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One Sentence Summary: Statistical associations between measured and predicted in vitro 
bioactivities at human proteins and adverse events of drugs were quantified while taking into 
account drug plasma concentrations 

Abstract:  

Adverse drug reactions (ADRs) are undesired effects of medicines that can harm patients and are 
a significant source of attrition in drug development. ADRs are anticipated by routinely 
screening drugs against secondary pharmacology protein panels. However, there is still a lack of 
quantitative information on the links between these off-target proteins and the risk of ADRs in 
humans. Here, we present a systematic analysis of associations between measured and predicted 
in vitro bioactivities of drugs, and adverse events (AEs) in humans from two sources of data: the 
Side Effect Resource (SIDER), derived from clinical trials, and the Food and Drug 
Administration Adverse Event Reporting System (FAERS), derived from post-marketing 
surveillance. The ratio of a drug’s in vitro potency against a given protein relative to its 
therapeutic unbound drug plasma concentration was used to select proteins most likely to be 
relevant to in vivo effects. In examining individual target bioactivities as predictors of AEs, we 
found a trade-off between the Positive Predictive Value and the fraction of drugs with AEs that 
can be detected, however considering sets of multiple targets for the same AE can help identify a 
greater fraction of AE-associated drugs. Of the 45 targets with statistically significant 
associations to AEs, 30 are included on existing safety target panels. The remaining 15 targets 
include 8 carbonic anhydrases, of which CA5B was significantly associated with cholestatic 
jaundice. We include the full quantitative data on associations between in vitro bioactivities and 
AEs in humans in this work, which can be used to make a more informed selection of safety 
profiling targets. 
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Introduction 

Adverse drug reactions (ADRs) are a major cause of harm to patients, including hospitalization, 
disability, and mortality (1). Safety issues in preclinical and clinical studies are a major obstacle 
in the development of new drugs (2), whereas post-marketing withdrawals have also occurred, 
e.g. fenfluramine was withdrawn in 1997 due to associated cardiac valvulopathy related to 
agonism at the serotonin 2B receptor (5-HT2B)  (3, 4). 
Up to 75% of ADRs occurring in hospitals or leading to hospital admissions have been estimated 
to be dose-dependent and predictable from the drug’s pharmacology, i.e. defined drug-protein 
interactions (5). Thus, to anticipate ADRs in early drug discovery, pharmaceutical companies 
commonly screen drug candidates for binding against a panel of safety targets. One such panel 
published by Bowes et al. consists of 44 proteins which were compiled as the consensus set of 
targets screened by major pharmaceutical companies and it includes G protein-coupled receptors 
(GPCR), ion channels, enzymes, transporters and nuclear receptors (2). Whitebread et al. 
compiled a set of 36 targets related to cardiovascular toxicity (6), while a panel published by 
Lynch et al. includes over 70 targets (7).  
The above-mentioned safety target panels share between ~30-80% of targets, showing that there 
are differences in targets chosen for screening. Authors from the U.S. Food and Drug 
Administration (FDA) stated that “the panels of targets that are employed [for regulatory 
submissions] vary widely and are often selected without justification or a description of their 
relevance to human safety” (8). This is related to the general lack of quantitative information on 
the risk associated with safety targets, since systematic information about their predictivity is 
rarely available (7, 9). This limits the conclusions one can draw currently from secondary 
pharmacology screens, even when a comprehensive set of targets is screened, because in many 
cases we cannot sufficiently extrapolate to in vivo effects in humans. 

Some previous studies have tried to address the lack of evidence on safety targets and their 
relationships to ADRs observed in humans. Lynch et al. performed an extensive literature survey 
to back up the evidence behind the targets in the Abbvie panel, although the relationships were 
not quantified (7). Another, more quantitative approach was used by Kuhn et al. in their 
statistical analysis of side effects listed on drug package inserts from the Side Effect Resource 
(SIDER) and in vitro bioactivity data from the STITCH3 database (10). For 732 out of the 1,428 
(51%) side effects analysed, the authors were able to identify statistically overrepresented targets 
(10). These proteins provided a plausible causal explanation for the side effect in over 70% of 
the drug-side effect pairs based on supporting literature evidence (10). A similar study by Duran-
Frigola and Aloy found that 41% of studied side effects from SIDER could be statistically 
related to 79 therapeutic drug targets from Drugbank (11). Both studies have the limitation that 
quantifications of the associations beyond the p-value were not provided, which is important for 
estimating the effect size of associations. Krejsa et al. did provide Positive Predictive Values in 
their study, e.g. 50% of drugs with an IC50 between 0.1-1 µM at the muscarinic receptor M1 
caused tachycardia, based on the Bioprint database (9). However, data for only three such target-
adverse event (AE) combinations were reported (9). In a recent study, Deaton et al. used 
pharmacological and genetic data to select targets for screening, but their quantification focused 
on the correspondence between pharmacological effects and genetic phenotypes related to targets 
(12). 
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To the best knowledge of the authors, no current study systematically addresses links between 
protein target activities and observed ADRs while taking into account drug pharmacokinetics on 
a large scale. While this is indeed more difficult due to scarcity of available data, we can only 
expect to observe effects of drugs in vivo when sufficiently high drug concentrations at the target 
site are reached (13, 14). In a case study of risperidone, Maciejewski et al. showed that the 
integration of the unbound plasma concentration Cmax was crucial for rationalizing the 
relationship between the dopamine D2 receptor and galactorrhoea (15). While concentrations at 
the target site depend on complex factors such as drug tissue distributions and subcellular target 
locations, blood plasma concentrations are commonly used as an approximation in practice (2, 
13), enabling the in vitro potency of drugs to be related to their relevance to in vivo effects.  

We hence compiled a set of unbound plasma concentrations from a number of publications and 
the ChEMBL database, and used these to identify target-AE associations between in vitro 
bioactivity and AEs in humans, according to the workflow in Fig. 1. 
 
In this work, we analysed data from the FDA Adverse Event Reporting System (FAERS), which 
contains post-marketing reports of AEs submitted by health care practitioners, consumers and 
drug manufacturers (16). We used the curated AEOLUS version of FAERS, covering the years 
2004-2015 and containing close to five million unique case reports (17). Since FAERS data is 
derived from large samples of diverse patients and potentially long-term use of medicines, it may 
contain ADRs that would be missed during clinical trials (18). However, various biases can 
affect FAERS, such as sampling and reporting biases (18, 19). To counteract these, we applied a 
previously reported method, Propensity Score Matching (PSM), which successfully reduced the 
effects of confounding factors such as drug indications, concomitant medications, sex, and age in 
FAERS in a previous study (19). Subsequently, we identified drug-AE associations using the 
Proportional Reporting Ratio (PRR) (Fig. 1, steps 1 and 2). 

Post-marketing reporting systems are focused on serious and unexpected AEs, thus to compile 
more complete AE profiles we also used the SIDER dataset, which is based on side effects 
observed during clinical trials that were summarised and subsequently extracted from drug 
package inserts by text-mining (20). Clinical trials often include a control group and thus may be 
less biased than post-marketing data, but their sample size and patient population is more limited 
(20). To focus exclusively on the clinical effects, we subtracted the small amount of post-
marketing effects present in SIDER (Fig. 1, step 3). Both FAERS and SIDER hence provided us 
with drug-AE associations for further analysis. 

Next, we used the in vitro bioactivity data from the ChEMBL database and supplemented this 
with ligand-based target predictions, which was necessary due to the known sparsity of 
ChEMBL data (Fig. 1, steps 4 and 5) (21, 22). This step hence provided us with drug-target 
associations. We finally compared the compiled unbound plasma concentrations with the 
measured or predicted in vitro bioactivities to identify those target interactions that could be 
responsible for AEs, given pharmacokinetic properties. 

This analysis thus provides a large-scale analysis of links between drugs, their protein targets, 
and AEs in a quantitative manner, while taking into account plasma drug exposure. 

