negative
set. On a set of sampled sequences, the average product of G/C importance and A/T importance in
the background sequence reflects how much the model relies on GC content as an informative feature
(a more negative product implies a heavier reliance).

Notably, the prior is able to reduce a model’s reliance on informative background GC content, without
attenuating the importance of specific GC-rich motifs (Supplementary Figure S25).
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10 Conclusion

In this work, we introduced and demonstrated the application of a novel attribution prior based
on Fourier transforms for improving the stability and interpretability of deep learning models on
regulatory DNA. To our knowledge, this is the first application of attribution priors to deep learning
models trained on genomic sequence, and the first application of a frequency-based attribution prior
in any domain. Our method provides a direct way to train a model with interpretability for scientific
discovery as an explicit goal. The Fourier-based prior remains flexibly applied to any architecture,
but provides similar gains across models and prediction tasks. Notably, while our prior used input
gradients as attributions during training, all the benefits are clearly demonstrated using an alternative
reference-based interpretation method (i.e. DeepSHAP).

We showed that models trained with the Fourier-based prior have attributions with a significantly
better signal-to-noise ratio, focusing importance primarily on biologically relevant motifs supported
by independent data instead of irrelevant background sequence. Hence, models trained with the prior
exhibit improved motif discovery and yield motif instance calls that are more likely to underpin
regulatory function. Additionally, the Fourier-based prior improves the stability of model learning,
directing models to consistently rely on regions of regulatory importance rather than irreproducibly
learning background noise. Even when the models are trained with less data, they may be interrogated
to discover motifs that are more similar to models that are trained with the full dataset.

Future work could explore other promising attribution prior formulations (e.g. penalizing Shannon
entropy in the attributions) and harmoniously merge attribution priors like the Fourier-based prior
with more standard forms of regularization. Advances in attribution priors will continue to improve
the interpretability of deep learning models in genomics.
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Supplementary Figures and Tables

Figure S1: Weight applied to Fourier components in attribution prior loss. To compute the Fourier-
based attribution prior loss, the Fourier components corresponding to positive frequencies of the
attributions are weighted as shown. This weighted sum constitutes the score of the attributions, and
1 minus this score becomes the attribution prior loss value. Note that because input sequences to
binary and profile models have different lengths, the discrete Fourier transform components also have
different lengths; in both cases, the frequency threshold T corresponds to a minimum expected motif
length of 6–7.
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Figure S2: Schematic of binary model architecture. A one-hot encoded sequence is fed into three
consecutive convolutional layers. The resulting activations are passed through a max pooling layer,
followed by three dense layers, where the final dense layer outputs a sigmoid-transformed binary
prediction.

Figure S3: Schematic of profile model architecture, based on the architecture in Avsec et al. [4].
A one-hot encoded sequence is fed into six consecutive dilated convolutional layers with summed
residual connections. For each task, the model predicts a profile shape and a read count. The profile
shape prediction is obtained by feeding the activations from the dilated convolutions to another
convolutional layer with a large kernel size, concatenating the result with a set of control profiles, and
performing a length-1 convolution over the concatenation to yield a profile shape prediction. The
read count prediction is obtained by feeding the activations from the dilated convolutions through a
global average pooling layer, concatenating the result with a set of control read counts, and passing
this concatenation through a dense layer to obtain predicted read counts.
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Figure S4: Training and validation correctness loss trajectories. For each architecture and dataset, we
show the trajectory of the training and validation correctness losses (i.e. excluding any attribution
prior loss) after each epoch of training, over all random initializations. Loss values shown begin
after the first epoch of training. In general, binary models (left) overfit very easily, with validation
loss visibly growing after the first epoch. Profile models (right), however, are much more resilient
to overfitting, as they benefit from extensive data augmentation through random jitters in the input
sequences. On binary models (left), red circles indicate the models that achieve the lowest validation
loss, trained with and without the Fourier-based prior.
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Table S1: Improved interpretability on test-set sequences

Average sum of high- Average entropy
frequency Fourier components

No prior With prior No prior With prior

Binary

SPI1 0.416 ± 0.002 0.374 ± 0.002 8.35 ± 0.01 7.89 ± 0.01
GATA2 0.442 ± 0.002 0.394 ± 0.002 8.55 ± 0.01 7.96 ± 0.02
Nanog/Oct4/Sox2 0.449 ± 0.002 0.381 ± 0.002 7.98 ± 0.01 6.76 ± 0.02
K562 0.494 ± 0.002 0.465 ± 0.002 8.84 ± 0.01 8.65 ± 0.01

