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Abstract  
Strong phenotype-genotype associations have been reported across brain diseases. However, 
understanding underlying gene regulatory mechanisms remains challenging, especially at the 
cellular level. To address this, we integrated the multi-omics data at the cellular resolution of the 
human brain: cell-type chromatin interactions, epigenomics and single cell transcriptomics, and 
predicted cell-type gene regulatory networks linking transcription factors, distal regulatory 
elements and target genes (e.g., excitatory and inhibitory neurons, microglia, oligodendrocyte). 
Using these cell-type networks and disease risk variants, we further identified the cell-type 
disease genes and regulatory networks for schizophrenia and Alzheimer's disease. The cell-
type regulatory elements (e.g., enhancers) in the networks were also found to be potential 
pleiotropic regulatory loci for a variety of diseases. Further enrichment analyses including gene 
ontology and KEGG pathways revealed potential novel cross-disease and disease-specific 
molecular functions, advancing knowledge on the interplays among genetic, transcriptional and 
epigenetic risks at the cellular resolution between neurodegenerative and neuropsychiatric 
diseases. Finally, we summarized our computational analyses as a general-purpose pipeline for 
predicting gene regulatory networks via multi-omics data. 

Introduction 
Recent Genome Wide Association Studies (GWAS) studies have reported strong phenotype-
genotype associations in brain diseases. For example, 97% of Alzheimer's disease patients, for 
instance, develop neuropsychiatric symptoms over the course of the disease [1]. In addition, a 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314
https://doi.org/10.1101/2020.06.11.147314


 

number of genetic risk variants have recently been found to be associated with multiple 
disorders. For example, 109 pleiotropic loci were found to significantly associate with at least 
two brain disorders [2], and many cross-disease common genetic risk factors have revealed 
many shared functional consequences in clinical presentations [3]. In addition, recent studies 
have revealed shared symptoms at both psychiatric and physical levels between 
neurodegenerative and neuropsychiatric diseases [3,4], and additional insights into the 
progression and causes of each have further demonstrated the highly interlinked nature of both 
disease types [5]. Building upon this, the progression of each disease rarely occurs within a 
neurological vacuum, and as such, there potentially exists a high degree of interplay between 
regulatory elements including various signaling mechanisms, immune response, and hallmark 
pathway development. The primary actors that sense, generate, and respond to changes are 
various cell types that simultaneously work in tandem to create complex networks of effect. 
Often, when looking at specific diseases, it is possible to discern cell type specific response 
factors at various stages of disease progression as well as between diseases. Thus, examining 
the genetic variability of multiple cell types with regard to expression and regulation presents an 
interesting insight into the network of potential interactions.  
 
In neurodegenerative diseases, Alzheimer’s Disease (AD) is broadly characterized by the 
accumulation of Amyloid Beta plaques and Tau protein tangles within the brain. The pathology 
is complex, and a wide array of factors and pathways have been associated with it. Broadly 
speaking, the general progression contains both neuroimmune response elements and general 
interruptions in normal neuronal functioning. Brain atrophy is a hallmark feature of AD, primarily 
due to the Amyloid plaques and Neurofibrillary tangles that cause slow, but irreversible cell 
death over time. Primarily, the plaques that are normally cleared away and broken down remain 
in between neurons of patients with AD; this is further exacerbated by irregular microtubule 
formations that eventually collapse within the neurons, starving them of their transport 
mechanisms and leading to cell death. In tandem with considerations of brain atrophy as 
recognized through brain imaging, this leads to the three prominent clinically relevant “stages” of 
the disease: cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer’s Disease 
(AD). Neuroimaging assists this in two key ways: first, it helps with tracking initial brain state; 
second, changes in brain matter over time often inform disease progression rates. Specifically, 
Magnetic Resonance Imaging (MRI) utilize the gold standard of Brain Boundary Shift Integrals 
(BBSI), Hippocampus Boundary Shift Integrals (HBSI), and Ventricular Boundary Shift Integrals 
(VBSI) to quantify and track these changes over time. Computed Tomography (CT) scans help 
to rule out alternative causes of similar symptoms such as internal hemorrhages, brain tumors, 
and strokes. Lastly, Proton Emission Tomography scans are often used with radioactively 
labeled tracers to map glucose metabolism, but new techniques have recently been proposed to 
track other substances such as the characteristic amyloid plaques. Methods like these are 
useful in tracking the decline over time, but largely fail at performing preventative measures and 
are often used in late stage care. Some studies have suggested links between decreased gray 
matter within patients with Down Syndrome and AD as well as higher levels of glucose uptake, 
which makes PET an ideal method for studying this connection. Lastly, the diagnosis of AD is 
only confirmed in post-mortem analysis, making the need for a mechanistic understanding even 
more crucial as it can help shed light on early-stage risk factors. Much of the conversation 
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surrounding AD research today concerns forms of the apolipoprotein E (APOE). Certain variants 
like APOE2 are thought to have neuroprotective effects due to their ability to properly clear 
formed molecules [6–8]. At the same loci, the APOE4 gene has the opposite effect, drastically 
increasing the likelihood of developing AD due to the formation of a salt bridge between the 
standard sites of clearance. This then results in accumulation in the brain and eventual neuron 
death due to the inflammatory response and reactive oxygen species-based impacts that 
amyloid beta depositions develop [9–14]. Eventually, neurodegeneration at both the cellular and 
cognitive levels develop, leading to standard AD pathology.  
 
