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Abstract 39 

SARS-CoV-2 is the novel coronavirus responsible for the current COVID-19 40 

pandemic. Severe complications are observed only in a small proportion of infected 41 

patients but the cellular mechanisms underlying this progression are still unknown. 42 

Comprehensive flow cytometry of whole blood samples from 54 COVID-19 patients 43 

revealed a dramatic increase in the number of immature neutrophils. This increase 44 

strongly correlated with disease severity and was associated with elevated IL-6 and 45 

IP-10 levels, two key players in the cytokine storm. The most pronounced decrease 46 

in cell counts was observed for CD8 T-cells and VD2 γδ T-cells, which both exhibited 47 

increased differentiation and activation. ROC analysis revealed that the count ratio of 48 

immature neutrophils to CD8 or VD2 T-cells predicts pneumonia onset (0.9071) as 49 

well as hypoxia onset (0.8908) with high sensitivity and specificity. It would thus be a 50 

useful prognostic marker for preventive patient management and improved 51 

healthcare resource management.  52 
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Introduction 53 

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) first appeared in 54 

Wuhan, China in late 2019. It is a novel pathogen responsible for the coronavirus 55 

disease 2019 (COVID-19) pandemic 1. COVID-19 patients experience a wide 56 

spectrum of clinical manifestations that ranges from low-grade fever and mild 57 

respiratory symptoms, to more severe forms. This including acute respiratory 58 

distress syndrome (ARDS), which requires provision of supplemental oxygen, and in 59 

some cases intubation and mechanical ventilation 2-5. However, it remains unclear 60 

how SARS-CoV-2 infection affects the activation of immune cells and their 61 

contribution towards the severity of disease outcomes in patients. 62 

Previous clinical studies reported associations with clinical blood counts, while 63 

others have specifically assessed T-cell subsets for activation and exhaustion 64 

markers 6-9. Since strong evidence points to a cytokine storm as the culprit for 65 

disease severity 10,11, various groups have investigated cytokine-secreting 66 

pathogenic T-cells and inflammatory monocytes that could have triggered this 67 

phenomenon 6-9. In addition, flow cytometry analysis in COVID-19 patients has also 68 

shown a polarisation towards the Th17 subtype and a highly activated and 69 

exhausted CD8+ T-cell compartment 12,13. All these stuies were carried out on 70 

peripheral blood mononuclear cells (PBMCs), thus excluding most granulocyte 71 

populations 12,13. However, to elucidate all the immune subsets that could potentially 72 

trigger severe COVID-19 pathology, it is imperative to perform comprehensive whole 73 

blood immunophenotyping of COVID-19 patients which includes granulocyte 74 

populations. 75 

In this study, we employed high dimensional flow cytometry to analyse a wide 76 

spectrum of more than 50 subsets of the myeloid and lymphoid immune cell 77 
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compartments. The study was carried out during the ongoing SARS-CoV-2 78 

pandemic in Singapore with a cohort of 54 COVID-19 patients who presented with 79 

varied clinical manifestations ranging from mild to fatal outcomes. This 80 

comprehensive immunophenotyping allowed the identification of immature 81 

neutrophils, CD8 T-cells and gamma delta (VD) 2 T-cells as key immune cell 82 

populations that undergo substantial changes in the cell counts across the spectrum 83 

of clinical severity. Their numbers, in fact, represent an early and robust prognosis 84 

value as shown by ‘receiver operating characteristics’ (ROC) analysis.  85 
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Results 86 

Circulating myeloid populations are reduced in COVID-19 patients 87 

A total of 54 patients with laboratory-confirmed SARS-CoV-2 infection were recruited 88 

at the National Centre for Infectious Diseases (NCID), Singapore from end March to 89 

mid-May 2020 (Supplementary Table 1). Blood was collected from 54 patients upon 90 

enrollment at a median 7 days post-illness onset (pio), from 28 patients who had 91 

recovered from COVID-19 disease (median 30 days pio, Supplementary Table 1) 92 

and 19 healthy donors (Supplementary Table 2). Immunophenotyping of whole blood 93 

samples was carried out with three distinct flow cytometry panels to analyse myeloid, 94 

granulocyte and lymphoid subsets. (Figure 1A, Supplementary Table 3). Each panel 95 

was supplemented with counting beads to allow accurate assessment of cell counts. 96 

19 of the 54 acute patients had paired plasma samples that permitted quantification 97 

of immune mediators by Luminex multiplex microbead-based immunoassay. The 98 

cohort was strongly biased towards males of which two patients had fatal outcomes 99 