Results  

Overall dataset analysis 
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The set of statistically significant drug-AE relationships contains 1,263 unique drugs related to 
3,365 unique AEs – counting Preferred Terms (PT), the main AE terms of the Medical 
Dictionary for Regulatory Activities (MedDRA) vocabulary – based on FAERS (Data File S 1). 
The respective set based on SIDER, restricted to events from clinical trials, contains 1,027 
unique drugs and 1,130 unique AEs. A total of 696 drugs overlap between the datasets. In terms 
of the drugs’ distribution across Anatomical Therapeutic Chemical (ATC) classes, representing 
drug indications, both datasets are largely similar to the set of all small molecule drugs in 
ChEMBL (Fig. S 1). Despite some differences, such as the FAERS and SIDER datasets 
containing 17% more drugs used for nervous system indications than the set of all marketed 
small molecules, both datasets represent all ATC classes of marketed drugs (Fig. S 1). The 
distribution of AEs across System Organ Classes (SOC), the highest level of the MedDRA 
hierarchy, is shown in Fig. S 2. ‘Investigations’ are the largest group of AEs in FAERS, which is 
a highly diverse SOC that includes events such as electrocardiogram observations and changes in 
blood pressure, whereas nervous system disorders are the largest group in the SIDER dataset 
(Fig. S 2). Compared to SIDER, FAERS contains a higher diversity of events in ‘injury, 
poisoning and procedural complications’, neoplasms, and ‘surgical and medical procedures’ 
(Fig. S 2). These differences are consistent with the more diverse, post-marketing origin of 
FAERS that also includes reports of accidents (16). SIDER contains more diverse events in ‘eye 
disorders’ and ‘skin and subcutaneous tissue disorders’, suggesting these events are more 
typically reported during clinical trials (Fig. S 2). The bioactivity data from ChEMBL has a 
matrix density of 5% of measured active and inactive datapoints, with the rest of the data being 
missing (Data File S 2). Using target prediction to supplement the measurements, while using the 
model performance and applicability domain thresholds described in the Methods, the matrix 
density increased to 25% (Data File S 2). We retrieved the unbound plasma concentrations for 
466 drugs from the FAERS and SIDER datasets, which have a median concentration of pMolar 
6.6 and a standard deviation (STD) of 1.5 (Fig. S 3). As expected, the unbound concentrations 
are lower than the total plasma concentrations, which have a median concentration of pMolar 5.8 
(Fig. S 3). Using the ratio of the pXC50 and plasma concentration to assign the ‘activity call’ 
resulted in 3.6% of measured drug-target datapoints being assigned as active, while this is 0.1% 
for predicted datapoints (Data File S 2). Thus, the target predictions primarily added inactive 
datapoints. 

After overlapping the three data types (AE, bioactivity, and plasma concentrations), we use the 
drug-AE and drug-target relationships to infer target-AE relationships that are potentially 
responsible for observed AEs. Based on FAERS data we analysed 197,236 target-AE 
combinations (100 unique targets and 3,278 unique AEs, Data File S 3), and based on SIDER a 
total of 42,652 target-AE pairs (79 unique targets and 982 unique AEs, Data File S 4). Hence, the 
FAERS dataset contains about four times as many target-AE pairs as the SIDER one.  

Impact of using plasma concentrations on target-AE associations 
The above numbers are based on incorporating plasma concentrations to derive active drug-
protein pairs. To investigate the effect of using the plasma concentrations, we also created a 
baseline dataset using a constant bioactivity cut-off of pChEMBL ³ 6 (1 µM) for comparison. 
This dataset contains 313,661 target-AE pairs (182 unique targets and 3,340 unique AEs, Data 
File S 5) based on FAERS and 89,105 target-AE pairs (167 unique targets and 1,119 unique 
AEs, Data File S 6) based on SIDER. Thus, this dataset is roughly twice as large as the former 
dataset using the plasma concentrations in terms of the number of datapoints and unique targets. 
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Comparing the distribution of datapoints across target classes, shows that using plasma 
concentrations together with requiring a minimum of 5 datapoints per target and AE results in 
more GPCR datapoints being retained, the fraction of which increased from ~30% to ~48% of 
datapoints, and fewer kinase datapoints, which decreased from ~22% to ~5%, compared to using 
the constant cut-off (Fig. S 4). This can be explained by few pXC50 datapoints for the same 
kinase being available, resulting in kinases being disproportionately affected by the minimum of 
5 datapoints per target when the available data is halved due to requiring plasma concentrations. 

To examine the impact of using plasma concentrations on deriving target-AE associations, we 
compared the statistically significant (corrected p-value £ 0.05) associations found when using 
the constant pChEMBL cut-off to derive active drug-protein pairs versus taking unbound 
concentrations into account for this purpose. This shows that 41% target-AE associations found 
when using unbound concentrations are not significant when using the constant cut-off. Thus, the 
significant target-AE associations found when using plasma concentrations is not a direct subset 
of the dataset using a constant cut-off, showing that using plasma concentrations results in a 
different set of target-AE associations. With regards to the accuracy of the associations, the lack 
of a gold standard of target-AE associations makes it difficult to evaluate both outcomes (8). 
Therefore we chose to evaluate the two datasets by comparing them to three previously reported 
safety target panels (2, 6, 7). The overall retrieval of these previously reported associations, 
based on overlapping MedDRA High Level Terms (HLTs) - the hierarchy level above the 
MedDRA PT - as statistically significant in our study is 6% using the unbound concentrations 
and 12% when using the absolute cut-off. However, while the retrieval is lower when using 
plasma concentrations, those target-AE pairs that are retrieved have larger Likelihood Ratios 
(LR), indicating greater strength of association (Fig. 2). Similarly, the Positive Predictive Value 
(PPV) and value-added PPV, i.e. the PPV minus the prevalence (23), of the associations that are 
retrieved are higher when using unbound plasma concentrations (Fig. 2). This indicates that 
using plasma concentrations has fewer false positive signals compared to using the constant cut-
off. However, the fraction of drugs associated with the AE per target, which would be the 
‘detection’ rate of AE-associated drugs if the target is used as a predictor of AEs, is lower for the 
target-AE associations derived from using plasma concentrations (Fig. 2). This indicates that the 
greater LRs and precision when using plasma concentrations is at the cost of lower recall. One 
interpretation of these results is that using plasma concentrations retrieves known signals more 
strongly and precisely, but that recall could be limited by the amount of data available. Despite 
the lower overall recall, we noticed that some familiar examples, such as hERG-torsade de 
pointes and 5-HT2B-cardiotoxicity in the FAERS dataset, as well as dopamine D2-galactorrhoea 
in both the FAERS and SIDER datasets, were only significant when using plasma concentrations 
and not when using the constant cut-off. Since the plasma concentrations are a novel aspect of 
the current study and the results suggest they retrieve known signals with greater LRs and PPVs, 
for the remainder of this work we will focus on the results based on using plasma concentrations.  

Quantification of associations between the activity of drugs on proteins and the occurrence of 
AEs 
We next evaluated the bioactivities at protein targets as predictors of AEs by analysing to what 
extent statistically significant target-AE associations provide information about the AE (Fig. 
3A). Therefore, we focus on the PPV, the fraction of active drugs that are associated with the 
AE, because this relates the presence of bioactivity to the presence AEs. The median PPV for 
significant target-AE associations is 0.38 with a STD of 0.2 for SIDER, while FAERS 
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associations have a median PPV of 0.23 (STD = 0.1), meaning that across significant target-AE 
associations ~23-38% of drugs active at the target are associated with an in vivo AE (Fig. 3A). 
The lower PPVs observed for FAERS compared to SIDER mean that bioactivities have higher 
false positive rates for AEs in FAERS, and FAERS associations also have lower LRs with a 
median 11.8 versus 16.4 for SIDER (Fig. 3A). These observations could be due to FAERS being 
noisier and containing more uncertain AEs, making it more difficult to identify target-AE 
associations in the dataset.  

We also calculated the value-added PPV (23), indicating the additional information provided by 
the protein target activity over the prevalence to predict AEs. This is because higher PPVs are 
generally seen with higher prevalence, referring in our study to the fraction of drugs with 
bioactivity data that are associated with a certain AE (24). The value-added PPVs follow a 
similar distribution to the PPVs, except the extremes being adjusted such as PPVs close to 1.0 
(Fig. 3A). This shows that the target bioactivities provide additional information and that the 
PPV values are not primarily driven by the prevalence itself. The prevalence (fraction of drugs 
associated with AE) is plotted for reference, showing that for statistically significant associations 
the prevalence is generally less than 5% (Fig. 3A). 