Profile

SPI1 0.449 ± 0.002 0.381 ± 0.002 7.98 ± 0.01 6.76 ± 0.02
GATA2 0.449 ± 0.002 0.416 ± 0.001 8.49 ± 0.01 7.34 ± 0.02
Nanog/Oct4/Sox2 0.564 ± 0.001 0.452 ± 0.001 9.01 ± 0.01 8.01 ± 0.02
K562 0.567 ± 0.001 0.452 ± 0.001 9.20 ± 0.01 8.80 ± 0.01
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Figure S5: Signal-to-noise ratio of attributions across test set sequences. For each architecture and
dataset, we compute DeepSHAP importance scores for 1000 randomly selected peak sequences from
the test set. An improvement in the signal-to-noise ratio of the attributions is quantified as a reduction
in the high-frequency Fourier component magnitudes, and as a reduction in Shannon entropy. We
compare the sum of normalized high-frequency Fourier components and the Shannon entropy for
each sequence, between models trained with versus without the Fourier-based prior.
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Figure S6: Specific examples of improved signal-to-noise ratio on DeepSHAP scores. For each
architecture and dataset, we show the DeepSHAP attribution scores of specific peak sequences. For
each selected input sequence, we display the value of the DeepSHAP importance for the bases present
along the entire input sequence, as well as the base-pair-level attributions in the summit region.
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Figure S7: Discovered motifs from Nanog/Oct4/Sox2 binary models. For each TF, we utilize TF-
MoDISco to discover motifs using DeepSHAP attributions of test-set peak sequences. We show the
relevant motifs identified by TF-MoDISco which pass our thresholds (Supplementary Methods Sec.
5), and match them to known motifs from Avsec et al. [4]. "(RC)" denotes that the motif shown is
reverse-complemented relative to the orientation in Avsec et al. [4]. The number in the top left of
each motif indicates the number of seqlets identified by TF-MoDISco that underlie the motif.
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Figure S8: Discovered motifs from Nanog/Oct4/Sox2 profile models. For each TF, we utilize TF-
MoDISco to discover motifs using DeepSHAP attributions of test-set peak sequences. We show the
relevant motifs identified by TF-MoDISco which pass our thresholds (Supplementary Methods Sec.
5), and match them to known motifs from Avsec et al. [4]. "(RC)" denotes that the motif shown is
reverse-complemented relative to the orientation in Avsec et al. [4]. The number in the top left of
each motif indicates the number of seqlets identified by TF-MoDISco that underlie the motif. While
we focus our downstream analysis on the best-performing models with and without the Fourier-based
prior, the best-performing profile model trained without the prior identified much fewer motifs than
the model trained with the prior, so we also show the motifs identified using TF-MoDISco on the
second-best-performing models, both with and without the prior. This demonstrates that the profile
models without the Fourier-based prior are capable of learning the larger set of motifs expected, but
are limited by noisy and irreproducible attributions.
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Figure S9: Motif instance call support. For each TF in the Nanog/Oct4/Sox2 models, we perform
motif instance calling using the discovered motifs on a sample of 1000 test-set peak sequences. We
rank the motif instance calls by total DeepSHAP importance, and compute a cumulative count of how
many instances overlap with a ChIP-nexus peak for that TF. Note that the models trained without
the prior typically have fewer motif calls in total (due to lower-quality attribution scores and fewer
motifs discovered by TF-MoDISco), resulting in the shorter red lines.
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Figure S10: Case study of the "Nanog (alt)" motif in Nanog/Oct4/Sox2 profile models. TF-MoDISco
identified the GGAAA "Nanog (alt)" motif from the profile Nanog/Oct4/Sox2 model trained with the
Fourier-based prior, but not from the model trained without the prior, even on the Nanog prediction
task specifically (Supplementary Figure S8). Focusing on the Nanog prediction task, we show
examples of sequences where TF-MoDISco identified a Nanog (alt) motif from the model trained
with the prior, and show the importance scores of the same sequence from the model without the prior.
We show both the DeepSHAP importance scores, and the perturbation scores derived from in silico
mutagenesis (ISM). The highlighted regions indicate the location of the Nanog (alt) motif. Notably,
ISM scores from the model trained without the prior are generally noisier compared to the model
trained with the prior. More importantly, this demonstrates that the model trained without the prior is
learning the Nanog (alt) motif, but it is not visible from DeepSHAP importance scores. The model
trained with the Fourier-based prior, however, clearly highlights this motif using both methods of
interpretation (i.e. DeepSHAP and ISM). This indicates that the Fourier-based prior allows the model
to reveal its learned motifs in a human-interpretable way, especially when it is too computationally
expensive to rely on perturbation-based scoring methods like ISM, which take orders of magnitude
longer to run than DeepSHAP.
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Figure S11: Validation loss and test set performance of binary models. For each dataset, we consider
the validation and test set performance of models trained with and without the Fourier-based prior,
over 30 random initializations each. Validation loss is computed over all positive examples in the
validation set and a equal-sized sample of negative validation examples. Test accuracy, test auROC,
and test auPRC are computed over all positive examples in the test set and a equal-sized sample of
test negative examples. "Estimated test auPRC" is an estimated measure of auPRC on the full test set
without subsampling the negative examples, and is computed by artificially inflating the false positive
rate (Supplementary Methods Sec. 2.5).