(3.7%). 100 

 The FACS analysis revealed a declined cell count for eosinophils, basophils, 101 

total T-cells, dendritic cells (DCs), natural killer (NK) CD56 Bright, and plasmacitoid 102 

DCs (pDCs) in patients with acute COVID-19 infection (Figure 1B, Supplementary 103 

Figure 1A). No significant changes were observed for B-cells, total monocytes, and 104 

total NK cells (Figure 1B, Supplementary Figure 1A). Unbiased analysis by Uniform 105 

Manifold Approximation and Projection (UMAP) and graph-based clustering however 106 

identified with CD169+ monocytes and CD11bhigh neutrophils, two additional clusters 107 

with high variation in acute patients (Figure 1C). Further analysis showed that the 108 

monocytes presented with an increased expression of CD169 (strong type I 109 

interferon signature marker 14),  increased expression of CD11b and HLA-DR, as 110 
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well as CD33, a constitutive PI3K signaling inhibitor 15,16 (Figure 1D, Supplementary 111 

Figure 1B).  112 

 Similar to the monocytes, neutrophils showed a significant upregulation of 113 

CD11b, CD66b, Siglec 8, CD38 and HLA-DR, suggesting that they were activated in 114 

response to SARS-CoV-2 infection (Figure 1E, Supplementary Figure 1C). 115 

Interestingly, despite this activation phenotype, an increase in the overall number of 116 

circulating neutrophils during acute SARS-CoV-2 infection based on conventional 117 

phenotypic markers (CD66b and CD16) was observed only in a small subset of our 118 

cohort (Figure 1F). However, in-depth analysis of neutrophil subsets allows 119 

discrimination between immature (CD16low/highCD10-) and mature (CD10+) subsets 120 

(Figure 1G)17-19. Overall, a significant increase of immature neutrophil numbers was 121 

observed in acute patients as compared to healthy donors or recovered patients, 122 

while the number of mature neutrophils decreased (Figure 1H).  123 

 124 

CD8 and γδ T-cell populations are the most affected lymphocyte subsets 125 

To better characterise COVID-19-induced lymphopenia, levels of CD8, CD4, γδ (i.e. 126 

VD1 and VD2), and mucosal-associated invariant T-cells (MAIT, 127 

CD3+VA7.2+CD161+) were assessed during acute infection. Results showed a 128 

decrease in circulating MAIT, CD8+ and VD2 T-cells (Figure 2A). However, 129 

circulating VD1 T-cells did not vary in numbers, and CD4+ T-cells did not show a 130 

significant decrease during acute infection (Figure 2A). Interestingly, levels of 131 

regulatory T-cells (Treg) and CD4+CD161+ T-cells increased in recovered patients as 132 

compared to acute patients (Figure 2A). 133 

 Next, UMAP analysis was done on CD3+ cells to visualise changes in 134 

differentiation states within the T-cell compartments (Figure 2B). UMAP visualisation 135 
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suggests that phenotypic modulation in the CD8+ cluster was the most pronounced 136 

during SARS-CoV-2 infection (Figure 2B). In order to validate this observation, 137 

CD45RA and CD27 markers were used to analyse the frequency of naïve 138 

(CD45RA+CD27+), central memory (CM, CD45RA-CD27+), effector memory (EM, 139 

CD45RA-CD27-) and terminal effector (TEMRA, CD45RA+CD27-) amongst the T-cell 140 

populations (Figure 2C, Supplementary Figure 2A). In agreement with the UMAP 141 

analysis, CD8+ T-cells showed a change in differentiation profile from naïve in favour 142 

of EM and TEMRA (Figure 2C). Noticeably, the frequency of naïve CD4+ T-cells 143 

decreased but was not reflected in a significant increase of a specific differentiated 144 

population (Figure 2C).  145 

In addition, UMAP analysis also suggested changes in VD1 and VD2 146 

populations that were not reflected in terms of differentiation (Figure 2B-C). 147 

Therefore, we investigated the expression of general activation marker CD38 (Figure 148 

2D). In this context, we observed that all differentiation stages of CD8+ T-cells, VD1 149 

and VD2, had higher expression of CD38 except VD2 TEMRA (Figure 2E). On the 150 

other hand, CD4+ T-cells only showed activation of the TEMRA compartment (Figure 151 