Positive predictive values by targets class 
We next investigated how PPVs for the target-AE associations differ by target class, shown in 
Fig. 3B. The highest PPVs (up to 1.0) are observed in the lyase and family A GPCRs, the target 
classes containing the highest number of associations. Oxidoreductases and electrochemical 
transporters generally have lower PPVs (up to 0.67), and there are also fewer target-AEs 
associations in these classes. In addition, a small number of membrane receptors – those not 
further classified in the ChEMBL hierarchy – also have lower PPVs (up to 0.38) (Fig. 3B). The 
target-AE pairs that were reported on published safety target panels (2, 6, 7) and retrieved in our 
study are also shown in Fig. 3B, showing that some previously reported associations have low 
PPVs, such as the relationship between the muscarinic M3 receptor (a family A GPCR) and 
miosis, which has a PPV of 0.25 (Fig. 3B). This shows that some target-AE associations that 
have been previously reported were retrieved as significant in our study but have low PPVs, 
possibly due to AEs being known but not often reported. In other cases the mapping categories 
used for annotating associations as previously reported, i.e. the MedDRA HLTs, are very broad 
such as ‘neurological signs and symptoms’ which results in precision being lost. At the same 
time, the results show that our study identifies many novel target-AE associations which might 
include mechanistic target-AE links. 

Positive predictive values by System Organ Class (SOC) 
We next examined the distribution of PPVs for target-AE associations across MedDRA SOCs of 
the AEs (Fig. 3C). The range of PPVs within most SOCs is wide, with the highest median PPV 
of 0.56 occurring for ‘blood and lymphatic system disorders’, and the lowest median PPV of 
0.21 for ‘musculoskeletal and connective tissue disorders’ (Fig. 3C). PPVs above 0.8 only occur 
in the large SOCs such as ‘nervous system disorders’ and ‘gastrointestinal disorders’, which are 
also the SOCs with the highest number of AEs in the underlying datasets (Fig. S 2). Otherwise, 
the association metrics do not follow an easily interpretable pattern by SOC (Fig. 3C). 

Trade-off between PPVs and detection of AE-associated drugs 
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We next analysed the relationship between the value-added PPV and the fraction of AE-
associated drugs that are active at the target, which is the fraction of AE-associated drugs that 
would be detected by bioactivity at the target if used as single predictor of the AE. There is a 
clear inverse relationship between the two variables (Fig. 4). For example, the value-added PPV 
of the muscarinic M2 receptor activity for tremor is 0.66, but the fraction of AE-associated drugs 
of around 0.05 indicates that only 5% of drugs associated with this AE are active at the receptor. 
Conversely, activity at dopamine D2 receptor would detect 57% of drugs associated with 
hyperprolactinaemia, but has a false positive rate of 87% (PPV=0.13) (Fig. 4). Specifically, there 
are few target-AE associations with a fraction of AE-associated drugs that are active above 0.5, 
and at the same time high PPVs (Fig. 4), which would correspond to a simultaneous high fraction 
of drugs detected and a low false positive rate, and be most useful in practice. Thus, we can 
conclude that no single bioactivity is a strong indicator of clinical and post-marketing AEs in the 
datasets studied. There are many possible reasons for this, e.g. a low fraction of AE-associated 
drugs would be detected per target if multiple mechanisms involving different targets lead to the 
same AE, which we will explore further on in the Results. On the other hand, low PPVs can 
result from pharmacokinetic behaviour of drugs such as lack of blood-brain barrier crossing, 
leading to certain AEs not being observed in practice.   

Global analysis of observed target-AE associations, with a focus on established and novel safety 
targets 
We next compared the significant targets in our study to previously reported safety targets. In 
total, our study considered 104 targets out of which 45 were found to have at least one 
statistically significant association to an AE (Fig. 5). 30 out of these 45 targets are already 
included on secondary pharmacology panels that we compiled from previous literature (2, 6, 7), 
so the majority of significant targets in our study are established safety targets (Fig. 5). At the 
same time, out of the 91 safety targets from literature, for only 40 targets was data available in 
our study, highlighting the lack of publicly available experimental data for previously reported 
safety targets (Fig. 5). The remaining 15 targets with significant associations in our study, among 
which eight are members of the carbonic anhydrase (CA) family, are not included on current 
panels. Apart from the CAs and one other novel target, namely microtubule-associated protein 
tau, all other six novel targets are additional family members of proteins already included on 
current panels such as serotonin, dopamine, and adrenergic receptors, e.g. dopamine D3 receptor 
is not currently included on panels but dopamine D1 is. The following sections will discuss 
individual associations in more detail. 

Target-AE associations with the highest predictive values 
To examine the individual target-AE associations with the highest PPVs, Table 1 shows the 
significant associations with the highest value-added PPVs in SIDER and FAERS. The table 
focuses on events within the SOCs of ‘nervous system disorders’, ‘vascular disorders’, ‘cardiac 
disorders’, and ‘respiratory, thoracic and mediastinal disorders’, because their link to the 
function of vital organs makes these a high priority in drug safety (2, 12), and ‘hepatobiliary 
disorders’, which is a leading cause of clinical attrition (25). We will discuss the most highly 
ranked associations here, but the full list of associations can be found in Data File S 3 (FAERS) 
and Data File S 4 (SIDER). 

Based on SIDER, the most predictive target-AE association is between CA5B and cholestatic 
jaundice, a liver disorder, with a PPV of 0.83 (Table 1). The CA family of enzymes are involved 
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in acid-base balance and CA inhibitors are used clinically in a range of conditions including 
ocular disorders, oedema, and seizures, and they are often not entirely selective across CAs (26–
29). The association between CA5B and cholestatic jaundice is plausible due to their high tissue 
expression in the mitochondria (30), which is relevant to liver toxicity (31). We are not aware of 
a direct link between CAs and cholestatic jaundice being previously reported, although CA4 and 
CA12 were identified as protein interactors of targets associated with cholestatic jaundice the 
study by Duran-Frigola and Aloy, suggesting the existence of additional indirect links via the 
protein-protein interaction network (11).   
The next most predictive associations concern various muscarinic acetylcholine receptors. In our 
study, the muscarinic receptor M2 is associated with somnolence (PPV=1.0, Table 1), which is 
in line with acetylcholine being important for wakefulness and the expected effects of M2 
antagonism (32). In practice, somnolence is a common side effect of muscarinic acetylcholine 
M2 and M3 receptor antagonists such as oxybutynin and tolterodine (33–35). Next, we identified 
that the muscarinic acetylcholine receptors M3, M5, M1 and M2 are each associated with tremor 
with similar PPVs between 0.86-0.88 in our results (Table 1). The link between the muscarinic 
acetylcholine receptors M2 and tremor has been previously reported (2), and the links of multiple 
receptors in our study could either be due to multiple targets being biologically related to the 
effect, or compound promiscuity since the muscarinic receptors share between half and all their 
active ligands with each other in our dataset (Fig. S 5A). In contrast to the CAs, the muscarinic 
M1 and M2 receptors are included on all published safety panels we considered and M5 on the 
Lynch panel only (2, 6, 7). Hence, we conclude that the most predictive target-AE associations 
based on SIDER include a novel link for CA5B, while other associations are previously reported 
and in line with current mechanistic knowledge and previous literature. However, several links 
may be driven by compound promiscuity, which cannot be distinguished based on the current 
statistical analysis. 

For the analysis of the FAERS database, the association with the highest value-added PPV is 
between the angiotensin-converting enzyme (ACE), a target included on the Lynch panel only 
(7), and hypovolemic shock, which is circulatory failure due to fluid loss (PPV=0.60, Table 1). 
This is consistent with the fact that ACE inhibitors interfere with the renin-angiotensin system 
that normally protects against hypovolemia (36). There are case reports in literature that have 
attributed hypovolemic shock to ACE inhibitors (37).  

The known associations between the d-opioid receptor and respiratory depression (7) and 
between the a-1b adrenergic receptor and orthostatic hypotension (7) were successfully retrieved 
in the current analysis with PPVs of 0.45 (Table 1). The d-opioid receptor is included on all 
considered safety panels and the a-1b adrenergic receptor on the Whitebread and Lynch panels 
(6, 7). Similarly, the association between hERG, one of most studied and screened safety targets 
(2, 38, 39), and torsade de pointes (TdP) is retrieved with a PPV of 0.47 (Table 1). A previous 
study by Pollard et al. found a PPV of 1.0 for the relationship between hERG and QT interval 
prolongation when the margin between the in vitro hERG IC50 and Cmax was less than 10-fold 
(38). The difference between this PPV and the one in our study is explained by QT interval 
prolongation being a risk factor for TdP but TdP being the ultimate ventricular arrhythmia (2, 38, 
40), since a considerable number of drugs cause QT interval prolongation but are not 
torsadogenic (39). Only QT prolongation is listed among the compiled previously reported 
associations (2, 6, 7) and it has a different MedDRA HLT (investigations) as TdP (ventricular 
arrhythmias and cardiac arrest), resulting in the association between hERG-TdP in our study not 
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being annotated as previously reported (Table 1). This highlights the challenges in using medical 
terminologies on a large scale, since descriptions of biological effects may not directly match all 
related AE terms (41). The next association in our results is between respiratory depression and 
the k-opioid receptor (PPV=0.42), which is included on the Bowes and Lynch panels (2, 7). 
While activation of µ-opioid and d-opioid receptors causes respiratory depression (7, 42), the k-
opioid receptor is believed to lack this effect (42). However, the presence of this association in 
our study can be explained by compound promiscuity, given the high overlap of shared ligands 
between the opioid receptors (Fig. S 5B). In conclusion, among the most predictive associations 
in FAERS there are of associations supported by previous literature and associations due to 
compound promiscuity.  