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.147272
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S12: Validation loss and test set performance of binary models on sparse training sets. For each
dataset, we consider the validation and test set performance of models trained with and without the
Fourier-based prior (on only 1% of the training set), over 30 random initializations each. Validation
loss is computed over all positive examples in the validation set and a equal-sized sample of negative
validation examples. Test accuracy, test auROC, and test auPRC are computed over all positive
examples in the test set and a equal-sized sample of test negative examples. "Estimated test auPRC"
is an estimated measure of auPRC on the full test set without subsampling the negative examples,
and is computed by artificially inflating the false positive rate (Supplementary Methods Sec. 2.5)
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Figure S13: Stability of DeepSHAP scores across different models on test-set sequences. For each
architecture and dataset, we sample 100 peak sequences from the test set and compute the DeepSHAP
attributions for the sequence for multiple models. For each sequence, we compute the pairwise
similarity of the attributions between 30 random initializations (left), or between the top 5 models
trained with all of the data versus the top 5 trained with only 1% of the data (right). We quantify
attribution similarity by computing the continuous Jaccard score at each base, and summing the
scores across the sequence.
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Figure S14: Specific examples of DeepSHAP attribution stability across different random initializa-
tions (binary models). For each binary model, we show an example of the DeepSHAP attributions on
a test-set sequence between a pair of models of different random initializations, comparing models
trained with versus without the Fourier-based prior.
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Figure S15: Specific examples of DeepSHAP attribution stability across different random initializa-
tions (profile models). For each profile model, we show an example of the DeepSHAP attributions on
a test-set sequence between a pair of models of different random initializations, comparing models
trained with versus without the Fourier-based prior.
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Figure S16: Specific examples of DeepSHAP attribution stability between training on all versus
1% of the training set. For each architecture and dataset, we show an example of the DeepSHAP
attributions on a test-set sequence between a model trained on all and only 1% of the training set,
comparing models trained with versus without the Fourier-based prior.
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Figure S17: Precision–recall of importance-ranked base overlap with called training peaks. For
each architecture and dataset, we sample 1000 peak sequences from the test set and compute the
DeepSHAP attributions. We rank bases in descending order of total importance, and generate a
precision–recall curve by treating the set of bases that overlap an underlying ChIP-seq or DNase-seq
peak as "positives". See Table 3 in the main text for the corresponding auPRC values.
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Figure S18: Fraction of importance in ChIP-nexus peaks or DNase footprints. For Nanog/Oct4/Sox2
TF ChIP-seq or K562 DNase-seq models, we sample 1000 peak sequences from the test set and
compute the fraction of total DeepSHAP importance that overlaps a Nanog/Oct4/Sox2 ChIP-nexus
peak or K562 footprint. For each input sequence, we compare the proportion of attribution by
magnitude overlapping a ChIP-nexus peak or footprint when a model is trained with versus without
the Fourier-based prior. For Nanog/Oct4/Sox2 models, we also show the overlap of task-specific
importance on the set of corresponding ChIP-nexus peaks. See Table 4 in the main text for the
corresponding average values; in all cases, the models trained with the prior place a significantly
higher fraction of total importance in the peaks/footprints.
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Figure S19: Precision–recall of important bases overlapping with ChIP-nexus peaks or DNAse
footprints. For models trained to predict Nanog/Oct4/Sox2 TF ChIP-seq or K562 DNase-seq, we
sample 1000 peak sequences from the test set and compute the DeepSHAP importance. We rank
bases in descending order of total importance and generate a precision–recall curve by treating the
set of bases that overlap a Nanog/Oct4/Sox2 ChIP-nexus peak or K562 DNase-seq footprint as
"positives". For Nanog/Oct4/Sox2 models, we show these curves both using a ranking based on the
total importance across all three tasks (in which case we use the union of ChIP-nexus peaks over the
three tasks for the labels), as well as a ranking based on the importance scores of each individual task
(in which case we use only the ChIP-nexus peaks of the corresponding task for the labels). See Table
4 in the main text for the corresponding auPRC values.
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Figure S20: Motifs in important regions outside of peaks. For the Nanog/Oct4/Sox2 TF ChIP-seq and
K562 DNase-seq binary models, we examine regions where models trained with the Fourier-based
prior place high DeepSHAP importance, yet do not overlap Nanog/Oct4/Sox2 ChIP-nexus peaks
or K562 footprints, respectively. A) We cluster these regions using the TF-MoDISco clustering
algorithm, and show the PWMs of top motif clusters, along with annotations of relevant TFs that are
associated to each motif. B) We show some specific examples where a model trained with the Fourier-
based prior places higher importance (relative to the model trained without the prior) outside of a
ChIP-nexus peak or K562 footprint. Yellow shading denotes the location of the ChIP-nexus peak (left)
or K562 footprint (right). This illustrates the Fourier-based prior’s highlighting biologically relevant
motifs outside of peak regions; the model trained without the prior, on the other hand, identifies
these motifs more weakly/noisily, or not at all. Several mechanisms exist by which secondary motifs
outside the central peak region can nonetheless assist TF binding within the peak region (e.g. through
cofactors [13] or via 1D sliding [14]). A binary prediction model would be correct in identifying such
motifs as being predictive of peak strength. Note that in contrast to binary models, profile models
are less likely to detect such secondary motifs, as these motifs contribute to peak strength without
contributing to the shape of the peak itself (the latter is primarily dictated by motifs lying within the
central peak region).
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Figure S21: SPI1 motif used in constructing simulated sequences. We show the SPI1 motif (left)
and its reverse complement (right) used to simulate SPI1-binding sequences for models trained on
simulated data. Shown here are (from top to bottom): the Position Frequency Matrix (PFM) of the top
motif identified by running HOMER 2 on IDR-thresholded peaks for SPI1 (Supplementary Methods
Sec. 2.7); the trimmed motif PFM after removing flanks with low information content; and a PWM
of the trimmed motif derived from weighting the PFM by information content.
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Figure S22: Attributions in simulated motif instances. We examine binary models trained to predict
single-task SPI1 binding on simulated sequences. On a random sample of 100 motif-containing
sequences, we compare models trained with versus without the Fourier-based prior by computing:
A) the proportion of DeepSHAP importance overlying a motif instance; and B) the precision–recall
of importance-ranked bases overlying motif instances. C) We also select an example sequence, and
show the DeepSHAP attributions; the model trained with the Fourier-based prior cleanly highlights
all three motif instances. Of the two zoomed-in attribution score tracks in Panel C, the top track
represents the hypothetical importance scores (i.e. the importance that would be given to each of the
four bases at each position, even if that base were not in the input sequence—see Supplementary
Methods Sec. 3), and the bottom track represents the actual importance scores. See Supplementary
Figure S21 for the SPI1 PWM used in the simulations. Note that the central motif instance is in the
reverse-complement orientation.
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Figure S23: Signal-to-noise ratio of attributions with L2-regularization versus Fourier-based prior.
For a SPI1 binary model, we show the DeepSHAP attributions for 1000 randomly selected peak
sequences from the test set. We compare the sum of normalized high-frequency Fourier components
and the Shannon entropy for each sequence, between a model trained with L2-regularization (i.e.
weight decay) and a model trained with the Fourier-based prior. For a single selected test peak, we
also display the value of the DeepSHAP importance for the bases present along the entire input
sequence, as well as a zoomed-in view of a region close to the peaks summit. We also show the
"hypothetical" attributions along each input sequence (i.e. the importance that would be given to each
of the four bases at each position, even if that base were not in the input sequence—see Supplementary
Methods Sec. 3).