2E). Together, our data suggest that while circulating cell counts were generally 152 

decreased for T-cells, SARS-CoV-2 differentially impacts the different T-cell subsets 153 

in terms cell counts, differentiation and expression of CD38.  154 

 155 

Granularity of clinical severity is reflected by immune cell counts 156 

In order to associate the data with the clinical severity we separated the patients into  157 

four different groups: no pneumonia, pneumonia only, pneumonia and hypoxia, and 158 

pneumonia and hypoxia requiring ICU admission (Figure 3A) 20,21. This allowed 159 

estimation of cell counts in those groups and identification of markers that potentially 160 
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depict disease severity. Consistent with previous studies on CD4 and CD8 161 

lymphopenia 6,22,23, CD8+, CD4+, MAIT, VD1 and VD2 T-cells showed a gradual 162 

reduction in the peripheral blood with increasing disease severity (Figure 3B). The 163 

effect was more pronounced for CD8+ and VD2 T-cells (Figure 3B), suggesting a 164 

strong activation and infiltration of these cells in the lungs. 165 

 Cell counts in various myeloid subsets showed a similar decreasing profile 166 

with severity for pDCs, DCs, classical and intermediate monocytes (Figure 3C). In 167 

contrast to cell counts, myeloid activation markers showed differential trends with 168 

severity (Figure 3D). CD86 expression on DCs, HLA-DR and CD33 expression on 169 

monocytes followed a gradual decrease with increasing severity (Figure 3D). 170 

Expression of CD169 on monocytes was decreased in ICU patients, while CD86 171 

expression on pDCs was consistent across severity groups (Figure 3D). Together, 172 

these results suggest that the remaining circulating monocytes and DCs in severe 173 

cases have a dysregulated phenotype.  174 

While total circulating neutrophils showed no significant change with disease 175 

severity, neutrophilia was only observed in some patients with severe clinical 176 

complications (Figure 3E). Particularly, there was a change in the composition of 177 

neutrophil subsets in accordance to disease severity, where an increase in the 178 

immature neutrophil cell count and frequency was accompanied with a decrease of 179 

mature neutrophils (Figure 3E). These results suggest that immature neutrophils 180 

could reflect disease severity much more accurately than total neutrophil counts. 181 

 182 

Immature neutrophil absolute count correlates with cytokines 183 

Neutrophil-to-Lymphocyte Ratio (NLR) or Neutrophil-to-CD8 T-cell Ratio (N8R) were 184 

proposed to be good diagnostic and prognostic markers for severe COVID-19 185 
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respiratory disease 23,24. However, these studies observed increased neutrophils in 186 

severe cases which was not consistent with our observations and in another study 25 187 

(Figure 1F and 3E). To validate that the identified populations would be good 188 

markers of disease severity, a correlation analysis with analyte levels in available 189 

paired plasma samples was performed (Figure 4A, Supplementary Figure 3). 190 

Interestingly, strong correlation scores were observed between analytes and 191 

immature neutrophil counts (Figure 4A, Supplementary Figure 3A), rather than with 192 

total neutrophil counts (Figure 4A, Supplementary Figure 3B). The strongest 193 

correlations were observed between immature neutrophil counts and IL-6 194 

(rho=0.6747, p=0.0015), and IP-10 (rho=0.7596, p=0.0002) (Figure 4B).  195 

In addition, strong correlations were also observed between mature 196 

neutrophils, monocytes and intermediate monocytes, as well as CD8 and VD2 T-cell 197 

counts (Supplementary Figure 3C). These results suggest that immature neutrophils 198 

counts can potentially be used as sensitive and reliable indicators of disease 199 

severity. 200 

 201 

Immature neutrophil to VD2 T-cell ratio as an improved prognostic marker 202 

We next assessed if an immature neutrophil-to-CD8 T-cells ratio (iN8R) or VD2 T-203 

cell counts ratio (iNVD2R) could be a better prognostic marker of disease severity as 204 

compared to the current proposed NLR and N8R 23,24. To differentiate patients with 205 

and without pneumonia, iNVD2R performed better than N8R or iN8R with an area 206 

under receiver operating characteristic (AUROC) curve of 0.8451 (95% confidence 207 

interval CI: 0.7379-0.9523) vs 0.806 (95% CI: 0.6911-0.9210) and 0.7158 (95% CI: 208 

0.5754-0.8562) respectively (Figure 5A). In addition, to differentiate patients with and 209 

without hypoxia, an AUROC of 0.9111 (95% CI: 0.8306-0.9916) was obtained for 210 
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iNVD2R as compared to 0.8931 (95% CI: 0.8044-0.9817) for iN8R and 0.7958 (95% 211 