Novel associations 
We next analysed the significant target-AE associations for targets other than those already listed 
on the previous screening panels considered (2, 6, 7), to identify whether any of these novel 
targets could provide additional information to predict AEs within the high-priority SOCs listed 
earlier. Therefore, we will first considered novel targets without family members on current 
panels (2, 6, 7). These foremost are the CAs which are associated to a range of AEs in addition to 
the link between CA5B-cholestatic jaundice discussed earlier. All the effects associated with 
CAs are unique to this target family, meaning no other targets are associated to the same effects 
in our dataset. Based on SIDER, CA5A (PPV=0.56), CA12 (PPV=0.45) and CA9 (PPV=0.26) 
are also associated to cholestatic jaundice, of which CA5A is most plausible because of its high 
liver expression (43). Furthermore, CA9 (PPV=0.31) and CA12 (PPV=0.24) are associated with 
hepatic necrosis, adding further evidence to the link between CAs and liver effects. CA5A and 
CA5B are both associated with paraesthesia (PPV=1.0), which is listed as a side effect of CA 
inhibitors and has been suggested to be caused by CA activity (27, 44). Based on the FAERS 
analysis, CA4 is associated with hyperammonaemic encephalopathy (PPV=0.38), which is 
consistent with mechanistic knowledge of CA inhibitors on ammonia balance (27). Lastly, CA2 
is associated with simple partial seizures, and CA5B with pulmonary oedema, but both are most 
likely examples of indication bias in FAERS. Overall, since none of the existing panels include 
any members of the CA family and all the associated AEs are unique to this family, our results 
suggest that CAs might be able to extend the coverage of future safety target panels. 

The other target without family members on existing panels is microtubule-associated protein 
tau, which is associated to liver injury with a PPV=0.28 based on FAERS. This protein is 
associated with neurotoxicity and is currently not the therapeutic target of any approved drug. 
Normal phosphorylation of microtubule-associated protein tau is disturbed by the microcystin 
group of bacterial toxins, which are also associated with hepatotoxicity (45), providing some 
support for our observation. Thus, this link could also be a novel association of interest for safety 
screening. 

Now turning to links between novel targets that are family members of currently screened 
targets, we found that in nearly all cases both novel and established targets are associated with 
the same AE. For example, the 5-HT6 receptor, not currently included on any of the considered 
panels, is associated with tremor (PPV= 0.71), but the muscarinic M3, M5 and M1 receptors are 
associated to the same effect with a higher PPVs of 0.88 (Table 1). The only exception is a-1d 
adrenergic receptor’s association to loss of consciousness with PPV= 0.54 based on SIDER, an 
AE to which no other target is associated in our study. In all the other cases based on SIDER, the 
novel target had lower or the same PPVs and LRs as a currently screened target. Similarly, based 
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on FAERS, novel targets had lower or comparable PPVs in all cases. This shows that different 
targets can provide similar levels of information about the same AE and might be redundant in 
the context of safety target screening if there is a large overlap in active drugs across targets. The 
extent of promiscuity will determine whether novel targets can provide additional information to 
improve the detection of AE-associated drugs, which we will discuss next. 

Considering activity against multiple protein targets for the same AE improves the detection of 
AE-associated drugs 
To analyse the value of considering activity against multiple proteins associated with the same 
AE – using a logical ‘or’ – and find targets that provide non-redundant information, we 
examined combinations of targets that can increase the detection of AE-associated drugs. In 38% 
(FAERS) and 45% (SIDER) of AEs, we found that considering activity at one of multiple targets 
improves the detection of AE-associated drugs. Generally, considering two or three targets 
associated with the AE leads to a median improvement of 20% (FAERS) and 33% (SIDER) in 
the detection of AE-associated drugs (Fig. 6A). This is at a cost of worsening PPV by a median 
16% (FAERS) and 21% (SIDER) (Fig. 6A). The improvements are due to each of the targets 
identifying different AE-associated drugs. The combination with the greatest improvement in 
detection compared to the single target is the combination of the b-1 adrenergic receptor and 
CA5B in relation to orthostatic hypotension in case of the SIDER dataset (Fig. 6B). Both targets 
individually detect 12% of AE-associated drugs, but this is increased to 25% when considering 
activity at either one of the targets (Fig. 6B). It is not surprising that a CA is involved in the best 
performing target set, since active drugs at the CAs generally overlap little with those against 
other targets in the study (Fig. S 5). 

The AE with the highest overall percentage of AE-associated drugs detected by a combination of 
proteins is Neuroleptic Malignant Syndrome in the SIDER dataset (Fig. 6C); considering activity 
at either the dopamine D2 receptor or the norepinephrine transporter detects 69% of AE-
associated drugs with an overall PPV of 0.32. These targets are consistent with currently known 
mechanisms behind Neuroleptic Malignant Syndrome (46). 
In conclusion, in about 40% of AEs in our study, considering activity at each of a sets of targets 
associated with the same event can improve the detection of AE-associated drugs by a median 
one-fifth to one-third, with generally lower decreases in PPV, and an analysis of these 
combinations can identify targets that provide orthogonal, as opposed to redundant information. 

Fraction of AEs associated with protein activity and hence potentially detectable from safety 
pharmacology screens 
We next investigated what fraction of unique AEs in the dataset have at least one significantly 
associated target in order to estimate what fraction of such events may be detectable from 
protein-based safety pharmacology screens. We found that 8.5% of unique AEs in the SIDER 
dataset and 2.9% in the FAERS dataset have one or more significantly associated target. These 
low percentages are partially due to the use of unbound plasma concentrations, which restricted 
the total amount of data available for analysis, since the percentages using the constant cut-off 
are 44.1% (SIDER) and 19.6 (FAERS). The fact that the percentage is lower for FAERS could 
be related to the presence of biases and noisier nature of FAERS reporting (16). FAERS also 
contains a greater diversity of AEs related to a similar number of drugs compared to SIDER (Fig. 
S 2), and target-AE associations are less likely to be detected when only a few drugs are 
associated such as to rare events (10). 
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System Organ Class distribution of AEs associated with targets 
To examine differences in how AEs belonging to different SOCs are associated with targets, we 
compared the fraction of unique AEs in the underlying dataset of drug-AE associations –
including AEs that could not be statistically related to targets – to the AEs that were present 
among the statistically significant target-AE associations (Fig. 7). This shows that AEs in some 
SOCs are more frequently associated with targets than AEs from other classes. For example, the 
largest percentage difference is observed for AEs in the ‘metabolism and nutrition disorders’ 
class, which comprise 3.9% (SIDER) and 2.7% (FAERS) of unique AEs in the underlying 
datasets, but 9.4% (SIDER) and 10.3% (FAERS) of AEs statistically associated with targets (Fig. 
7). The next largest overrepresented classes are gastrointestinal, nervous system, and psychiatric 
disorders in FAERS, and nervous system, ‘blood and lymphatic system’, and ‘respiratory, 
thoracic and mediastinal’ disorders in SIDER. The enrichment of ‘metabolism and nutrition 
disorders’ and gastrointestinal (GI) AEs suggest these can more often be related to 
pharmacological actions, as suggested by familiar examples being retrieved in our study, such as 
cyclooxygenase-1 and gastric ulceration (2), and muscarinic acetylcholine receptor M3-mediated 
dry mouth and constipation (2). GI disorders also have one of the largest number of drugs 
associated with them (Fig. S 2), thus forming a larger dataset for statistical discovery.  
AEs in some of the above enriched SOCs also ranked highly for correspondence to target 
phenotypes in the study by Deaton et al. (12), such as platelet disorders and nonhaemolytic 
anaemias (blood and lymphatic system), and glucose metabolism disorders (metabolism and 
nutrition disorders). 
 