Figure S24: Precision–recall of important bases overlapping with ChIP-seq peaks (L2-regularization
versus Fourier-based prior). For a SPI1 binary model, we sample 1000 peak sequences from the test
set and compute the DeepSHAP attributions. We rank bases in descending order of total importance
and generate a precision–recall curve by treating the set of bases that overlap a SPI1 ChIP-seq peak
as "positives". Shown here are the precision–recall curves for models trained with L2-regularization
versus the Fourier-based prior.
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Figure S25: Specific examples of attributions under various levels of GC content. For each level of
GC bias, we select a sampled input sequence and examine the DeepSHAP attributions. GC content
ranges from +0% to +4%: a level of GC bias of +x% means the probability of G or C in the positive
background sequences is (50 + x)%, while the negative sequence background has a G/C probability
of 50% (i.e. no bias at all). We display the value of the DeepSHAP importance for the bases present
along the entire input sequence, as well as a zoomed-in view of a region close to the peak summit.
We also show the "hypothetical" attributions along each input sequence (i.e. the importance that
would be given to each of the four bases at each position, even if that base were not in the input
sequence—see Supplementary Methods Sec. 3).
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Supplementary Methods

1 Training data preparation

1.1 SPI1 and GATA2 TF ChIP-seq

For these two transcription factors (TFs), we obtain data accessible through the ENCODE portal
(https://encodeproject.org/) and processed using the ENCODE ChIP-seq pipeline [15, 16].
We select every TF ChIP-seq experiment with SPI1 or GATA2 as a target, satisfying the following
conditions:

1. Experiment is of “released” status

2. Experiment has available unfiltered alignment BAMs aligned to hg38

3. Experiment has available BEDs of called peaks and IDR-filtered peaks aligned to hg38

4. Experiment has a matched control ChIP experiment with unfiltered alignment BAMs aligned
to hg38

5. Cell type utilized in assay is not genetically modified

Based on these filtering criteria as of 4 Oct 2019, the ENCODE experiment IDs for SPI1 are
ENCSR000BGQ, ENCSR000BUW, ENCSR000BIJ, ENCSR000BGW. The ENCODE experiment
IDs for GATA2 are ENCSR000EVW, ENCSR000EWG, ENCSR000EYB. For each experiment,
we obtain the unfiltered alignments, called peaks, and IDR-thresholded peaks, as available on the
ENCODE portal (https://encodeproject.org/). For each TF, each experiment constitutes an
output in the multi-task prediction models.

1.2 K562 DNase-seq

We utilize a single DNase-seq experiment available through the ENCODE portal
(https://encodeproject.org/) p: ENCSR000EOT [15, 16]. For this experiment, we
obtain the unfiltered alignment BAMs, the set of called peaks that pass the ENCODE IDR filter, and
the set of called peaks that did not pass the IDR filter. These files were computed using the ENCODE
ATAC-seq pipeline [17].

Unlike TF ChIP-seq experiments, which have a matched control experiment, we perform bias
correction by utilizing a control track that encodes the innate preferences of DNase [18]. We utilize
the reads generated using this procedure, available as SRR1565781. These reads are processed into
BigWigs using the ENCODE ATAC-seq pipeline into a single unstranded BigWig [17].

1.3 Nanog/Oct4/Sox2 TF ChIP-seq

Nanog, Oct4, and Sox2 TF ChIP-seq experiments in mouse ESCs were performed by Avsec et al.
[4]. We utilize the stranded read BigWig tracks and IDR-thresholded called peaks as prepared by the
authors. This constitutes three different experiments (i.e. prediction tasks).

1.4 Binary dataset preparation

The IDR-thresholded peaks are considered to be the high-confidence peaks. For the SPI1 and
GATA2 TF ChIP-seq datasets, the 150,000 highest-scoring called peaks that do not overlap with an
IDR-thresholded peak are considered ambiguous peaks, obtained using BEDtools v2.25.0 [19]. For
the K562 DNase-seq dataset, the set of ambiguous peaks is generated by the ENCODE ATAC-seq
pipeline [18]. For the Nanog/Oct4/Sox2 TF ChIP-seq datasets, there are no available ambiguous peak
sets.

For all binary models, label generation consists of the entire hg38 genome split into 200 bp consecutive
windows. A window is given a positive label if at least 100 bp of the window overlaps with a high-
confidence peak, otherwise an ambiguous label if at least 100 bp of it overlaps with an ambiguous
peak, and a negative label if neither of these two cases hold. For the TF ChIP-seq binary models,
which have multiple tasks, the label generation procedure is performed for each task (i.e. each
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window will have an associated label for each task). These windows are then padded with 400 bp
of context sequence on either side to form the final 1000 bp input to the network. This binary label
generation was performed using seqdataloader [20].

1.5 Profile dataset preparation

For the SPI1 and GATA2 TF ChIP-seq datasets and the K562 DNase-seq dataset, we first merge
together the unfiltered reads of all biological replicates, and then filter them by keeping only reads
with quality at least 30, and using samtools v1.2, with flag 780 [21]. This is nearly identical to the
ENCODE TF ChIP-seq and ATAC-seq pipelines [15, 17], except this retains duplicate reads, which
may be useful in the prediction of profiles.