CI: 0.6781-0.9136) for N8R. These results indicate that iNVD2R and iN8R could be 212 

good markers for severe respiratory disease. 213 

 To assess if this analysis could have predictive prognostic value in 214 

hospitalisation settings to improve patient management, we repeated the analysis 215 

with the samples that were acquired before 7 days pio (24 patients, median pio = 3 216 

days). AUROC for iNVD2R showed strong prognostic value for pneumonia onset 217 

(0.9071) as well as for onset of hypoxia (0.8908) (Figure 5B, Table 1). Our data 218 

show that immature neutrophil counts are better in predicting disease severity as 219 

compared to total neutrophil counts. Importantly, they can be used in a ratio with 220 

CD8 or VD2 lymphocyte counts to improve the current N8R predictive ratio. 221 
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Discussion 222 

In this study, immunophenotyping of peripheral blood from COVID-19 patients 223 

revealed a significant shift in the ratio between mature and immature neutrophils 224 

associating with severity. The increased numbers of immature neutrophils and the 225 

disappearance of mature neutrophils likely reflect gradual and sustained mobilisation 226 

of these cells into the lungs in response to an ongoing inflammation, leading to 227 

premature release of immature neutrophils from the bone marrow 19. Supporting this 228 

hypothesis, a recent study investigated several myeloid populations between 229 

circulating PBMCs and the lung lavage of COVID-19 patients showed that 230 

granulocytes represent up to 80% of total CD45+ lung infiltrates 26. In addition, 231 

autopsies of COVID-19 fatalities showed typical lesions associated with toxic 232 

neutrophil effects 27,28. In line with this observation, marked morphological 233 

abnormalities of the circulating neutrophils were reported in COVID-19 patients 25. 234 

These cells present typical hallmarks of immature neutrophils and their precursors 235 

such as band shaped nuclei and a lower expression of CD10 and CD16 29. 236 

Consistent with our data, a recent study on a small number of patients reported that 237 

the presence of "low density inflammatory neutrophils” was strongly associated with 238 

disease severity and IL-6 levels 30. This CD11bintCD44lowCD16int low density 239 

neutrophil population is likely constituted primarily of CD10- immature neutrophils. 240 

In addition, immature neutrophil numbers strongly correlated with IL-6 and IP-241 

10. IL-6 and IP-10 are consistently upregulated during a cytokine storm and are 242 

associated with severe ARDS 9,10,31,32. While some studies report inflammatory 243 

monocytes as the source of IL-6 9,33,34, our results suggest that immature neutrophils 244 

could also be a non-negligible source of IL-6 during COVID-19-induced cytokine 245 

storm. Indeed, neutrophils have been found to produce biologically relevant amounts 246 
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of IL-6 after engagement of TLR8, a toll like receptor recognising single strand RNAs 247 

of viral or bacterial origin 35,36. Since IL-17 operates upstream of IL-1 and IL-6, and is 248 

a major orchestrator of sustained neutrophils mobilisation 37, it is plausible that IL-17 249 

could significantly affect the neutrophils compartment in COVID-19 patients. 250 

Consistent with this hypothesis, CD4 T-cells in COVID-19 patients are skewed 251 

towards a Th17 phenotype 13, and we also observed increased CD4+CD161+ T-cells 252 

in recovered patients. These CD4+CD161+ T-cells are known to be either IL-17 253 

producer cells or their precursors 38. Thus, our results could reflect the re-circulation 254 

of these cells from the lung or secondary lymphoid organs after infection and support 255 

the possibility of IL-17 in mediating neutrophil damage to the lungs. Together, this 256 

would support proposed anti-IL-17 or JAK2 inhibitor therapies for severe COVID-19 257 

disease 39-41. 258 

In addition to the changes in the heterogeneity of neutrophils, a strong 259 

decrease in T-cells was observed, especially in subsets that possess cytolytic 260 

activity such as CD8, VD1 and VD2 T-cells. These results are consistent with other 261 

studies showing a decrease of CD8+ during COVID-19 disease 12,13. As for VD2 T-262 

cells, which are not MHC-restricted T-cells 42,43, we showed a general decrease in 263 

the periphery with disease severity. This is in line with other inflammatory disease 264 

such as psoriasis 44 and Crohn’s disease 45. However, in the lungs, during chronic 265 

obstructive pulmonary disease, γδ T-cell counts have been reported to be 266 

significantly lower in induced sputum (IS) and bronchoalveolar lavage (BAL) but not 267 

in peripheral blood, suggesting unclear inflammatory mechanisms that could 268 

influence γδ T-cells counts in the periphery 46. Interestingly, γδ T-cells, in particular 269 