Overrepresentation of nervous system, psychiatric, and respiratory disorders noted above could 
be related to the prominent presence of GPCRs in the dataset, which frequently target these 
organ systems and neurotransmission generally (2, 47) In contrast, the largest underrepresented 
class is ‘investigations’, which makes up 5.9% (SIDER) and 9.3% (FAERS) of AEs in the 
underlying dataset, but only 1.0% (SIDER) and 3.1% (FAERS) of the set related to targets (Fig. 
7). AEs in this category are sometimes relatively unspecific such as ‘blood test abnormal’, which 
might be a reason for the lack of associations to targets. Similarly, the next most 
underrepresented classes are ‘musculoskeletal and connective tissue disorders’ for SIDER and 
‘infections and infestations’ in FAERS. Many mechanisms by which drugs can increase 
susceptibility to infections, such as immunosuppression due to cytotoxicity (48), or disruption of 
the gut microbiota (49), are not covered by in vitro pharmacology, explaining their 
underrepresentation. Overall, we conclude that target-AE associations are not uniformly 
distributed across SOCs, with classes such as ‘metabolism and nutrition disorders’ and nervous 
system disorders being most frequently related to pharmacological targets.  

Protein activities are frequently associated with different AEs in FAERS and SIDER 
We next investigated to what extent FAERS and SIDER are complementary for identifying 
target-AE associations, and to this end we calculated the overlap in AEs associated with the same 
targets in either dataset (Table S 1; see Data File S 3 and Data File S 4 for full list of 
associations). The highest overlap in unique PTs between the datasets is 7% for the dopamine D2 
receptor (Table S 1). Considering the HLT increases the overlap to some extent, but apart from 
hERG, which is associated with ‘ventricular arrhythmias and cardiac arrest’ in both datasets, 
leading to 100% overlap in HLTs, the next highest overlap is still low at only 10% for the 
dopamine D2 receptor (Table S 1). This means that in our study, the FAERS and SIDER datasets 
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are associated with nearly completely disjoint sets of AEs for the same targets, thus being highly 
complementary. The complementarity could reflect different AEs being reported in clinical trials 
versus post-marketing phases, for example due to more detailed patient observation in clinical 
trials, or due to or differences in short and long-term drug effects. The latter is also supported by 
the observation that FAERS is the only dataset providing target-AE associations in some SOCs, 
such as neoplasms and ‘pregnancy, puerperium and perinatal conditions’ (Fig. 7), which could be 
related to long-term use and more diverse populations exposed in the post-marketing phase. 
Other reasons for differences in reported AEs are that AEs already listed on a drug label are less 
likely to get reported to post-marketing systems (50), and the inclusion of more uncertain reports 
in FAERS due to lack of causal evidence and submission by patients as opposed to healthcare 
professionals (15, 16). Thus, we conclude that FAERS and SIDER provide different target-AE 
associations, and each could provide added value for detecting target-AE associations.  
Discussion 

In this work we identified and quantified associations between drugs’ pharmacological activities 
and AEs observed in clinical trials and during post-marketing surveillance. Compared to 
previous studies, our study for the first time takes into account unbound drug plasma 
concentrations on a systematic scale. 
 
We found that taking into account drug plasma concentrations reduced the size of the dataset by 
about half, but increased the PPV and LR of associations reported in previous literature at the 
cost of lower recall. This suggests that integration with plasma concentrations is more precise but 
recall is limited by data availability.  
 
Many of the most predictive associations in our study are supported by previous literature, but 
some associations appeared due to compound promiscuity, which remains a source of potential 
false positive associations in studies of statistical nature. Thus, regarding any statistical 
associations derived in our study, further research would be needed to confirm mechanistic links. 
Key novel findings such as the association of CA5A and CA5B with liver effects would be 
suggested for further investigation and future inclusion in safety target panels. 

No single target-AE association had a PPV above 0.5 while at the same time identifying more 
than 50% of drugs associated with a given AE, showing that single in vitro bioactivities do not 
perfectly indicate in vivo effects. However, we found that considering activity at multiple targets 
associated with the same event can improve the detection of AE-associated drugs in about 40% 
of cases. The lack of one-to-one translation between in vitro and in vivo effects in our study 
corroborates previous findings, for example those that observed a lack of correlations between 
large-scale in vitro bioactivities and toxicity observed in animal studies (51, 52), and those 
reporting high false positive rates associated with early screening for targets such as hERG and 
BSEP (38, 39, 53). Reasons for the remaining challenge to translate in vitro to in vivo effects 
include differences between plasma and tissue concentrations (13), varying protein expression 
across tissues, and interactions between targets and pathways, such as transporter and ion 
channels off-setting each other’s effects (39, 53). Our finding that more AE-associated drugs can 
be identified by using combinations of targets as opposed to single targets is consistent with the 
knowledge that AEs can be caused by multiple mechanisms involving different targets. Although 
we only explored combinations of targets with the ‘or’ operator, simultaneous modulation of 
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targets – ‘and’ operator – may be involved in some AEs, which would not have been discovered 
in our study. 

Regarding factors that influence the association between bioactivities and AEs, we found no 
strong patterns across target class or SOC of the AE in terms of PPVs, but we did find that AEs 
in some classes were more frequently associated to targets, in particular ‘metabolism and 
nutrition disorders’, GI disorders, and nervous system disorders, suggesting that based our data 
AEs in these SOCs are more frequently related to pharmacological targets and hence more likely 
detectable from protein-based screening. However, in total, only a small fraction of all unique 
AEs in FAERS (2.9%) and SIDER (8.5%), could be statistically related to at least one target. 
This is lower than the 75% of reported AEs being predictable from pharmacology (5, 54), but 
these latter estimates are based on the frequency of the AE in the population, whereas our 
numbers look at unique AEs. The low percentages are partly due to the smaller subset of data 
with plasma concentrations, since the percentage is up to 44% when using an absolute 
pChEMBL cut-off ³ 6 (1 µM). That figure is similar to the 51% of AEs being related to targets 
in the study by Bork et al. (10). However, as a result of the current study we would conclude that 
those numbers are a result of trading PPV for recall, the desirability of which depends on the 
particular situation. 

There are several limitations in our study that may have resulted in the low PPVs and fractions of 
AE-associated drugs detected. Firstly, since plasma concentrations were only available for a 
subset of the data, this likely reduced the power of our study. It is also well known that 
bioactivity datasets are sparse and incomplete, further limiting the power and recall (21). Our 
analysis did not take into account functional effects, such as agonism or antagonism, as this 
information is not consistently available from the databases considered here (2, 21). This may 
have resulted in the masking of associations only associated with certain functional effects or 
modes of action. Similarly, the effects previously reported in e.g. Bowes et al. generally do not 
list the dose at which effects are expected, so effects only seen at high dose may be missed (2), 
and this may also explain some of the discrepancies between our results and previous studies. 
Furthermore, our analysis is based on marketed drugs which have already undergone safety 
screening, so the termination of problematic candidates early on has biased the data available to 
us in a way that strong associations with safety targets may not be apparent. There are 
uncertainties about the drug-AE links on which this work is based, since in FAERS associations 
can be purely statistical and not causal (16). Lastly, limitations of the drug plasma concentrations 
used in our study include that they are a mixture of ‘normal’ therapeutic concentrations and Cmax, 
that they are not patient-specific, and do not distinguish between different drug indications that 
may require different doses of the same drug. 

Our study showed that FAERS and SIDER are complementary with respect to signals detected, 
because the same targets were associated with different AEs in either dataset. A previous study 
considered solely AEs reported in both FAERS and SIDER (12), but our results suggest this 
approach would potentially result in a large part of the AE space not being considered.   
 