Schizophrenia (SCZ) is a neuropsychiatric disease characterized molecularly through 
disruptions in dopamine, glutamate, and GABA-based receptor pathways and presenting 
clinically through both positive symptoms such as altered perceptions of reality as well as 
negative symptoms including anti-social behaviors [15,16]. SCZ often leads to the need for 
lifelong continual treatment in the form of antipsychotic medications, which is similar in nature to 
chronic AD treatment. However, this creates the potential for increased tolerance and 
decreased sensitization to specific effects of target therapies (general antipsychotic drug 
resistance with regard to mechanism of action remains unclear, but the consensus remains that 
resistance is rarely the entire functional pharmacology of a specific drug and rather a specific 
behavioral element or effect) [17]. In light of this fact, a new wave of “atypical” antipsychotic 
medications has emerged that fundamentally operates with new mechanisms of action 
compared to the original first and second line treatments [18]. On the front of pathology, patients 
diagnosed with SCZ exhibit decreased grey matter volume - a key player in both muscle control 
and sensory perceptions - that forms due to decreased neuron size [19,20]. A juxtaposition 
between AD and SCZ, where the former leads to characteristic neurodegeneration and 
degradation over the course of the disease whereas the latter affects neuron size and density 
but not count, can be drawn. To this end, exploring the connection between AD and SCZ at the 
level of shared phenotype-based interactions presents an interesting opportunity to explore the 
interplay between each of these diseases. The increasing relative prevalence of AD in the ever 
aging population presents a growing need for better understanding both of disease specific and 
potentially cross disease elements [21]. At the level of clinical presentation, shared symptoms 
(primarily psychiatric effects) create a key point of intersection to be explored. General 
psychosis, for instance, is found in up to 60% of AD patients, including hallucination events as 
well as other effects mirroring those of the positive symptoms found in SCZ patients [22–24]. 
Genome-based analysis of AD patient cohorts has revealed multiple conserved genetic loci that 
could encode shared risk factors between the two diseases [22]. Patients who exhibit symptoms 
of psychosis in addition to standard AD pathology and symptomology experience significantly 
worse clinical outcomes than those who do not [24]. The combination of each of these shared 
genetic and clinical factors presents an opportunity to explore regulation of multiple factors at a 
cellular resolution between common neurodegenerative and neuropsychiatric diseases - in this 
case, AD and SCZ respectively.  
 
Recent analyses have also revealed that brain disease risk variants are located in non-coding 
regulatory elements (e.g., enhancers) and that the risk genes likely have cell-type specific 
effects including neuronal and non-neuronal types [25,26]. In addition, recent single-cell studies 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147314doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.147314


 

suggest changes to cell-type specific gene expression in brain diseases [27,28]. The gene 
expression is fundamentally driven by a variety of gene regulatory factors like transcriptional 
factors (TFs) and regulatory elements. These factors work cooperatively as gene regulatory 
networks (GRNs) to carry out cellular and molecular functions. However, our understanding of 
the gene regulatory networks driving cell-type and disease-specific gene expression, especially 
across diseases remains elusive. To address this, a number of computational methods have 
been proposed to predict cell-type GRNs [29], such as PIDC [30], GENIE3 [31] and GRNBoost2 
[32]. However, the methods typically use single omics only (e.g., transcriptomics) and predict 
networks based on statistical associations (e.g., co-expression), providing insufficient 
mechanistic insights into gene regulation at the cellular resolution. Thus, it is essential to 
integrate emerging multi-omics data for a deeper understanding of cell-type gene regulation, 
especially involving non-coding regulatory elements. Recent studies have shown that integrating 
multi-omics data can not only reduce the impact of noise from a single omics data, but can also 
achieve better prediction accuracy [33].  

 
Figure 1. The computational pipeline for predicting the gene regulatory network via 
multi-omics data. The scGRN pipeline inputs the chromatin interactions (e.g., from Hi-C) of 
regulatory elements (e.g., enhancer-promoter), identifies the transcription factor binding sites 
(TFBSs) on the regulatory elements, predicts TF-target gene expression relationships (e.g., 
high coefficients from Elastic net regression), and finally outputs a gene regulatory network 
linking TFs (cyan), regulatory elements (purple) to target genes (blue). 

 
To explore these ideas, this paper presents a computational pipeline, scGRN by integrating 
multi-omics data to predict cell-type gene regulatory networks (GRNs) linking TFs, regulatory 
elements (e.g., enhancers and promoters) and target genes (Figure 1, Methods). In particular, 
we applied the pipeline to the multi-omics data at the cellular resolution such as chromatin 
interactions, epigenomics and single-cell transcriptomics of major cell types in the human brain 
including excitatory and inhibitory neurons, microglia, and oligodendrocyte. Our predictions 
provide additional information on cell-type gene regulation such as linking regulatory elements 
to genes, and they are found to be consistent with the state-of-the-art methods [29]. A recent 
study has benchmarked a number of methods of predicting cell-type GRNs and found the ones 
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with high prediction accuracy [29] (Methods). We also found that the enhancers in our cell-type 
GRNs (e.g., microglia) are enriched with GWAS SNPs in human diseases including mental 
disorders and Alzheimer's disease. Thus, we further linked GWAS SNPs to cell-type disease 
genes and regulatory networks for schizophrenia (SCZ) and Alzheimer's disease (AD), two 
majorly represented neuropsychiatric and neurodegenerative diseases as described above and 
found cross-disease and disease-specific genomic functions (Figure 2).  