Using bedGraphToBigWig v4 [22], we convert these reads into BigWigs of 5’ counts. For TF
ChIP-seq datasets, the BigWigs are split into positive and negative strands, but for the K562 DNase
dataset, the BigWig is unstranded. This gives each experiment a pair or a single BigWig track of 5’
counts.

The profile BigWigs for the Nanog/Oct4/Sox2 dataset were obtained from Avsec et al. [4] and are
used as-is.

2 Model training

For both model architectures, we use a batch size of 128 and a learning rate of 0.001. We train for a
maximum of 20 epochs with early stopping (requiring an improvement in the validation loss by at
least 0.001 over the last 3 epoch deltas). Batch size, learning rate, and early stopping criteria were
selected by choosing values in previous works on similar architectures, and verifying that validation
performance was comparable.

We also utilize reverse complement augmentation in each batch, thereby effectively doubling the
batch size.

Binary models learn a binary label from a 1 kb input sequence. Profile models learn a 1 kb profile
from a 1346 bp input sequence.

Models were trained using PyTorch 1.3.0, on Google Cloud using n1-standard-8 instances, each with
an NVIDIA Tesla P100.

2.1 Training binary models

The binary model architecture consists of three consecutive 1D convolutions on the one-hot encoded
DNA sequence. The convolutional layers have filter sizes of 15, 15, and 13, respectively (stride
of 1). For TF ChIP-seq datasets, we use 64 filters in each layer; for K562 DNase-seq models, we
use 256. The convolutional layers have ReLU activations and batch normalization. The result of
the convolutions are fed into a max-pooling layer of size 40 and stride 40. The max-pooling output
is fed into two consecutive fully connected layers of size 50 and 15, respectively, both with ReLU
activations. Finally, the result is passed to a final dense layer that outputs a sigmoid prediction.

The loss function is binary cross-entropy, averaged across the different tasks. The cross-entropy loss
for the positive and negative classes are averaged.

In each epoch, the network sees all genome bins where at least one task has a positive label. Each batch
consists of an equal number genome bins where no task had a positive label, randomly subsampled at
the beginning of each epoch.

2.2 Training profile models

The profile model architecture, adapted from Avsec et al. [4], has a profile output and a total counts
output for each task. The architecture consists of seven consecutive 1D dilated convolutions on the
one-hot encoded DNA sequence. The first dilated convolutional layer has a filter size of 21, and the
subsequent layers have filter sizes of 3 (all have stride of 1). For TF ChIP-seq datasets, we use 64
filters; for K562 DNase-seq models, we use 256. Dilation size is 1 for the first layer (i.e. no dilation),
and increases by powers of two in subsequent layers. The dilated convolutional layers have ReLU
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activations. These dilated convolutional layers have summed residual connections, where the input to
each layer is the sum of the outputs of all previous layers.

To compute the profile prediction, the last dilated convolution output is fed to another convolutional
layer with kernel size 75 (stride 1) with no activation function. Finally, this result is then stacked with
the control profile tracks, and fed to a final convolutional filter of size 1, such that the filter operates
on one base of the logits and control profiles at a time. This constitutes the predicted profile logits.

To compute the total read count prediction, the last dilated convolution output is fed to a global
average pooling layer, then to a dense layer. The result is concatenated with the total read counts
in the control experiment, and fed through a final dense layer that predicts the log of the total read
counts.

To compute the profile output and profile loss, the predicted profile logits are converted into probabil-
ities by passing through a softmax along the profile prediction dimension. This gives the predicted
profile shape. For each track, these probabilities, along with the true read counts over the region,
define a multinomial distribution, where each base is a bucket. The profile loss is the log probability
of seeing the distribution of true reads over this distribution, where the post-softmax predictions
define the likelihood of a true read falling in that base. The results over all strands and tasks are
averaged.

To compute the total counts loss, the predicted counts are treated as log counts, and the counts loss
is simply a mean squared error of the log total counts, averaged over all strands and tasks (with a
pseudocount of 1 for numerical stability).

When training, the profile loss and counts loss are given a weight of 1 and 20, respectively.

A positive example for a profile model is an input sequence and target profile track set centered at
an IDR-thresholded peak summit (for any of the tasks). In each epoch, the network sees all IDR-
thresholded peaks (aggregated over all tasks). Each batch consists of an equal number of non-peak
sequences/profiles, sampled uniformly at random from the genome per batch. This implies that a
sampled sequence intended for the negative set may overlap a peak, however unlikely it may be.
The peak sequences are also randomly jittered up to 128 bp from the summit in either direction, to
augment the set of positive examples. For the K562 profile models, however, we do not train with a
negative set due to time efficiency, as we anecdotally found that the profiles with random jitters were
sufficient to yield good performance.

Our profile models also utilize control profiles for bias correction. For the SPI1, GATA2, and K562
models, these are matched controls. For the Nanog/Oct4/Sox2 profile models, the control is identical
and multiplexed across all tasks.

Our TF ChIP-seq profile models (i.e. for SPI1, GATA2, and Nanog/Oct4/Sox2) are stranded, and
predicted and control profiles have positive and negative strands. Our K562 DNase-seq profile models,
however, are unstranded, and the predicted and control profiles are summed across both strands.

2.3 Fourier-based prior loss

In each batch during training, we only compute the Fourier-based prior loss for positive examples (i.e.
binary examples where at least one task had a positive label, or profile examples originating from a
peak). The Fourier-based prior loss is computed separately for each positive input sequence in the
batch, and the loss is averaged over all positive input sequences.