Our results are relevant to current developments in predictive toxicology, especially the focus on 
applying machine learning to predict target bioactivities for lists of toxicity-related targets or 
assays (55–57). The better we are able to associate protein activities with AEs, and the better we 
understand the pharmacokinetics of drugs, the better we will be able to translate in vitro into in 
vivo effects. 
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Materials and Methods 

FAERS 
The FAERS AEOLUS database, containing 3,526 drugs mapped to the RxNorm drug vocabulary 
and 17,710 unique AE terms, was installed as a MySQL database (58). Drugs were mapped to 
ChEMBL parent compounds, which group different salt forms of the same drug and link to a 
unique molecular parent structure, using the mapping between RxNorm concepts and DrugBank 
identifiers provided by the RXNCONSO file from the RxNorm vocabulary 
(RxNorm_full_12032018, downloaded from (59)) and UniChem (60), as well as direct matches 
between RxNorm compound names and synonyms and ChEMBL pref_name, compound_names 
and synonyms. We were able to map 2,764 drugs to ChEMBL identifiers. 
Propensity score matching 
We applied the PSM technique as described by Tatonetti et al. to reduce the effects of 
confounding factors in the FAERS AEOLUS data (Fig. 1, box 1) (19). The aim is to identify sets 
of reports that match on underlying patient characteristics but differ in whether the drug of 
interest is listed, for these reports to be used in disproportionality analysis. Briefly, for each drug, 
the 200 most strongly correlated concomitant drugs and indications were identified using the 
Fisher’s exact test and Benjamini-Hochberg correction (corrected p-value <0.05). These 
covariates are then used in a logistic regression PSM model, of which the dependent variable is 
whether or not the drug was prescribed to a patient given their characteristics. The model is used 
to calculate propensity scores for all reports listing the drug (exposed reports) and 100,000 
randomly sampled reports not listing the drug (non-exposed/control reports). By using 20 equally 
spaced propensity score bins, sets of exposed and 10 times as many control reports with matched 
scores (sampled with replacement) are identified for further analysis. 
Disproportionality analysis on FAERS AEOLUS 
Using the matched reports selected using PSM, the rate of AE reporting was calculated in each 
group of reports, using the MedDRA PT for the AEs from the standard_case_outcome table. The 
fraction of patient reports listing an AE of interest in the exposed group over the same fraction in 
the non-exposed reports was calculated to give the PRR (Fig. 1, box 2) (61). The corresponding 
c2 statistic was calculated using the SciPy chi2_contingency function (62), requiring a minimum 
of five reports in each cell of the contingency table. Significant drug-AE pairs were identified 
using an existing pharmacovigilance signal detection threshold of PRR > 2 and c2 > 4 (Fig. 1, 
box 2) (63). We were able to calculate the PRR for AEs reported for 1,388 mapped drugs.  
Side effects from SIDER 
We used the download files provided for SIDER version 4.1 which contain a total of 1,556 drugs 
(20). Excluding biologicals/peptides, we were able to map 1,219 to ChEMBL identifiers using 
InChI keys from UniChem (60). To retain the clinical effects only (Fig. 1, box 3), we first 
retained all MedDRA PTs from the meddra_all_se file, which lists all effects per drug, for drugs 
that did not have any post-marketing annotations in the meddra_freq file, which only contains 
information for a subset of drugs. For drugs present in both files, we excluded effects listed as 
post-marketing, unless a frequency was available for that same effect, since frequencies can 
generally only be derived from clinical trials. This yielded a set of 1,027 drugs with side effects. 

Extraction of in vitro bioactivity data 
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Bioactivities of drugs from the FAERS and SIDER datasets against human single proteins or 
protein complexes were retrieved from a local MySQL installation of ChEMBL version 24.1 
(Fig. 1, box 4). In case of protein complexes, bioactivities at each of the constituent single 
proteins listed in the target_components table were used. The activity types included were 'IC50', 
'EC50', 'XC50', 'AC50', 'Ki', 'Kd' and 'Potency' for assay of types ‘B’ (binding) and ‘F’ 
(functional), with standard_flag = 1 and confidence scores of 7 (protein complexes) and 9 (single 
proteins), ensuring the highest level of confidence in target assignment (21). Inactive data was 
retrieved by extracting records containing any of the following in the activity_comment: ‘Not 
active’, ‘inactive’, ‘No inhibition’ and allowing standard_flag = 0 for these records. The median 
reported pXC50 was computed per parent drug for further analysis and in case of conflicting 
active and inactive (based on the activity comment) assignments for the same drug, the active 
assignment was taken forward. 

Target prediction 
The probability of activity at single human proteins at different bioactivity levels was predicted 
using the target prediction tool PIDGIN version 3 (Fig. 1, box 5) (22) as follows: compounds 
were standardised using the e-Tox standardiser (64), and separate classification models provided 
predictions for the probability of activity below the thresholds 0.1, 1, 10 and 100 µM. The 
applicability domain threshold was set to 0.7 and only models with a minimum Precision-Recall 
Area Under the Curve of 0.7 during cross-validation were included (65). Experimental 
bioactivity values were used where available, with predictions obtained using the settings 
described here being added to the compound-target bioactivity matrix. The share of predicted 
versus measured data points used per target is shown in Data File S 7 (SIDER) and Data File S 8 
(FAERS). 

Plasma concentration data 
Therapeutic drug plasma concentration data were compiled from a variety of sources (Fig. 1, box 
6) and are provided in Data File S 9. We extracted the upper value of the therapeutic plasma 
concentrations from (66). We also queried ChEMBL 24.1 for human Cmax data for parent drugs 
in plasma, blood or serum, using the standard_flag = 1 and excluding rows with 
data_validity_comment = ‘Outside typical range’. For the plasma concentrations we calculated 
molar values using the molecular weight of the parent compound from ChEMBL version 24.1. 
Data for fraction unbound (Fu) and plasma protein binding (PPB) were retrieved from 
ChEMBL_24_1. Additional Fu, PPB, and unbound plasma concentrations were extracted from 
several publications (14, 39, 40, 67). For all publications we either used the InChI Key provided 
or mapped the drug names from the publication to ChEMBL 24.1 drugs via direct matches to 
ChEMBL pref_name, synonyms, or compound_name. The median Fu values were calculated 
using Fu and percentage PPB data, and then multiplied by the total plasma concentrations to 
derive the unbound plasma concentration. Then the median calculated unbound plasma 
concentration was used for further analysis (Data File S 10). 

Integration of bioactivity data with drug plasma concentrations to assign expected target 
engagement in vivo 

The measured and predicted bioactivities of drugs and their unbound plasma concentrations were 
compared to assign an active or inactive label to each drug-target pair, referred from here 
onwards as the ‘activity call’. The drug was assigned as active at a given target if the drug 
plasma concentration exceeded the in vitro bioactivity concentration, or was within 1 log unit of 
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the in vitro concentration (Fig. 1, box 7). The leeway of 1 log unit is aimed at maximising the 
potential signal given experimental variability of bioactivity measurements, which may be 
around half a log unit (68), and variability in pharmacokinetics. If the unbound plasma 
concentration was more than 1 log unit lower than the measured in vitro concentration, the drug 
was recorded as inactive for a particular target. Additionally, inactive calls were made based on 
the activity_comment conveying inactivity as described above (Fig. 1, box 7). Assuming that 
unbound plasma concentrations correspond to concentrations in target tissues, this gives an 
approximation of whether a target will be modulated sufficiently to obtain an effect. 
Integration of target predictions with drug plasma concentrations 
Depending on whether drugs were in the applicability domain of a target prediction model, 
probabilities between 0 and 1 were available at all or some of the thresholds (0.1, 1, 10 and 100 
µM) for each drug-target pair. When predictions were available, a predicted activity probability 
below 0.4 was considered inactive and above 0.6 active for each threshold. The lowest predicted 
active threshold was compared to the unbound plasma concentration in the same way as for 
measured data above (Fig. 1, box 7). 
Identifying significantly associated target-AE associations 
For each target, the drugs from the AE datasets with available measured bioactivity data or target 
predictions were identified (Fig. 1, box 8). Thus, no inactivity was assumed beyond inactive data 
points and inactive target predictions. The Scikit-learn 0.21.3 (69) confusion_matrix function 
was used, using the in vitro bioactivity as predictor of the AE and obtaining the number of true 
negatives (TN), false positives (FP), false negatives (FN) and true positives (TP) (Fig. 1, box 8) 
(70). The LR was calculated as LR = TP*(FP + TN)/FP*(TP + FN) (71). The Fisher’s exact p-
value was calculated using the SciPy stats 1.3.2 fisher_exact function (62), limited to those 
associations with at least of five drugs active at a target and five drugs associated with the AE, as 
in previous studies (10, 11). For all pairs with a positive association (LR > 1), the p-values were 
corrected for multiple testing with the Benjamini-Hochberg method using the Statsmodels 0.9.0 
multipletests function (72). We considered associations significant if they had a corrected p-
value £ 0.05. The PPV was calculated as PPV = TP/(TP+FP). The value-added PPV was 
calculated by subtracting the prevalence, i.e. the fraction of drugs measured at a target that is 
associated with an AE, from the PPV (23). 
Compilation of previously reported safety associations 
Protein names and adverse effect descriptions were manually extracted from previous work (2, 6, 
7). Protein names were manually mapped to Uniprot identifiers in ChEMBL, based on name. 
Arrows and terms such as ‘enhances’, ‘induces’, ‘facilitates’, ‘exacerbates’ etc. were reformatted 
to ‘increased’ and terms such as ‘inhibits’, ‘reduces’, ‘impairs’ etc. to ‘decreased’. The terms 
were then submitted to the NCBO Bioportal Annotate functionality for annotation with 
MedDRA terms (73). All results were manually inspected and selected. Additionally, mappings 
for terms not mapped in this way were identified by manually querying the term in the MedDRA 
web-based browser and selecting appropriate PTs or HLTs (74). All the mapped associations are 
provided in Data File S 11 (PT) and Data File S 12 (HLTs). MedDRA HLTs from MedDRA 
(versions 21.1 or 22.1) were obtained using the Hierarchy Analysis function in the MedDRA 
web-based browser (74), and associations from FAERS and SIDER in the current study were 
considered previously reported if the HLT matched a previously reported associations for the 
same target. 
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Figures 
Figures were prepared using Matplotlib (75), Seaborn (76), and Raincloud plots (77). 
Supplementary Materials 

Fig. S 1. Drugs by their first level classification in the Anatomical Therapeutic Chemical (ATC) 
Classification, representing drug indications. 