VD2, are known to participate in influenza immune response 47, and actively recruit 270 

and activate neutrophils to the site of infection or inflammation 48,49. Activated, 271 
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neutrophils have also been found to inhibit γδ T-cells functional capacity, promoting 272 

the resolution of inflammation 50,51. Therefore, it will be essential to investigate the 273 

neutrophil to γδ T-cells relashionship present in lungs of SARS-CoV-2 infected 274 

patients. 275 

During aging, VD2 T-cell counts in the periphery have been shown to 276 

decrease with age. Elderly individuals generally have systemic chronic low-grade 277 

inflammation, which we previously termed “inflamm-aging”, with higher basal levels 278 

of molecules such as CRP, TNF-a and IL-6 52,53. These similarities in modulation of 279 

VD2 T-cell counts and cytokines between COVID-19 severity and aging could 280 

explain why elderly individuals are more susceptible to severe disease, since they 281 

have a higher basal level of inflammation and lower level of VD2 T-cells as 282 

compared to the young.  283 

Our results indicate that an early post illness onset iNVD2R, accessible 284 

through a simple 5 colours flow cytometry panel (CD3; VD2; CD66b/CD15; CD10; 285 

CD45), would be an excellent prognostic screening tool for predicting probable 286 

patient progression to pneumonia or hypoxia. Moreover, CD8 could also be included 287 

in the flow cytometry panel as a fallback option since VD2 counts could be 288 

decreased by medication, such as Azathioprine, as well as underlying conditions, 289 

such as inflammatory bowel disease, aging or psoriasis, which could be risk factors 290 

for COVID-19 45. Analysis of the proposed parameter would allow for a more 291 

accurate and earlier prognosis due to the interconnection between neutrophils and 292 

Vδ2 T cells, which can then be utilised for early therapeutic interventions, improve 293 

patient triage and better healthcare resource management.  294 
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Material and Methods 295 

Study design 296 

This was an observational cohort study of patients with PCR-confirmed COVID-19 297 

who were admitted to the National Centre for Infectious Diseases, Singapore. All 298 

patients with COVID-19 in Singapore, regardless of the severity of infection, are 299 

admitted to isolation facilities until clinical recovery and viral clearance. Supportive 300 

therapy including supplemental oxygen and symptomatic treatment were 301 

administered as required. Patients with moderate to severe hypoxia (defined as 302 

requiring fraction of inspired oxygen [FiO2] ≥40%) were transferred to the intensive 303 

care for further management including invasive mechanical ventilation where 304 

necessary. 305 

Sample Size: No power analysis was done. Sample size was based on sample 306 

availability. Randomization: No randomization was done. Blinding: Clinical 307 

parameters were made available after data analysis. 308 

 309 

Ethics statement 310 

Written informed consent was obtained from participants in accordance with the 311 

tenets of the Declaration of Helsinki. For COVID-19 blood/plasma collection, “A 312 

Multi-centred Prospective Study to Detect Novel Pathogens and Characterize 313 

Emerging Infections (The PROTECT study group)”, a domain specific review board 314 

(DSRB) evaluated the study design and protocol, which was approved under study 315 

number 2012/00917. Healthy volunteers samples were obtained under the following 316 

IRB “Study of blood cell subsets and their products in models of infection, 317 

inflammation and immune regulation”  under the CIRB number 2017/2806 from 318 

SingHealth (Singapore). 319 
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 320 

Donor information 321 

Patients who tested PCR-positive for SARS-CoV-2 in a respiratory sample from 322 

February to April 2020 were recruited into the study 54. Demographic data, disease 323 

onset date, clinical score and SARS-CoV-2 RT-PCR results during the 324 

hospitalisation period were retrieved from patient clinical records. Relevant 325 

information are given in Supplementary Table 1. Patients were classified in different 326 

clinical severity groups depending on the presence of pneumonia, hypoxia and the 327 

need for ICU hospitalisation. For healthy volunteers, demographic data are provided 328 

in Supplementary Table 2. Blood was collected in VACUETTE EDTA tubes (Greiner 329 

Bio, #455036) or Cell Preparation Tubes (CPT) (BD, #362753) and 100 μL of whole 330 

blood was extracted for each FACS staining panel (Supplementary Table 3).  331 

 332 

Multiplex microbead-based immunoassay 333 

When available, plasma fraction was harvested after 20 minutes centrifugation at 334 

1700 x g of blood collected in BD Vacutainer CPT tubes (BD, #362753). Plasma 335 

samples were treated by solvent/detergent treatment with a final concentration of 1% 336 