 
Figure 2. Identification of cell-type disease genes, regulatory elements and functions. 
We applied our pipeline to the multi-omics data of the human brain at the cellular resolution 
and predicted the cell-type gene regulatory networks for four major cell types in the human 
brain: excitatory and inhibitory neurons, microglia and oligodendrocytes. We further linked 
GWAS SNPs to cell-type disease genes, regulatory elements and functions using these cell-
type gene regulatory networks. Our analyses enable revealing the interplay among variants, 
genes, cell types and disease types in a functional genomic resource at the cellular resolution 
for the human diseases (e.g., Alzheimer’s Disease and Schizophrenia as demonstrated in the 
paper). 

Results 

Predicting cell-type specific gene regulatory networks in the human brain 
We applied our pipeline, scGRN to the multi-omics data for the human brain including cell-type 
chromatin interactions [25], transcription factor binding sites [34], and single-cell transcriptomics 
[28]. As shown on Figure 3A (and Supplemental file 1), we predicted cell-type GRNs for major 
cell types: excitatory neuron (254 TFs, 5126 TGs, 45258 TF-TG links with 30066 enhancers), 
inhibitory neuron (192 TFs, 4739 TGs, 37231 TF-TG links with 29210 enhancers), microglia (68 
TFs, 1768 TGs, 5249 TF-TG links with 7090 enhancers), and oligodendrocyte (210 TFs, 3496 
TGs, 29556 TF-TG links with 15544 enhancers). 
 
In addition, we compared our predicted microglial gene regulatory network with existing state-of-
the-art methods for predicting cell-type gene regulatory networks, particularly, those that are 
consistent and highly accurate PIDC, GENIE3 and GRNBoost2 benchmarked by BEELINE [29] 



 

(Methods). Out of 14135 TF-TG links in our microglial GRN, 10222 links (approximately 72%) 
were also shared in the predicted networks by these methods, suggesting a high consistency 
between scGRN and these methods. However, these methods predicted TF-TG links without 
providing information on involved regulatory elements like enhancers. Thus, we looked further at 
the enhancers from shared and unique links in our microglial GRN and found that they are 
significantly enriched with disease risk SNPs (p<0.05), suggesting potential pleiotropic roles in 
gene regulation for a number of diseases (Methods). In particular, as shown on Figure 3B, we 
found that a number of diseases - including mental disorders, nervous system diseases and 
immune system diseases - are significantly enriched in shared microglial enhancers. 
Additionally, Inflammatory Bowel Diseases (IBD), digestive system diseases and AD are 
significantly enriched with our unique microglial enhancers. Also according to our observations, 
the enhancers from other cell-type GRNs are enriched with a number of disease-associated 
SNPs including neuropsychiatric and neurodegenerative diseases (Supplemental file 2). 

 
Figure 3. Cell-type gene regulatory networks (GRNs) for four major cell-types, 
excitatory and inhibitory neurons, microglia and oligodendrocytes in the human brain. 
(A) Cell-type GRNs. The black, yellow and red links represent the interactions of TF to 
enhancer, enhancer to target gene, and TF to target gene promoter, respectively. (B) The 
enrichments of SNPs associated with various diseases and traits (bar) on the enhancers of 
Microglia GRN. Bar height is -log10(p value) of the enrichment. Pink represents the 
enhancers predicted by both scGRN and other state-of-the-art methods. Purple represents 
the enhancers uniquely predicted by scGRN only. 

                                                  
Identifying cell-type disease genes in AD and SCZ for both neuronal and 
non-neuronal types 
We further used these cell-type GRNs to link GWAS SNPs to disease risk genes for each type, 
advancing knowledge on cross-disease and disease-specific interplays among genetic, 
transcriptional and epigenetic risks at cellular resolution. In particular, we chose schizophrenia 
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(SCZ) and Alzheimer's disease (AD), two majorly represented neuropsychiatric and 
neurodegenerative diseases with potential convergent underlying mechanisms [1], and we 
linked a number of cell-type disease genes (Methods, Supplemental file 3). We then performed 
the enrichment analyses for these cell-type disease genes to understand cross cell-type and 
specific functions (Figure 4, Supplemental file 4). The majority of the microglia-based 
functionality revolves around the standard operations of the cell primarily concerning 
neuroimmune response elements of disease pathology. For example, in AD, we observed 
known key pathways surrounding the functional consequences of Amyloid Beta formation 
(p<3.21e-6) [35] including MAPK1/MAPK3 signaling (p<3.92e-8) [36] and neurite growth 
(axonogenesis) (p<2.23e-14) [37]. In a similar path, the oligodendrocyte analysis reveals Tau 
protein binding (p< 1.72e-5) [38] and tubulin binding (p<2.29e-4) [39] are heavily associated 
with the enrichment. This is vital to the understanding of a multitude of diseases that commonly 
demonstrate atrophy of cortical tissue as a hallmark feature. In SCZ, then, at a neuroimmune 
response level, we found that multiple key hallmark pathways were implicated, including 
dopaminergic synapse p(<7.78e-9) [40,41], and signaling by both Receptor Tyrosine Kinase 
(p<1.86e-10) [42,43] and cGMP-PKG (p<2.94e-7) [44]. From an oligodendrocyte-based context, 
we observed that multiple forms of synapse function and regulation were enriched - specifically, 
the regulation of trans-synaptic signaling (p<1.95e-8) [45], modulation of chemical synaptic 
transmission (p<1.80e-8) [46], and neuron-to-neuron synapses (p<2.57e-11) [47]. The 
overarching theme of these observations concerns furthered impacts on signaling and 
transmission between neurons which Schizophrenia pathology widely believes to be implicated 
[45,46,48,49]. This is in line with the physical effects of SCZ, both positive and negative, as 
overactive dopamine channels have been suggested to create hallucinations (visual and 
auditory) [50], which is a hallmark feature of SCZ diagnoses.  