Fig. S 2. Diversity of AEs in the FAERS and SIDER datasets across System Organ Class. 

Fig. S 3. Distribution of total and unbound plasma concentrations compiled for the drugs in the 
FAERS and SIDER datasets. 

Fig. S 4. Distribution of target classes of the all drug-target bioactivity pairs (active and inactive) 
that are included when using a constant pChEMBL cut-off ³ 6 (left panel) versus the subset of 
drug-target pairs that have unbound plasma concentrations available (right panel). 

Fig. S 5. Fraction of active drugs, defined by the ratio of the in vitro bioactivity over the drug 
plasma concentration, shared between targets in the (A) SIDER and (B) FAERS dataset. 

Table S 1. Targets with the number of significantly associated AEs in the SIDER and FAERS 
datasets and the percentage overlap between both sources. 
 
Data File S 1. Drug-AE relationships based on FAERS. 

Data File S 2. Bioactivity data plus predictions used in the analysis. 

Data File S 3. All positive target-AE combinations assessed for FAERS using the unbound 

plasma concentrations. 

Data File S 4. All positive target-AE combinations assessed for SIDER using the unbound 

plasma concentrations. 

Data File S 5. All positive target-AE combinations assessed for FAERS using the constant 

pChEMBL cut-off. 

Data File S 6. All positive target-AE combinations assessed for SIDER using the constant 

pChEMBL cut-off. 

Data File S 7. Share of measured versus predicted bioactivities per target for SIDER. 

Data File S 8. Share of measured versus predicted bioactivities per target for FAERS. 

Data File S 9. Extracted total drug plasma concentrations with references. 

Data File S 10. Computed median unbound plasma concentrations used in the analysis. 

Data File S 11. Previously reported safety target associations extracted and mapped to MedDRA 

terms (PT). 

Data File S 12. Previously reported safety target associations extracted and mapped to MedDRA 

terms (HLT). 
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Fig. 1. Overview of the workflow of the study. Each numbered item is described in more details 
in the Materials & Methods. 
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Fig. 2. Quantification of target-AE associations reported in previous studies that were retrieved 
as significant in the current work when using a constant bioactivity threshold (pChEMBL ³ 6) to 
define active drug-target pairs, versus using the ratio of in vitro bioactivity over the unbound 
plasma concentrations to do so. Using the unbound plasma concentrations retrieves known 
associations with greater strength of association (median Likelihood Ratio) and the associations 
are more precise (median PPV). However, this is at the cost of a lower recall, as only 33 versus 
80 previously reported target-AE associations are retrieved, and a lower detection rate of AE-
associated drugs (fraction of AE-associated drugs that are active). Boxplots show the 
interquartile range (IQR) including the median and whiskers extend to 1.5 times the IQR. 
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Fig. 3. Quantification of statistically significant target-AE associations. (A) Association metrics 
of significant associations in the FAERS and SIDER datasets. Infinite Likelihood Ratios (LRs) 
have been set to the highest observed value in the respective dataset. Associations in SIDER 
have higher LRs, with a median of 16.4 compared to 11.8 for FAERS. Similarly, the PPVs are 
also higher in SIDER, with a median of 0.38 compared to 0.23 for FAERS. (B) PPVs of target-
AE associations by protein class of the target, for classes with more than 5 target-AE 
associations. Classes correspond to the second level of the ChEMBL target hierarchy except 
‘Membrane receptors’, which is the highest level since those targets were not further classified.  
The highest PPVs occur in the lyase and family A GPCR classes, which also contain the highest 
number of target-AE associations. (C) PPVs of target-AE associations across MedDRA System 
Organ Classes of the AEs. The highest median PPV of 0.56 occurs in ‘blood and lymphatic 
system disorders’. PPVs above 0.8 only occur in the SOCs with the most target-AE associations, 
such as nervous system and gastrointestinal disorders. Across (A), (B), and (C), boxplots show 
the IQR including the median and whiskers extend to 1.5 times the IQR. 
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Fig. 4. Trade-off between the value-added PPV of significant target-AE associations and the 
fraction of AE-associated drugs that are active at the target – defined by the ratio of measured or 
predicted in vitro bioactivity and the unbound plasma concentration - and would therefore be 
‘detected’ by the target bioactivity. Target-AE pairs with a high value-added PPV tend to have 
low fractions of AE-associated drugs being active, meaning only a small share of all drugs 
associated with the AE would be detected by bioactivity at the target. Alternatively, associations 
with high fractions of AE-associated drugs that are active tend to have low value-added PPVs, 
indicating a high false positive rate for that target-AE pair. CHRM2: Muscarinic acetylcholine 
receptor M2, PTGS1: Cyclooxygenase-1, CHRM3: Muscarinic acetylcholine receptor M3, ACE: 
Angiotensin-converting enzyme, KCNH2: hERG, ADRA1B: a-1b adrenergic receptor, CHRM1: 
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Muscarinic acetylcholine receptor M1, DRD2: Dopamine D2 receptor, HTR2A: Serotonin 2a (5-
HT2a) receptor, HTR2C: Serotonin 2c (5-HT2c) receptor. 
 
 
 

 
Fig. 5. Overview of targets in the study, showing the number of targets considered, those found 
significantly associated with AEs, and those previously reported on safety target panels. For 51 
out of 91 safety targets from literature, no experimental data was available in the current study. 
Of the 45 targets with significant associations to AEs, 30 are listed on current safety target panels 
whereas 15 are not and thus potentially novel. CA5B = carbonic anhydrase 5B, DRD2 = 
dopamine D2 receptor, DRD3 = dopamine D3 receptor. 
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Fig. 6.  (A) Changes in the PPV and fraction of AE-associated drugs active at the target 
(‘detected’) when comparing combinations of targets – i.e. activity at either target – for a given 
AE to the individual targets. Considering activity at multiple targets improves the detection of 
AE-associated drugs considerably, at the cost of decreasing PPV. Thus, considering activity 
against multiple targets can help anticipate AEs, while detailed mechanistic investigations are 
beyond the scope of our study. (B) PPV and fraction of drugs associated with orthostatic 
hypotension that are active at the b-1 adrenergic receptor (ADRB1) and carbonic anhydrase 5B 
(CA5B), as individual targets and in combination, based on 143 drugs that were measured 
consistently at both targets. (C) PPV and fraction of drugs associated with Neuroleptic Malignant 
Syndrome that are active at the dopamine D2 receptor (DRD2) and norepinephrine transporter 
(SLC6A4), as individual targets and in combination, based on 320 drugs that were measured at 
both targets. In (B) and (C), the target combinations detect the highest number of AE-associated 
drugs. 
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Fig. 7. Relating AEs to targets by SOC, comparing the AEs in the underlying drug-AE datasets 
for (A) SIDER and (B) FAERS to those AEs that are statistically associated with targets in our 
study. AEs in some classes (e.g. ‘metabolism and nutrition disorders’) are more often associated 
with targets, whereas AEs in other classes are present in the dataset but rarely associated with 
targets (e.g. ‘infections and infestations’). 
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Table 1. Most highly ranked associations between activity at a protein and observed AEs, sorted by their value-added PPVs, based on 
the SIDER and FAERS datasets. 
Target Adverse event 

(MedDRA PT) 
System Organ 
Class 

Positive 
Predictive 
Value 
(PPV) 

Fraction 
of drugs 
with AE 

Value-
added 
PPV 

Likelihood 
Ratio 

Previously 
reported 
in one of 
(2, 6, 7) 