The attributions g(f, x) are computed for each positive example, resulting in a vector of the same
length N as the input sequence. In our models, g(f, x) is based on the element-wise product of the
input one-hot-encoded sequence and the gradient of the output logits with respect to the input (as
described in Shrikumar et al. [23]). This element-wise product is then summed over the base axis,
yielding a single score for each position in a given sequence. For binary models, we simply multiply
the input sequence and the gradient of the binary logits with respect to the input sequence. For profile
models, analogous to Avsec et al. [4], we use the profile prediction logits (pre-softmax), weighted by
the post-softmax probabilities, and summed across the entire profile; these logit gradients are then
multiplied by the input sequence to yield g(f, x). For models with multiple tasks or strands, these
logits are summed across these dimensions; thus, every positive training example will have a vector
of attributions g(f, x) that is the same length as the input sequence.
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To compute the attribution prior loss, We take the absolute value of these attributions, and smooth
them with a Gaussian kernel G of width 1 standard deviation on both sides, with standard deviation
equal to 3 base pairs. Let the resulting smoothed attribution vector be gs(f, x). Then we compute the
discrete Fourier transform and recover the magnitudes m of the positive Fourier frequencies:

m = FFT (gs(f, x))

Note that m is a vector of length L = N
2 . We discard the component corresponding to DC (i.e. the

average value of the attributions) and `1-normalize the magnitudes:

m̂ =
m

L∑
i=1

mi

Finally, we compute the attribution prior loss as the sum of the high-frequency normalized magnitudes:

wi =

{
1 i ≤ T

1
1+(i−T )s i > T

Lp(g(f, x)) = 1−
L∑

i=1

wim̂i

We utilize a soft cut-off, with s = 0.2. This cut-off was selected by visualizing the graph of
h(x) = 1

1+xs and selecting a reasonable s such that h(x) decays gracefully over a span of roughly
50 bp (Supplementary Figure S1).

For a signal of length N , a rectangular pulse of size p has a discrete Fourier transform of a sinc
function with zeros every integer multiple of N

p . For binary models, the cut-off T is selected to
be 150 (in terms of frequency index), and for profile models, the cut-off is 200. In both cases, this
corresponds to a motif length (i.e. pulse) of 6–7 (the input sequences to the binary and profile models
have different lengths, and hence a different frequency index corresponds to a pulse of the same size).

When training with the Fourier-based prior, the prior loss is weighted by 1 for binary models. For
profile models, we train a model first without the Fourier-based prior, we take half of the validation
loss (rounded to the nearest multiple of 5) after the model converges to be the weight of the prior loss
(Supplementary Figure S4).

2.4 Peak subsampling

In some of our downstream analyses, we train models with only a subset of the dataset (e.g. 1%
of the training set). To subsample our dataset, we limit the set of IDR-thresholded peaks to only
the top 1% by signal strength. We do this by ranking all IDR-thresholded peaks across all tasks in
descending order by signal strength, remove duplicate peaks (i.e. perfect overlaps), and retain only
the top 1% by count. This keeps only the 1% strongest/most confident peaks. For binary models,
we recreate the training set from this new set of limited peaks. Negative bins are selected during
training as usual. For profile models, we simply train with this smaller set of peaks as the positive set.
Negative examples training are selected genome-wide, as usual.

For the Nanog/Oct4/Sox2 profile models trained on just 1% of the training data, we train for 80
epochs instead of the usual 20 (both with or without the Fourier-based prior).

2.5 Training logistics

In all models, we reserve chr1 as the test set, reserve chr8 and chr10 as the validation set, and partition
all other chromosomes in the training set (for hg38 or mm10). Evaluation of a model on the validation
and test set proceeds identically to the training set in terms of the selection of positive and negative
examples (i.e. we utilize all positive examples in validation/test, and an equally sized random sample
of negative examples).

To evaluate binary model performance, we examine the validation loss, and the test set accuracy,
auROC, and auPRC. These metrics are computed using balanced positive and negative classes.
Because the auPRC is sensitive to class imbalance, we also compute an "estimated test auPRC",
which estimates the true auPRC on the full test set as if the negative examples were not subsampled
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to achieve a balanced set. We use this estimate rather than computing the auPRC on the full test set
for computational efficiency. This estimate is calculated by artificially inflating the false positive rate,
with the assumption that the negatives already present are representative of the full distribution of
negatives.

To evaluate profile model performance, we examine the profile loss (i.e. the negative log-likelihood
of the profiles).

For each dataset and model architecture, we train the model using 30 different random initializations.
To compare a model trained with versus without the Fourier-based prior in our downstream analyses,
we always compare the model with the best validation loss over all random initializations and epochs.
For profile models, we compare the profile validation loss, rather than the aggregate loss of the
profiles and counts outputs.

2.6 L2-regularization models

We train SPI1 binary models with L2-regularization (without the Fourier-based prior), using an added
L2-norm loss, consisting of the L2-norm of all trainable parameters in the network.

We tuned the L2-norm loss weight over 25 logarithmically sampled random weights from 10−8 to
102, eventually settling on the optimal weight of 0.0001, which yielded the lowest validation loss.
Using this optimal L2 loss weight, we trained 20 random initializations of SPI1 binary models. In all
analyses performed, we used the model/epoch with the best validation loss.

2.7 Models on simulated sequences

We train single-task SPI1 binary models with simulated DNA sequences for the positive and negative
labels. We also only train for 5 epochs, where each epoch has the same number of positive and
negative examples as a single-task SPI1 binary model trained on ENCSR000BGQ. All other training
details are identical to the SPI1 binary models on real experimental data.