 
Figure 4.  Cell-type specific pathways and functions enriched in the disease genes. (A) 
Alzheimer’s Disease. (B) Schizophrenia. Darkness is proportional to -log10(p value) of the 
enrichment. Bar height represents the gene count. 



 

In neuronal types, excitatory and inhibitory neuronal functions generally revolve around cell 
signaling pathways within the brain. In particular, our analysis identified both ion channel 
specific and broad signaling mechanisms as affected. In AD, multiple forms of chemical 
transmission and neuronal cell regulation were found to contribute to the neurodegenerative 
nature of the disease: transmission across chemical synapses (p<1.04e-12) [51,52] as well 
regulation of synaptic plasticity (p<1.12e-9) [52,53], dendrite development (p<1.01e-8) [53,54], 
and postsynapse organization (p<1.12e-9) [55]. Similarly, when examining inhibitory neurons 
within the context of AD progression we noted additional forms of signaling and regulatory 
pathways as enriched: glutamatergic synapses (p<4.22e-10) [55], MAPK signaling (p<2.38e-4) 
[36], and NMDA receptor activity regulation (p<7.19e-5) [29]. Lastly, SCZ enrichment for both 
excitatory and inhibitory neurons were similar to those of AD, possessing unique, disease-
specific interactions. For excitatory neurons, we observed neurotransmitter-based signal 
transmission (p<1.11e-13) [56] as well as regulation of trans-synaptic signaling (p<1.46e-29) 
[45], synapse structure and activity (p<1.02e-15) [49], and glutamate receptor signaling 
(p<3.90e-12) [41]. From the inhibitory neuron standpoint, SCZ enrichment shared multiple 
enrichment terms with AD, suggesting abstraction from standard disease-specific pathology and 
broader atypical neuronal signaling and activity. Specifically, we observed MAPK family 
signaling (p<1.63e-9) [42], regulation of NMDA receptor activity (p<5.09e-8) [56], dopaminergic 
synapses (p<2.07e-7) [40,41], and neurotransmitter-based signal transmission (p<3.71e-18) 
[56] to be enriched. The general consensus is that similar pathways are observed to be 
enriched between diseases and cell types, but there are disease and cell type specific 
implications for clinical presentation.  

Revealing disease related functions involving multiple cell-types in AD and 
SCZ 
In addition to cell-type specific pathways in these diseases, we also identified those involving 
multiple cell types in each disease (Figure 5), which implies that potential cell-type interactions 
are driving the disease pathology. Specifically, in AD, multiple pathways implicated in neuro-
degradation and intercellular signaling were found to be significantly enriched across multiple 
cell types. For instance, AMPK signaling (p_excitatory<9.65e-7, p_oligodendrocytes<2.98e-10) 
[57,58], asymmetric and dopaminergic synapses (p_microglia<2.27e-21, 
p_oligodencrocytes<2.26e-5, p_excitatory<5.82e-17, p_inhibitory<3.29e-15) [59] and 
(p_microglia<7.94e-8, p_oligodencrocytes<2.78e-7, p_excitatory<8.07e-7, p_inhibitory<1.37e-7) 
[60], respectively, as well as postsynaptic specialization (p_microglia<5.88e-21,  
p_excitatory<1.73e-17, p_inhibitory<1.37e-15) [61] were all found to be significantly enriched in 
more than two cell types. The AMPK signaling is involved as a master kinase regulation element 
in ATP synthesis production and in the context of Alzheimer’s Disease, has aided both amyloid 
production and tau phosphorylation [30]. In terms of synapse-based analysis, we found that 
both asymmetric synapses (AS) and dopaminergic synapses (DS) are enriched. The 
asymmetric synapses are characteristic of excitatory neurons compared to symmetric synapses 
which are more relevant in the context of inhibitory neurons. Previous work has shown AS 
deficits may be linked to cognitive decline in AD patients [62], but recent work suggests that no 
such disparity exists [63]. There is, however, evidence that synapse projection targets change in 



 

AD patients as the disease progresses [64]. Additionally, there is a consistent and growing body 
of work in the study of dopaminergic synapses that  supports the role of both dopamine and 
associated receptors, synapses, and regulatory mechanisms within the context of AD pathology 
[60], suggesting its vital role in memory and cognition - especially within the hippocampus. 
Clinically, imaging biomarkers like the peripheral hippocampal brain boundary shift integral 
(BBSI) [65] are commonly used to track the neurodegeneration of neural and hippocampal 
volumes over time in order to measure dementia progress in living patients. The combination of 
both hippocampal atrophy and altered chemical signaling suggests that dopamine-based 
memory pathways enrichment across all four cell types for AD analysis has vital functional 
consequences for AD in clinical presentation. Postsynaptic specialization was additionally highly 
enriched across microglia as well as across excitatory and inhibitory neurons. It has been 
shown to be a preclinical biomarker for neurodegeneration [66]; however, such methods suffer 
from the need to retrieve cerebral spinal fluid (CSF) based samples which are difficult to obtain 
from humans and lead to poor compliance in clinical trials. Finally, at a higher level, protein-
protein interaction (PPI) level analysis through Metascape [61] revealed additional elements to 
be enriched through our analysis for intersecting loci of interest (Figure 5C). Here, the plasma 
membrane cell projection morphogenesis (p<3.98e-17) was significantly enriched. Biologically, 
this presents remarkable implications for the communication between cell types in the process 
of amyloid plaque formation [67].  