Triton X-100 (Thermo Fisher Scientific, #28314) for virus inactivation at RT for 2 337 

hours in the dark under stringent Biosafety laboratory 2+ conditions (approved by 338 

Singapore Ministry of Health) 55. Immune mediator levels in COVID-19 patient 339 

plasma samples across acute samples were measured with by Luminex using the 340 

Cytokine/Chemokine/Growth Factor 45-plex Human ProcartaPlexTM Panel 1 341 

(ThermoFisher Scientific, #EPX450-12171-901). Data acquisition was performed on 342 

FLEXMAP® 3D (Luminex) using xPONENT® 4.0 (Luminex) software. Data analysis 343 

was done on Bio-Plex ManagerTM 6.1.1 (Bio-Rad). Standard curves were generated 344 
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with a 5-PL (5-parameter logistic) algorithm, reporting values for both mean 345 

florescence intensity (MFI) and concentration data. Internal control samples were 346 

included in each Luminex assay run to allow for detection and normalisation of plate-347 

to-plate and batch-to-batch variation. A correction factor was obtained from the 348 

differences observed across the multiple assays with these controls and this 349 

correction factor was then used to normalise all the samples. Analyte concentrations 350 

were logarithmically transformed to ensure normality. Analytes that were not 351 

detectable in patient samples were assigned the value of logarithmic transformation 352 

of Limit of Quantification (LOQ). 353 

 354 

Flow cytometry 355 

Whole blood was stained with antibodies as stated in Supplementary Table 3 (100 356 

μL of whole blood per flow cytometry panel) for 20 minutes in the dark at RT. 357 

Samples were then supplemented with 0.5 mL of 1.2X BD FACS lysing solution (BD 358 

349202). Final FACS lysing solution concentration taking into account volume in tube 359 

before addition is 1X. Samples were vortexed and incubated for 10 min at RT. 500 360 

μL of PBS (Gibco, #10010-031) was added to wash the samples and centrifugated 361 

at 300 x g for 5 min. Washing step of samples were repeated with 1 mL of PBS. 362 

Samples were then transferred to polystyrene FACS tubes containing 10 μL (10800 363 

beads) of CountBright Absolute Counting Beads (Invitrogen,  #36950). Samples 364 

were then acquired using BD LSRII 5 laser configuration using automatic 365 

compensations and running BD FACS Diva Software version 8.0.1 (build 2014 07 03 366 

11 47), Firmware version 1.14 (BDLSR II), CST version 3.0.1, PLA version 2.0. 367 

Analysis of flow cytometric data was performed with FlowJo version 10.6.1. Gating 368 
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strategies for panels A, B and C are presented in Supplementary Figures 4, 5 and 6 369 

respectively.  370 

 371 

Statistical analysis 372 

Statistical analysis was performed using Prism 8 (Graph Pad Software, Inc). For 373 

comparisons of absolute cell counts or frequency, Kruskal-Wallis Test corrected with 374 

Dunn’s method was performed. For comparisons of geometric Mean Fluorescence 375 

Intensity (gMFI) between three or more independent groups, Brown-Forsythe and 376 

Welch ANOVA using Dunnett T3 correction for multiple comparison was performed. 377 

For correlation analysis, spearman rank correlation was performed. p-values < 0.05 378 

for correlations, while adjusted p–values<0.05 for all the other comparisons were 379 

considered significant. 380 

 381 

Data analysis and UMAP visualisation 382 

UMAP: Gated cells were manually exported using FlowJo (Tree Star Inc.). Samples 383 

were then used for UMAP analysis using cytofkit2 R Packages with RStudio v3.5.2 384 

56. Five healthy, six acute and four recovered patients were each concatenated to its 385 

respective groups and 100000 cells were analysed using the ceil method. Custom R 386 

scripts were used to generate Z-score and correlation heatmaps.  387 
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Figure legends 649 

Figure 1: SARS-CoV-2 infection induces a decrease in immune cells in 650 

peripheral blood. (a) Schematic representation of flow cytometry workflow. (b) 651 

Heatmap representation of row z-score of mean absolute cell counts across the 652 

groups. Individual plots are shown in Supplementary Figure 1A. (c) UMAP clustering 653 

of CD45+ immune cells. (d) Heatmap representation of row z-score of monocyte 654 

activation markers mean geometric MFI (gMFI) across the groups. (e) Heatmap 655 

representation of row z-score of neutrophil activation markers mean geometric MFI 656 

(gMFI) across the groups. (f) Absolute neutrophil counts. (g) Representative plot of 657 

mature and immature neutrophil gating strategy in healthy control or acute COVID-658 