Fraction 
of AE-
associated 
drugs 
that are 
active 

Number 
of drugs 
showing 
averse 
event 

SIDER 

Carbonic 
anhydrase 
5B 

JAUNDICE 
CHOLESTATIC 

Hepatobiliary 
disorders 

0.83 0.10 0.73 42.8 No 0.25 20 

Muscarinic 
acetylcholine 
receptor M3 

TREMOR Nervous system 
disorders 

0.88 0.19 0.68 29.7 No 0.07 96 

Muscarinic 
acetylcholine 
receptor M2 

SOMNOLENCE Nervous system 
disorders 

1.00 0.32 0.68 inf No 0.04 180 

Muscarinic 
acetylcholine 
receptor M5 

TREMOR Nervous system 
disorders 

0.88 0.20 0.67 27.7 No 0.10 72 

Muscarinic 
acetylcholine 
receptor M1 

TREMOR Nervous system 
disorders 

0.88 0.20 0.67 27.5 No 0.10 72 

Muscarinic 
acetylcholine 
receptor M2 

TREMOR Nervous system 
disorders 

0.86 0.20 0.66 23.8 Yes (2, 7) 0.05 114 

FAERS 
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Angiotensin-
converting 
enzyme 

HYPOVOLAEMIC 
SHOCK 

Vascular disorders 0.60 0.03 0.57 43.8 No 0.30 10 

d-opioid 
receptor 

RESPIRATORY 
DEPRESSION 

Respiratory, thoracic 
and mediastinal 
disorders 

0.45 0.04 0.42 20.4 Yes (7) 0.26 19 

a-1b 
adrenergic 
receptor 

ORTHOSTATIC 
HYPOTENSION 

Vascular disorders 0.45 0.05 0.40 15.2 Yes (6, 7) 0.24 21 

hERG TORSADE DE 
POINTES 

Cardiac disorders 0.47 0.08 0.38 9.5 No 0.17 40 

k-opioid 
receptor 

RESPIRATORY 
DEPRESSION 

Respiratory, thoracic 
and mediastinal 
disorders 

0.42 0.04 0.38 17.0 No 0.26 19 
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Supplementary Materials: 

 

 
Fig. S 1. Drugs by their first level classification in the Anatomical Therapeutic Chemical (ATC) 
Classification, representing drug indications. If a drug has multiple ATC codes, all are included in the 
counts. The FAERS and SIDER datasets have a similar distribution of ATC labels as marketed small 
molecule drugs, showing they are largely representative of small molecule drug indications, although 
there are some differences. 
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Fig. S 2. Diversity of AEs in the FAERS and SIDER datasets across System Organ Class. Each 
distinct AE is counted only once, even if associated with multiple drugs. There are differences in 
the types of AEs between FAERS and SIDER, for instance FAERS contains a greater diversity 
of events in the ‘Injury, poisoning and procedural complications’ class, whereas SIDER contains 
a relatively greater variety of Eye disorders. 
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Fig. S 3. Distribution of total and unbound plasma concentrations compiled for the drugs in the 
FAERS and SIDER datasets. As expected, the unbound concentrations are lower, with a median 
of pMolar concentration of 6.6 and standard deviation (STD) of 1.5, compared to the total 
concentrations (median 5.8 and STD 1.3). 
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Fig. S 4. Distribution of target classes of the all drug-target bioactivity pairs (active and inactive) 

that are included when using a constant pChEMBL cut-off ³ 6 (left panel) versus the subset of 
drug-target pairs that have unbound plasma concentrations available (right panel). Target classes 
are shown up to the second level of the ChEMBL target hierarchy if available (e.g. lyase), 
otherwise only the first level (e.g enzyme). When using the plasma concentrations the proportion 
of Family A G protein-coupled receptor datapoints is higher at the expense of kinase datapoints 
compared to using the constant cut-off.  
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Fig. S 5. Fraction of active drugs, defined by the ratio of the in vitro bioactivity over the drug 
plasma concentration, shared between targets in the (A) SIDER and (B) FAERS dataset. The 
fraction corresponds to the target on the y-axis. The number of active compounds at each protein 
is shown in parentheses after the protein name. Targets often share active ligands, especially 
within target families, but also across families. In contrast, the carbonic anhydrases share ligands 
within the family but hardly so with other targets from other families. 
 

 
Table S 1. Targets with the number of significantly associated AEs in the SIDER and FAERS 
datasets and the percentage overlap between both sources. The majority of AEs associated with 
the same target is different in either dataset. 
Protein Number 

of unique 
associated 
AEs 
(SIDER) 

Number 
of unique 
associated 
AEs 
(FAERS) 

% Unique 
AEs 
(MedDRA 
Preferred 
Terms) 
overlapping 

% Unique 
MedDRA 
High Level 
Terms 
overlapping 

Dopamine D2 receptor 31 15 7.0 10.3 

Dopamine D3 receptor 13 8 5.0 5.3 

Serotonin transporter 6 22 3.7 4.3 

Serotonin 2a (5-HT2a) receptor 9 27 2.9 3.2 

Carbonic anhydrase 5B 27 0 0.0 0.0 

Muscarinic acetylcholine receptor M3 24 0 0.0 0.0 

Norepinephrine transporter 19 0 0.0 0.0 

a-1d adrenergic receptor 18 4 0.0 0.0 

Muscarinic acetylcholine receptor M5 15 0 0.0 0.0 

Muscarinic acetylcholine receptor M1 15 0 0.0 0.0 

Dopamine D1 receptor 15 0 0.0 0.0 

Carbonic anhydrase 5A 15 0 0.0 0.0 

Histamine H1 receptor 13 16 0.0 0.0 

Serotonin 6 (5-HT6) receptor 11 0 0.0 0.0 

Muscarinic acetylcholine receptor M4 10 0 0.0 0.0 

b-1 adrenergic receptor 9 0 0.0 0.0 

Carbonic anhydrase 12 8 0 0.0 0.0 
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Carbonic anhydrase 9 8 0 0.0 0.0 

s-opioid receptor 8 0 0.0 0.0 

Carbonic anhydrase 2 5 7 0.0 0.0 

Carbonic anhydrase 1 5 0 0.0 0.0 

a-2c adrenergic receptor 4 13 0.0 0.0 

Serotonin 2c (5-HT2c) receptor 4 12 0.0 0.0 

a-2b adrenergic receptor 3 1 0.0 0.0 

Carbonic anhydrase 4 3 1 0.0 0.0 

Muscarinic acetylcholine receptor M2 3 0 0.0 0.0 

k-opioid receptor 2 1 0.0 0.0 

d-opioid receptor 2 1 0.0 0.0 

a-2a adrenergic receptor 2 0 0.0 0.0 

Carbonic anhydrase 7 2 0 0.0 0.0 

Serotonin 7 (5-HT7) receptor 1 20 0.0 0.0 

Serotonin 2b (5-HT2b) receptor 1 10 0.0 0.0 

hERG 1 1 0.0 100.0 

Dopamine transporter 1 0 0.0 0.0 

Type-1 angiotensin II receptor 1 0 0.0 0.0 

Carbonic anhydrase 14 1 0 0.0 0.0 

a-1a adrenergic receptor 0 19 0.0 0.0 

Dopamine D4 receptor 0 14 0.0 0.0 

µ-opioid receptor 0 8 0.0 0.0 

a-1b adrenergic receptor 0 7 0.0 0.0 

Cyclooxygenase-2 0 6 0.0 0.0 

Cyclooxygenase-1 0 6 0.0 0.0 

Angiotensin-converting enzyme 0 3 0.0 0.0 

Dopamine D5 receptor 0 1 0.0 0.0 
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Microtubule-associated protein tau 0 1 0.0 0.0 

 

 

Supplementary Materials: 
 

Data File S 1. Drug-AE relationships based on FAERS. 
Data File S 2. Bioactivity data plus predictions used in the analysis. 

Data File S 3. All positive target-AE combinations assessed for FAERS using the unbound 

plasma concentrations. 

Data File S 4. All positive target-AE combinations assessed for SIDER using the unbound 

plasma concentrations. 

Data File S 5. All positive target-AE combinations assessed for FAERS using the constant 

pChEMBL cut-off. 

Data File S 6. All positive target-AE combinations assessed for SIDER using the constant 

pChEMBL cut-off. 

Data File S 7. Share of measured versus predicted bioactivities per target for SIDER. 

Data File S 8. Share of measured versus predicted bioactivities per target for FAERS. 

Data File S 9. Extracted total drug plasma concentrations with references. 

Data File S 10. Computed median unbound plasma concentrations used in the analysis. 

Data File S 11. Previously reported safety target associations extracted and mapped to MedDRA 

terms (PT). 

Data File S 12. Previously reported safety target associations extracted and mapped to MedDRA 

terms (HLT). 
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