 
Figure 5.  Cross-cell-type conserved pathways and functions in the diseases. Darkness 
is proportional to -log10(p value) of the enrichment. Terms are selected with p values < 1e-5. 
(A) Alzheimer’s Disease. (B) Schizophrenia. (C) A protein-protein interaction (PPI) network of 
shared disease genes across at least three cell types in Alzheimer's Disease (AD), implying 
cellular conserved PPIs in the disease. 

 
The primary elements of SCZ include changes in cell shape and type rather than strict 
degradation, as demonstrated in AD-based enrichment. Clinically, this is consistent with the 



 

general consensus that SCZ is strictly neuropsychiatric as opposed to degenerative. In this 
same vein, axonogenesis (p_microglia<2.91e-5, p_oligodencrocytes<4.56e-12, 
p_excitatory<5.27e-17, p_inhibitory<7.91e-16) [68], regulation of cell morphogenesis 
(p_microglia<1.01e-8, p_oligodencrocytes<9.11e-10, p_excitatory<1.56e-8, p_inhibitory<2.65e-
9) [69], neuronal cell synapses (p_oligodencrocytes<7.26e-11, p_excitatory<2.28e-25, 
p_inhibitory<2.17e-26) [49] were all enriched. Multiple axon guidance pathways associated with 
general axon growth in axonogenesis have been heavily implicated in the broad mechanism of 
SCZ pathology; elucidating this mechanism has remained difficult in part due to the polygenic 
nature of the disease. Broadly, it is thought that missteps in guidance cues can lead to eventual 
presentation and disease onset, but the underlying pathway remains unclear [68]. On the front 
of cell morphogenesis, early life neurodevelopmental genetic markers may suggest causal links 
with alterations in hippocampal cell differentiation points leading to cascades of downstream 
effects [69]. This has primarily been studied and modeled within the scope of iPSC-based 
analyses, which make correlations and connections to the clinical presentation more difficult due 
to the additional abstraction from standard pathology-based analysis. Finally, neuron-to-neuron 
synapses were enriched in SCZ analysis across all four cell types. This is characteristic of 
standard SCZ progression and onset and has been widely supported through a growing body of 
evidence. In particular, multiple studies have been performed within the hippocampus that 
measure key levels of synapse proteins significantly declining [49]. While there are some forms 
of decline in neuronal cell content, SCZ enrichment generally focused on molecular cues that 
led to eventual pathology as opposed to specific hallmark molecules as observed in AD 
pathology. The lack of these molecules makes mechanistic understandings more complex as it 
often associates multiple genetic loci as well as metabolic, neurodevelopmental, and 
homeostasis with maintaining based pathways.  

Comparative analyses reveal the interplays between genomic functions, 
cell types, and diseases 
We found that a variety of cross-disease conserved functions are involved in one or multiple cell 
types, revealing potential novel functional interplays across cell types and diseases (Figure 6A). 
For example, active regulators of proline residue protein folding sites in the family of peptidyl-
prolyl isomerases (PPIases) have been found to relate to AD hallmark molecules. This includes, 
for example. the microtubule tau tangles, due to their proline-rich nature of repeat regions within 
tau binding sites [70]. Additional study also suggests that these phosphorylation sites lead to 
hallmark oligomerization and aggregation of the tau proteins within standard AD progression 
[71]. Our analysis observed fairly uniform enrichments of PPIases across all four types in both 
AD and SCZ; however, within the context of SCZ, Microglia are more enriched than others, 
suggesting potential microglia-specific mechanisms of PPIases across AD and SCZ. In AD, it 
has been noted that microglial activation precedes standard tau pathology within P301S tau 
gene mutant mice models [72]. In SCZ, however, little work has been done to quantify and study 
the effects of potential alterations in PPIases, especially in the Microglia. A broad proteomic 
analysis of gray matter in the anterior cingulate cortex (ACC) has revealed differential PPIase 
levels within SCZ patients, suggesting the ACC as a potentially novel therapeutic target area.  
 



 

Although conserved between AD and SCZ, we also found that a number of functions involve 
different cell types across diseases. For example, we found that the neuron to neuron synapses 
have conserved high enrichments for Excitatory and Inhibitory neurons between two diseases 
but different enrichments for Microglia and Oligodendrocytes. The functional role of signaling 
consequences for both Microglia and Oligodendrocytes in each disease has been well 
characterized. AD patients usually demonstrate progressive and irreversible synapse loss and 
dysfunction as well as alterations in synaptic transmission. SCZ patients are thought to have a 
relative imbalance in the signaling between these cell types that leads to neuropsychiatric 
symptoms  [52,73]. Thus, the relative functional impact manifests in disease-specific ways but 
with a shared origin. More interestingly, when exploring the interactions between cell types that 
change between diseases, the disease-specific pathologies enter into the picture to help explain 
the cause of discrepancies. In particular, for AD, it is shown that phagocytic Microglia are 
activated during early stages of synaptic decline which leads to eventual neuroinflammation and 
programmed cell death [74]. For SCZ, Oligodendrocyte analysis reveals similar intercellular 
mechanisms between Excitatory and Inhibitory Neurons, specifically those regarding disruption 
of interneuron synaptic signaling, providing potential direction for future exploration and 
validation of the communication role of Oligodendrocytes [75].  
 