19 patient. (h) Mature (CD10+) and Immature (CD10-) Neutrophil Abs counts. 659 

Absolute counts were analysed by Kruskal-Wallis using Dunn correction for multiple 660 

comparison, gMFI was analysed by Brown-Forsythe and Welch ANOVA using 661 

Dunnett T3 correction for multiple comparison. For heatmaps, stars shown in acute 662 

column represent healthy vs acute comparison. Stars shown in recovered column 663 

represent acute vs recovered comparison. ns non-significant. *p<0.05, **p<0.01, 664 

***p<0.001 665 

 666 

Figure 2: SARS-CoV-2 infection induces general lymphopenia and CD8, VD1 667 

and VD2 activation. (a) Absolute counts of T-cell compartments in healthy donors, 668 

acute and recovered COVID-19 patient. (b) UMAP clustering of CD3+ cells. (c) left 669 

panel: CD45RA and CD27 gating strategy; right panel: heatmap representation of 670 

mean frequencies of T-cell differentiation across the groups, individual plots given in 671 

Supplementary Figure 2. (d) Representative histogram of CD38 expression in CD4, 672 

CD8, VD1 and VD2 T-cells. (e) Changes in CD38 gMFI in naïve, CM, EM and 673 
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TEMRA for CD8, CD4, VD1 and VD2 T-cells. Absolute counts were analysed by 674 

Kruskal-Wallis using Dunn correction for multiple comparison, gMFI was analysed by 675 

Brown-Forsythe and Welch ANOVA using Dunnett T3 correction for multiple 676 

comparison. For heatmaps, stars shown in acute column represent healthy vs acute 677 

comparison. Stars shown in recovered column represent acute vs recovered 678 

comparison. *p<0.05, **p<0.01, ***p<0.001 679 

 680 

Figure 3: Patient symptoms are reflected in immune cell variations. (a) 681 

Schematic representation of clinical symptoms in the patient cohort. (b) Absolute 682 

counts of T-cells across the severity (c) Absolute counts of antigen presenting cells 683 

across the severity. (d) gMFI of activation markers on antigen presenting cells. (e) 684 

Absolute counts and frequency in neutrophil compartments. Absolute counts were 685 

analysed by Kruskal-Wallis with Dunn multiple testing correction, gMFI was analysed 686 

by Brown-Forsythe and Welch ANOVA with Dunnett T3 multiple testing correction. 687 

*p<0.05, **p<0.01, ***p<0.001 688 

 689 

Figure 4: Immature neutrophils correlate with several analytes in paired patient 690 

plasma. (a) Spearman correlations between total neutrophils or immature 691 

neutrophils and plasma analytes. Red cross represents non-significant correlations. 692 

(b) Individual plots of Spearman correlations between immature neutrophil counts 693 

and IL-6 and IP-10. Line was drawn using simple linear regression. 694 

 695 

Figure 5: Immature neutrophil to VD2 T-cell ratio is an early prognosis marker 696 

for pneumonia and hypoxia symptoms. (a) ROC curve analysis comparison was 697 

performed for pneumonia and hypoxia symptoms between absolute counts of total 698 
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neutrophils to CD8 T-cell ratio, total neutrophils to VD2 T-cell, immature neutrophils 699 

to CD8 T-cell ratio, and immature neutrophils to VD2 T-cell ratio. (b) Similar analysis 700 

was performed on a subset of 24 early samples taken up to 7 days pio with a median 701 

of 3 days pio. ROC curve was analysed using Wilson/Brown method. 95% 702 

confidence interval and standard error for panel B are given in Table 1. 703 
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Table 1: ROC curve analysis for neutrophils to T-cell ratios in patients with 704 

pneumonia or hypoxia compared to those without as presented in Figure 5b. 705 

Variable Pneumonia Hypoxia 

 AUC 

(95% CI) 

Std.Error p-value AUC 

(95% CI) 

Std.Error p-value 

Total neutrophils / 

CD8 T-cells 

0.7143 

(0.4909-

0.9377) 

0.1140 0.0790 0.8319 

(.6526-1) 

0.09149 0.0121 

Total neutrophils / 

VD2 T-cells 

0.8643 

(0.7135-1) 

0.07694 0.0028 0.8824 

(.07239-1) 

0.08083 0.0039 

Immature neutrophils / 

CD8 T-cells 

0.7929 

(0.5884-

0.9973) 

0.1043 0.0164 0.8403 

(0.6079-1) 

0.1186 0.0101 

Immature neutrophils / 

VD2 T-cells 

0.9071 

(0.7754-1) 

0.06723 0.0008 0.8908 

(0.7160-1) 

0.08915 0.0031 

ROC analysis was performed on COVID-19 patients between 2 to 7 days pio (24 patients, median 3 

days pio). ROC curve was built by plotting true positive rate (sensitivity) against false positive rate ( 

100%- sensitivity) and AUC was calculated from the plot. ROC, receiver operating characteristic ; 

AUC, area under curve ; CI, confidence interval ; Std.Error, standard error. 