To create the input sequence for a negative label, we synthesize a sequence where every base is
sampled independently and uniformly from A, C, G, and T. To create the input sequence for a positive
label, we similarly sample a sequence from a uniform distribution of bases, and subsequently place a
single instance of the SPI1 motif in the center. The placed motif is sampled from a PWM that was
generated using HOMER 2 [24] on the set of IDR-thresholded peaks for SPI1, aggregated over all 4
ENCODE experiments (Supplementary Figure S21). Specifically, we used findMotifsGenome.pl in
hg38 using the IDR-thresholded peaks, with a length of 12 and size of 200. We keep only the top
motif. We then trim the motif by removing flanking regions with less than 20% of the information
content of the base with the highest information content in the motif. Positive and negative sequences
are sampled randomly at training-time every time a batch is generated. We use simdna to generate
simulated positive and negative sequences [25].

We trained models with and without the Fourier-based prior over 3 random initializations each, and
picked the model and epoch with the lowest validation loss for all downstream analyses.

3 DeepSHAP computation

To compute attributions (i.e. importance scores) for input sequences, we utilize DeepSHAP [11]. For
binary models, we explain the binary prediction logits, summed across tasks. For profile models, we
explain the profile prediction logits weighted by the final post-softmax probabilities, summed across
the profile, and summed across tasks and strands.

Our baseline/reference set for DeepSHAP computation consists of 10 randomly shuffled versions of
the input sequence, preserving dinucleotide frequencies. This choice of reference was recommended
for genomic sequences in the DeepLIFT paper [7].

In subsequent sections, we use the term "hypothetical" DeepSHAP importance to refer to the
estimated importance scores of an input sequence for all possible bases (i.e. the estimated DeepSHAP
attributions for each base if it were present, hypothetically, at that location). The procedure for
computing "hypothetical" importance scores can be found in Shrikumar et al. [6]. We use the term
"actual" DeepSHAP importance to refer to the hypothetical importance multiplied by the input
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sequence (i.e. projected onto the bases that are actually in the sequence) and reduced to a single
dimension along the input sequence by summing over the base identities at each position.

In order to make DeepSHAP work with PyTorch models and to easily produce "hypothetical"
importance scores, we used a slightly modified version of the DeepSHAP library, available at
https://github.com/atseng95/shap.

4 Signal-to-noise ratio of attributions

For each dataset, we select 1000 random positive examples from the test set and examine their
interpretability. For profile models, we include a random jitter of ±128 bp to avoid center-bias.
We compute the "actual" DeepSHAP importance scores as described above for each sequence and
quantify each sequence’s signal-to-noise ratio as the sum of the high-frequency normalized Fourier
components, as well as the Shannon entropy. For simplicity, the sum of high-frequency normalized
Fourier components follows the same definition as above, but with s =∞ (i.e. no softness).

We use this same procedure to compare the attributions of our SPI1 binary models trained with
L2-regularization versus the Fourier-based prior.

5 Motif discovery and motif calling

For our Nanog/Oct4/Sox2 models, we call motifs using TF-MoDISco v0.5.5.5 [6]. On the entire set
of IDR-thresholded peaks in the test set, we compute DeepSHAP importance scores on the individual
tasks for each TF, and run TF-MoDISco. We utilize a sliding window size of 21, flank size of 10,
and seqlet FDR of 0.01. From the resulting motif clusters, we select only the motifs that have an
average information content of at least 0.6 over some window of length 6. We then trim the motifs by
removing flanking regions with less than 20% of the information content of the base with the highest
information content in the motif. For binary models, due to their innate limitations in distinguishing
primary motifs, we further filter motifs to have at least 750 supporting seqlets. For each motif, this
gives us a PWM and a CWM (Contribution Weight Matrix). We also remove motifs corresponding to
homopolymer repeats. The CWM consists of the aggregated "actual" DeepSHAP importance scores
[4]. The background frequencies used to compute the PWM are 27% A or T, and 23% G or C.

To call motif instances, we select 1000 random positive examples from the test set. For profile models,
we include a random jitter of ±128 bp to avoid center-bias. For each motif, we compare it to every
possible window in these sequences, and call a motif instance if:

1. The PWM match score is positive

2. The summed continuous Jaccard similarity (as defined below in Sec. 7) between the motif
CWM and the underlying "actual" DeepSHAP scores of the sequence window is in the top
10% for that motif

We then rank the motif calls by the total DeepSHAP importance magnitude, summed across the
instance, and compute precision–recall for which motif instances overlap with corresponding ChIP-
nexus peaks by at least 1 base.

6 Performance on binary models

On our binary models, we compute accuracy, auROC, and auPRC on the test set, randomly subsam-
pling negative bins to achieve balanced positives and negatives. We also compute an estimate of the
auPRC on the imbalanced test set by artificially inflating the false positive rate to simulate auPRC
computation on the entire test set. These are computed over all 30 random initializations for each
dataset. The performance metrics of the best-performing model over the random initializations is
recorded, with the best-performing model being the model with the lowest validation lost over all
random initializations and epochs.
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7 Stability of model learning

For each dataset, we select 100 random positive examples from the test set and examine the consistency
of their "hypothetical" DeepSHAP importance across different models. For profile models, we include
a random jitter of ±128 bp to avoid center-bias.