Finally, we also found a set of cross-disease conserved functions enriched with unique cell 
types in AD and SCZ. For instance, the cGMP dependent Protein Kinase G (cGMP-PKG) 
signaling shows higher enrichment within Microglia for AD and shifted into higher enrichment in 
both Excitatory and Inhibitory neurons for SCZ. First, cGMP-PKG signaling is involved in 
numerous pathways throughout the central nervous system (CNS) [76], and the functional 
consequence between diseases surrounds decreased neuronal plasticity [77]. In AD, Microglia 
are likely involved at a neuroinflammatory level [78]; similarly in SCZ, Excitatory and Inhibitory 
neurons are likely involved with alterations in synaptic plasticity through perturbed signaling 
between regulatory elements [44]. Overall, we reveal the intrinsic difference between the 
disparities at the clinical presentation level but also potential similarities at the cellular level for 
shared dysfunction.  

Gene regulatory networks associated with functional interplays across cell 
types and diseases reveal additional disease risk regulatory elements and 
network dynamics in the development of disease functions 
To further understand gene regulatory mechanisms in functional interplays among cell types 
and diseases, we looked at the enhancers targeting the genes of the cross-disease enriched 
terms in Figure 6A in the cell-type GRNs. We found that these enhancers (+/- 1kb) are 
significantly enriched with GWAS SNPs for a number of additional diseases (Figure 6B) - for 
example, Parkinson disease for peptide-threonine phosphorylation and modification, Nervous 
system disease for exocytic vesicle, and Amyotrophic lateral sclerosis for the neuron-to-neuron 
synapse. This suggests that these distant regulatory elements are likely potential novel disease 
risk regions across multiple diseases and that they have cell-type specific regulatory networks 
targeting the genes of cross-disease functions. 
 



 

 
Figure 6. Comparative analyses revealed the interplay of genes, cell types, 
pathways/functions and diseases. (A) Cross-disease conserved cell-type pathways and 
functions between Alzheimer’s Disease and Schizophrenia. Darkness is proportional to -
log10(p value) of the enrichment. (B) The enrichments of SNPs associated with various 
diseases and traits on the enhancers regulating disease genes of cross-disease conserved 
pathways and functions in (A). Darkness is proportional to -log10(p value) of the enrichment. 
(C) Dynamic networks linking disease genes and cell types across the amyloidogenic 
processing pathway stages (shown on top of each network) in Alzheimer's Disease. Blue: 
links of genes and cell types for the stage. Green/Red: links of genes and cell types for 
positively/negatively regulation of the stage. Grey: links of genes in the same cell types for the 
stage. Dashed: links of genes and the cell types that are associated with other stages. 
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We also observed that the cell-type gene regulatory networks in these disease risk enhancers 
change in the development of disease functions, revealing dynamic regulatory mechanisms at 
the system level. For example, a complex multi-cell-type mechanism for amyloid beta formation 
and processing was established in AD. Our gene regulatory networks show the changes to 
amyloid precursor protein (APP) interactions in amyloid beta formation, clearance, and 
metabolism (Figure 6C). In particular, the APP gene was found to be enriched across multiple 
cell types, following the central mechanism of enzymatic cleavage of APP to form the hallmark 
amyloid beta protein through the amyloidogenic processing pathway. Here, the non-
amyloidogenic processing pathway typically generates the P3 terminal fragments that do not 
proceed to oligomerize and form plaques within the brain [79–81]. Additionally, their role in 
clearance is vital because amyloid beta is typically cleared from the brain and processed in 
healthy aging [82,83] which creates a commonly explored site for therapeutic efforts [84]. Unlike 
the APP gene involved in multiple cell types, our network analysis observed the cell-type 
specific regulation changes in the AD amyloid for all four cell types. For example, we found that 
the C3 gene is specific in Microglia for amyloid beta clearance, which was also reported by 
previous studies; C3 knockout mice surround engulfment of synapses by microglia fulfilling a 
standard neuroimmune function in healthy controls [85] that declines in the absence of C3 
[86,87].  
 
We also identified multiple genes that were both unique and conserved between multiple stages 
of the amyloidogenic processing pathway (Figure 6C). For example, BIN1 and CLU were both 
found to be enriched among Oligodendrocytes, Excitatory and Inhibitory neurons in Amyloid 
Precursor Protein metabolism, and Amyloid Beta formation and metabolism. BIN1 was found to 
be the second most predominant loci involved in AD progression (following APOE) [88] and was 
not involved in later steps of amyloidogenic processing from later stage AD progression, falling 
in line with previously identified involved steps [89]. In addition, BIN1 has been found to link to 
microglia [25] and be commonly implicated in Tauopathy, further supporting the status of BIN1 
as a high risk loci for AD [90]. Similarly, CLU has been shown to be enriched and heavily 
implicated in multigene pathways, particularly APOE, to lead to eventual AD progression. Like 
BIN1, it is a key marker gene as well, and it is screened for AD patients to determine the 
progression of the disease clinically [88]. Mechanistically, the function of CLU remains unclear 
and conflicting prevailing theories as to the exact method of progression remain unanswered 
[91]; at a broader level, however, the interaction between APOE and CLU is certain. Instances 
of functionally conserved genes were documented as well. Here, BACE2 was found to be 
enriched across Excitatory and Inhibitory neurons at both metabolism stages of the process. 
Beginning first with Amyloid-Precursor Protein and Amyloid-Beta Metabolism, the role of BACE2 
is well-documented and understood to be heavily involved in the proteolytic cleavage of APP 
and heavily colocalizes with APP gene expression within targeted cells [92,93]. With this in 
mind, looking to the cell type specificity reveals interesting potential mechanisms for how the 
functional role of BACE2 could interact with other genes to lead to the eventual process of 
Amyloid-Precursor Protein Metabolism. The cell-cell interactions have not been thoroughly 
studied until this point, and the interaction between excitatory and inhibitory neurons through 
other gene-based pathways suggests a high degree of involvement throughout the Amyloid-
Precursor Protein metabolism pathway. Better understanding of the cellular level effects of 