 706 
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Figure 1: SARS-CoV-2 infection induces a decrease in immune cells in peripheral blood. (a) Schematic 

representation of flow cytometry workflow. (b) Heatmap representation of row z-score of mean absolute cell counts 

across the groups. Individual plots are shown in Supplementary Figure 1A. (c) UMAP clustering of CD45+ immune 

cells. (d) Heatmap representation of row z-score of monocyte activation markers mean geometric MFI (gMFI) across 

the groups. (e) Heatmap representation of row z-score of neutrophil activation markers mean geometric MFI (gMFI) 

across the groups. (f) Absolute neutrophil counts. (g) Representative plot of mature and immature neutrophil gating 

strategy in healthy control or acute COVID-19 patient. (h) Mature (CD10+) and Immature (CD10-) Neutrophil Abs 

counts. Absolute counts were analysed by Kruskal-Wallis using Dunn correction for multiple comparison, gMFI was 

analysed by Brown-Forsythe and Welch ANOVA using Dunnett T3 correction for multiple comparison. For heatmaps, 

stars shown in acute column represent healthy vs acute comparison. Stars shown in recovered column represent acute 

vs recovered comparison. ns non-significant. *p<0.05, **p<0.01, ***p<0.001 Carissimo_Xu_Kwok el al. 2020 
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Figure 2: SARS-CoV-2 infection induces general lymphopenia and CD8, VD1 and VD2 activation. (a) Absolute 

counts of T-cell compartments in healthy donors, acute and recovered COVID-19 patient. (b) UMAP clustering of CD3+ 

cells. (c) left panel: CD45RA and CD27 gating strategy; right panel: heatmap representation of mean frequencies of T-

cell differentiation across the groups, individual plots given in Supplementary Figure 2. (d) Representative histogram of 

CD38 expression in CD4, CD8, VD1 and VD2 T-cells. (e) Changes in CD38 gMFI in naïve, CM, EM and TEMRA for 

CD8, CD4, VD1 and VD2 T-cells. Absolute counts were analysed by Kruskal-Wallis using Dunn correction for multiple 

comparison, gMFI was analysed by Brown-Forsythe and Welch ANOVA using Dunnett T3 correction for multiple 

comparison. For heatmaps, stars shown in acute column represent healthy vs acute comparison. Stars shown in 

recovered column represent acute vs recovered comparison. *p<0.05, **p<0.01, ***p<0.001  
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Figure 3: Patient symptoms are reflected in immune cell variations. (a) Schematic representation of clinical 

symptoms in the patient cohort. (b) Absolute counts of T-cells across the severity (c) Absolute counts of antigen 

presenting cells across the severity. (d) gMFI of activation markers on antigen presenting cells. (e) Absolute counts and 

frequency in neutrophil compartments. Absolute counts were analysed by Kruskal-Wallis with Dunn multiple testing 

correction, gMFI was analysed by Brown-Forsythe and Welch ANOVA with Dunnett T3 multiple testing correction. 

*p<0.05, **p<0.01, ***p<0.001  
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Figure 4: Immature neutrophils correlate with several analytes in paired patient plasma. (a) Spearman 

correlations between total neutrophils or immature neutrophils and plasma analytes. Red cross represents non-

significant correlations. (b) Individual plots of Spearman correlations between immature neutrophil counts and IL-6 and 

IP-10. Line was drawn using simple linear regression.  
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Figure 5: Immature neutrophil to VD2 T-cell ratio is an early prognosis marker for pneumonia and hypoxia 

symptoms. (a) ROC curve analysis comparison was performed for pneumonia and hypoxia symptoms between 

absolute counts of total neutrophils to CD8 T-cell ratio, total neutrophils to VD2 T-cell, immature neutrophils to CD8 T-

cell ratio, and immature neutrophils to VD2 T-cell ratio. (b) Similar analysis was performed on a subset of 24 early 

samples taken up to 7 days pio with a median of 3 days pio. ROC curve was analysed using Wilson/Brown method. 

95% confidence interval and standard error for panel B are given in Table 1.  
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