For each input sequence, we compute the similarity of "hypothetical" DeepSHAP importance from
two models using the continuous Jaccard similarity metric [6]. The continuous Jaccard similarity is
computed between the two sets of `1-normalized "hypothetical" attribution scores for each base, and
the resulting similarities are summed across the length of the sequence. For two d-vectors u and v
(here, d = 4 for the 4 bases), the Jaccard similarity per base is computed as follows:

d∑
i=1

sign(ui)sign(vi)
min{|ui|, |vi|}
max{|ui|, |vi|}

To quantify the similarity across all 30 random initializations of a model, for each of the sampled
input sequences, we compute the pairwise continuous Jaccard similarity sum for each pair of models
and average the scores across all

(
30
2

)
pairs. To quantify the similarity between models trained with

all versus only 1% of the training data, we select the top 5 best-performing models when trained with
all data, and the top 5 best-performing models when trained with only 1% of the training data, and
we compute the pairwise continuous Jaccard similarity sum across all 5× 5 pairs between the two
conditions. The best-performing models are selected by picking the 5 models (5 different random
initializations) in each condition with the best validation loss (or profile validation loss, for profile
models).

8 Reliance on biologically relevant regions

For each dataset, we select 1000 random positive examples from the test set and examine the
relationship between the "actual" DeepSHAP attributions and the underlying summits/peaks. For
profile models, we include a random jitter of ±128 bp to avoid center-bias.

First, over each of the 1000 sampled sequences, we compute the Spearman correlation of the
magnitude of the "actual" DeepSHAP importance at each base to the distance to the closest IDR-
thresholded peak summit.

Next, over all 1000 sampled sequences in aggregate, we rank all bases in descending order by the
magnitude of "actual" DeepSHAP importance, and ask whether the top bases overlie IDR-thresholded
peaks. We use this to compute precision–recall curves, where thresholds are the "actual" DeepSHAP
magnitude, and a positive is when a base overlies an IDR-thresholded peak.

We use this same procedure as above to compare the attributions of our SPI1 binary models trained
with L2-regularization versus the Fourier-based prior.

For the K562 models and Nanog/Oct4/Sox2 models, we perform further analyses using orthogonal
footprints or ChIP-nexus data, respectively. The K562 footprints are computed by Vierstra et al.
[12]. From their published footprints, we aggregated the footprints of all K562 experiments using
BEDtools merge [19]. For the Nanog/Oct4/Sox2 models, in addition to ChIP-seq experiments, Avsec
et al. [4] also performed ChIP-nexus experiments, and we utilize their IDR-thresholded peaks from
the ChIP-nexus experiments.

To compute the fraction of importance in a ChIP-nexus peak or footprint, we take the absolute
value of the "actual" DeepSHAP importance of each of the sampled sequences, and calculate the
proportion (out of the total sum across that sequence) within a ChIP-nexus peak or DNase footprint.
We also repeat the rank-based analysis with footprints and ChIP-nexus peaks instead of ChIP-seq or
DNase-seq peaks.

We also compute the motif clusters of the high-importance regions that the Fourier-based prior
highlighted, but where the regions did not overlie a ChIP-nexus peak or a footprint. Over the same
sample of 1000 test sequences used to compute the auPRC of ChIP-nexus peak or footprint overlap,
we take the top 200000 most important bases (i.e. highest magnitude of DeepSHAP score) for which
the base did not overlie a ChIP-nexus peak or a footprint. For each base, we expand to a centered 50
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bp region, discarding overlaps (keeping the higher-ranked bases). For the resulting regions, we run
the TF-MoDISco v0.5.5.5 [6] clustering algorithm only, clustering seqlets of length 30 into motifs.

To evaluate the ability of our models trained on simulated data to place importance only on motifs, we
employ a similar procedure as above. We take a random sample of 100 simulated positive sequences
(i.e. with placed motifs). For each sequence, we identify instances of the SPI1 motif by considering
locations where the match score to the SPI1 PWM (i.e. the PWM used to construct the sequences)
is over 0.9. The match score of a potential motif instance is computed as the sum of the entries in
the PWM corresponding to the bases in the instance (i.e. total log-odds). Here, we used a uniform
background (i.e. 25% A, C, T, or G) to compute the PWM. To compute the fraction of importance in
the motifs, we use the same procedure as above to compute fraction of importance in a ChIP-nexus
peak or footprint, but use motif instances instead of peaks/footprints. To compute the auPRC of base
overlap with motif instances, we use the same procedure as above to compute precision–recall of
base overlap with peaks/footprints, but use called motif instances instead.

9 GC content simulations

We train single-task binary SPI1 models on varying amounts of GC bias. The procedure for construct-
ing simulated sequences is identical to the procedure described above for training single-task binary
SPI1 models without GC bias. The only difference is that when we synthesize a positive sequence
(i.e. with an inserted motif instance), the background sequence can have a higher amount of GC
content. The negative sequence set always has sequences of equal GC and AT content (i.e. no bias).
We train models on 5 different levels of GC content: +0%, +1%, +2%, +3%, and +4%. A level of GC
bias of +x% means the probability of G or C in the positive background sequences is (50 + x)%,
while the negative sequence background has a G/C probability of 50% (i.e. no bias at all).

We trained models with and without the Fourier-based prior over 3 random initializations each, and
picked the model and epoch with the lowest validation loss for all downstream analyses.

To quantify how much a model is relying on GC content in the background, we sample 100 random
positive sequences with the specified amount of GC bias, and compare the importance of A or T
to the importance of G or C. For each sequence, we first mask out all instances of the SPI1 motif
by ignoring any locations where the match score to the SPI1 PWM (i.e. total log-odds) is over 0.9.
When scanning each simulated sequence for matches to the SPI1 motif, we computed the PWM
using background frequencies that match the GC content of the sequence. We then consider the
(signed) "hypothetical" DeepSHAP importance of A or T versus G or C, normalized by the maximum
importance over the entire "hypothetical" importance track. We compute this product per base, and
average over each input sequence.
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