 

multiple genes within specific steps of the Amyloidogenic Processing mechanism elucidates the 
broader path of action through which AD pathology ensues. Lastly, when looking to potentially 
novel loci and pathways in Oligodendrocytes, we observed EFNA3 as specifically enriched 
within APP metabolism; EFNA3 encodes the Ephrin-A3 receptor protein tyrosine-kinase, which 
is part of the larger family of Ephrin based molecules commonly involved in developmental 
pathways within the nervous system. Ephrin-A3 specifically has been implicated widely as a 
diagnostic marker in oncological diagnosis primarily due to accumulation over time [94], and the 
broad functional significance of signaling oligodendrocyte precursor elements has been widely 
documented [95]. However, the interaction between EFNA3 and Ephrin-A3 with 
Oligodendrocytes in the AD progression is previously unreported, presenting a potentially novel 
mechanism in Oligodendrocytes. 

Materials and Methods 

The scGRN pipeline for predicting gene regulatory networks from multi-
omics data 
scGRN is a computational as an R package to integrate multi-omics datasets for predicting 
gene regulatory networks linking transcription factors, noncoding regulatory elements and target 
genes. To achieve this, scGRN has three steps (Figure 1), each of which is available as an R 
function: 
Step1: Finding chromatin interactions. The function, scGRN_interaction inputs the chromatin 
interaction data (e.g., Hi-C) and predicts all possible interactions between enhancers and 
promoters in the data or the user-provided list - for example, those from Topologically 
Associating Domains (TADs) in Hi-C data. In addition, the function uses an R package, 
GenomicInteractions [96], to annotate interacting regions and link them to genes;  
Step 2: Inferring the transcription factor binding sites on interacting regions. The function, 
scGRN_getTF infers the transcription factor binding sites (TFBS) based on consensus binding 
site sequences in the enhancers and promoters that potentially interact from the previous step, 
scGRN_interaction. It outputs a reference gene regulatory network linking these TF, enhancers 
and/or promoters of genes. In particular, this function uses TFBSTools [34] to obtain the position 
weight matrices of the TFBS motifs from the JASPAR database [97] and predicts the TFBS 
locations on the enhancers and promoters via mapping TF motifs. It further links TFs with 
binding sites on all possible interacting enhancers and promoters, and outputs the reference 
regulatory network. Furthermore, this function can run on a parallel computing version via an R 
package, motifmatchr [98] for computational speed-up;  
Step 3: Predicting the gene regulatory network. The function, scGRN_getNt predicts the final 
gene regulatory network based on the TF-target gene expression relationships in the reference 
network. The reference gene regulatory network from the previous step provides all possible 
regulatory relationships (wires) between TF, enhancers, and target genes. However, changes in 
gene expression may trigger different regulatory wires. To refine our maps and determine the 
activity status of regulatory wires, this function applies elastic net regression, a machine learning 
method that has successfully modelled gene regulatory networks in our previous work [28]. 
Given a gene expression dataset and a reference network from scGRN_getTF, the function 



 

uses the TF expression to predict each target gene expression and finds the TF with high 
regression coefficients. This indicates an active regulatory influence on the target gene’s 
expression in the gene expression data. The final gene regulatory network consists of the TF 
with high elastic net coefficients, target genes and the linked enhancers from their reference 
network links if any. The single cell gene expression data (UMI) for each cell type was 
normalized by Seurat 3.0 [99]. 

Multi-omics datasets at the cellular resolution in the human brain 
We applied our computational pipeline, scGRN to the multi-omics datasets at the cellular 
resolution in the human brain and predicted cell-type specific gene regulatory networks for 
major cell types: excitatory and inhibitory neurons, microglia and oligodendrocyte. We first input 
recently published cell-type chromatin interactome data in the human brain [25] to 
scGRN_interaction in order to reveal all possible interactions from enhancers to gene promoters 
in the neuronal, microglia and oligodendrocyte types. The genome annotation was from 
TxDb.Hsapiens.UCSC.hg19.knownGene [100]. We then predicted a reference regulatory 
network for each of these cell types using scGRN_getTF. When given a cell type, we input its 
normalized single cell gene expression data for the human brain, summarized by a recent 
functional genomic resource for the human brain [28] and the cell-type reference networks from 
scGRN_getNt, and we predicted the cell-type specific gene regulatory network consisting of the 
top 10% of TFs with highest Elastic net coefficients for each target gene. In particular, we 
randomly split the dataset into training and testing sets with a ratio of seven to three and then 
selected the best Elastic net model that minimized the mean square error. In addition, after 
normalizing gene expression and filtering out lowly expressed genes and cells  by Seurat 3.0 
[99], we included 302 microglial cells with 4022 genes, 2653 oligodendrocyte cells with 12755 
genes, 6034 inhibitory neuronal cells with 12100 genes, and 13703 excitatory neuronal cells 
with 15017 genes. 

Comparison with state-of-the-art methods 
We chose our predicted gene regulatory network, consisting of 68 TFs, 1768 target genes (TGs) 
and 46217 TF-TG links to compare with existing state-of-the-art methods for predicting cell-type 
gene regulatory networks. In particular, we input the single-cell gene expression data for 
microglia to a recently published benchmark framework, BEELINE [29], and predicted three 
microglial regulatory networks using three of the most consistent and highly accurate methods, 
PIDC, GENIE3 and GRNBoost2. These methods input gene expression data only, so they 
predict all possible TF-TG regulatory links based on their expression relationships. To make 
these networks comparable, we restricted TGs present in our microglial network and selected 
top 30% weighted TFs for each TG using each method. scGRN, PIDC, GENIE3 and 
GRNBoost2 predicted 14135, 36951, 37080, 29251 TF-TG links, respectively. Now with a target 
gene, we further checked whether its TFs were also present in the networks predicted by three 
methods.   



 

Enrichment analyses of disease risk SNPs on the enhancers in the cell-
type gene regulatory networks in the human brain 
Genome Wide Association Studies (GWAS) have identified a variety of genetic risk variants 
including single nucleotide polymorphisms (SNPs) that are significantly associated with 
diseases and phenotypes (i.e., the traits). We used an R package, traseR [101] to calculate the 
enrichments of trait-associated SNPs for various diseases and phenotypes on the enhancers of 
cell-type gene regulatory networks. while calculating the enrichments, we used the binomial 
tests and the trait-associated SNPs in linkage disequilibrium (LD).  

Identification and enrichment analysis of cell-type disease genes 
First, we obtained the disease risk SNPs associated with Alzheimer’s Disease (AD, 2357 
credible SNPs) and Schizophrenia (SCZ, 6105 credible SNPs) from recent GWAS studies 
[102,103]. Second, given a cell-type, we used an R package, GenomicRanges [104], to overlap 
these SNPs with the enhancers and promoters of its gene regulatory network, and then linked to 
the cell-type disease genes from the overlapped enhancers or promoters. Finally, we used an R 
package, clusterProfiler [105], to find the enriched pathways and functions of cell-type disease 
genes, and the web app, Metascape [61] to find the enriched protein-protein interactions.  

Conclusions  
We developed a computational pipeline, scGRN for integrating multi-omics data and predicting 
gene regulatory networks (GRNs) which link TFs, non-coding regulatory regions (e.g., 
enhancers) and target genes. With applications to the data from single-cell multi-omics of the 
human brain, we predicted cell-type specific GRNs for both neuronal (e.g., excitatory, inhibitory) 
and non-neuronal types (e.g., microglia, oligodendrocyte), and used them to further link disease 
genes at the cell-type level for brain diseases like Alzheimer’s and schizophrenia. These 
disease genes revealed conserved and specific genomic functions across neuropsychiatric and 
neurodegenerative diseases, providing potential novel disease mechanistic insights at the 
cellular resolution. Although this paper focuses on Alzheimer’s and schizophrenia, our pipeline 
is general-purpose for understanding functional genomics across other diseases.   
 
Our pipeline and analyses serve as a baseline and general framework for future research, 
although we have demonstrated a few basic use cases for multiple disease types including 
neurodegenerative and neuropsychological cases. As presented, the networks were able to 
identify multiple genes that have been well documented within the process of amyloidogenic 
processing, a hallmark pathway within Alzheimer’s Disease progression. Future studies utilizing 
the scGRN pipeline would be able to take advantage of the ever growing number of GWAS for 
an extensive variety of diseases. Existing tools such as FUMA [106] have linked GWAS loci to 
genes by integrating information from multiple resources, providing functional insights from 
genotype to phenotype in human diseases. Thus, incorporating GWAS data from various brain 
regions exposes key areas of observed phenotypes. Previous studies in the same field have 
demonstrated the caution that must be exercised when attempting to correlate GWAS data with 
clinical phenotypes, and methods such as scGRN-based analysis mitigate these effects [26]. A 



 

similar methodology as outlined could be used where common loci within each set of summary 
statistics are incorporated and established prior to integration into the cell type GRNs, thus 
linking neuronal spatial information with known mutation sites in disease case patients along 
with potentially cell type specific functionality. Expanding past the four cell types examined here 
into additional forms of multicellular analyses is also possible given expanded interactome data. 
In particular, this would allow for further analysis of complex neuropsychological diseases as 
well as cases where the line between different clinical classifications becomes blurred and leads 
to additional complications with regard to clinically relevant genetic therapies. One such 
example includes Autism Spectrum Disorder (ASD), where clinical presentations can vary in 
multiple axes of severity which creates a broad spectrum of phenotypes. In such cases, being 
able to potentially link specific symptoms or aspects of a particular subset of ASD to certain 
brain regions and cell types allows for a better-informed picture of functional consequences 
associated with genetic mutation sites. Such connections could aid in determining genetic risk 
factors associated with variations in edge case patients; they also create the opportunity to take 
advantage of modern day Induced Pluripotent Stem Cell (iPSC) technology using genetic 
engineering technologies to create point mutations matching computationally identified genes.  
 
Machine learning has also been widely used to analyze multi-omics such as multiview learning 
and deep learning [28,107]. In particular, multiview learning has great potential for 
understanding functional multi-omics and for revealing nonlinear interactions across omics. 
Therefore, integrating such emerging machine learning approaches will potentially enable the 
identification of additional cross-omic patterns - especially for increasing single cell multi-omics 
data and providing more comprehensive mechanistic insights in cell-type gene regulation and in 
linking to disease genes. This means, for example, adding more omics such as methylation data 
that reflect epigenetic changes which may occur due to wide variations of inherited and 
environmental factors [108]. At a deeper functional level, variations in methylation have been 
attributed to alterations in splicing activity, ultimately impacting the regulation and expression of 
key genes [109]. Additionally, integrating proteomic data at a single-cell level enhances the 
broader picture formed through additional data sources even further [110]. Lastly, expanding 
past simple methylation and proteomics allows for the ability to include all forms of data 
incorporated through the single-cell cytometry [111].  
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