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Abstract19

Seasonal influenza virus A/H3N2 is a major cause of death globally. Vaccination20

remains the most effective preventative. Rapid mutation of hemagglutinin allows viruses21

to escape adaptive immunity. This antigenic drift necessitates regular vaccine updates.22

Effective vaccine strains need to represent H3N2 populations circulating one year after23

strain selection. Experts select strains based on experimental measurements of antigenic24

drift and predictions made by models from hemagglutinin sequences. We developed a novel25

influenza forecasting framework that integrates phenotypic measures of antigenic drift and26

functional constraint with previously published sequence-only fitness estimates. Forecasts27

informed by phenotypic measures of antigenic drift consistently outperformed previous28

sequence-only estimates, while sequence-only estimates of functional constraint surpassed29

more comprehensive experimentally-informed estimates. Importantly, the best models30

integrated estimates of both functional constraint and either antigenic drift phenotypes or31

recent population growth.32
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Introduction33

Seasonal influenza virus infects 5–15% of the global population every year causing an estimated34

250,000 to 500,000 deaths annually with the majority of infections caused by influenza A/H3N2 [1].35

Vaccination remains the most effective public health response available. However, frequent viral36

mutation results in viruses that escape previously acquired human immunity. The World Health37

Organization (WHO) Global Influenza Surveillance and Response System (GISRS) selects38

vaccine viruses to represent circulating viruses, but because the process of vaccine development39

and distribution requires several months to complete, optimal vaccine design requires an accurate40

prediction of which viruses will predominate approximately one year after vaccine viruses are41

selected. Current vaccine predictions focus on the hemagglutinin (HA) protein, which acts as42

the primary target of human immunity. Until recently, the hemagglutination inhibition (HI)43

assay has been the primary experimental measure of antigenic cross-reactivity between pairs44

of circulating viruses [2]. Most modern H3N2 strains carry a glycosylation motif that reduces45

their binding efficiency in HI assays [3,4], prompting the increased use of virus neutralization46

assays including the neutralization-based focus reduction assay (FRA) [5]. Together, these two47

assays are the gold standard in virus antigenic characterizations for vaccine strain selection,48

but they are laborious and low-throughput compared to genome sequencing [6]. As a result,49

researchers have developed computational methods to predict influenza evolution from sequence50

data alone [7–9].51

Despite the promise of these sequence-only models, they explicitly omit experimental measure-52

ments of antigenic or functional phenotypes. Recent developments in computational methods53

and influenza virology have made it feasible to integrate these important metrics of influenza54

fitness into a single predictive model. For example, phenotypic measurements of antigenic drift55

are now accessible through phylogenetic models [10] and functional phenotypes for HA are56

available from deep mutational scanning (DMS) experiments [11]. We describe an approach to57

integrate previously disparate sequence-only models of influenza evolution with high-quality58

experimental measurements of antigenic drift and functional constraint.59

The influenza community has long recognized the importance of incorporating HI phenotypes60

and other experimental measurements of viral phenotypes with existing forecasting methods61

to inform the vaccine design process [12–14]. Although several distinct efforts have made62

progress in using HI phenotypes to evaluate the evolution of seasonal influenza [8,10], published63

methods stop short of developing a complete forecasting framework wherein the evolutionary64

contribution of HI phenotypes can be compared and contrasted with new and existing fitness65

metrics. However, unpublished work by  Luksza and Lässig submitted to the WHO GISRS66

network incorporates antigenic phenotypes into fitness-based predictions [13, 15]. Here, we67

provide an open source framework for forecasting the genetic composition of future seasonal68

influenza populations using genotypic and phenotypic fitness estimates. We apply this framework69

to HA sequence data shared via the GISAID EpiFlu database [16] and to HI and FRA titer70

data shared by WHO GISRS Collaborating Centers in London, Melbourne, Atlanta and Tokyo.71

We systematically compare potential predictors and show that HI phenotypes enable more72

accurate long-term forecasts of H3N2 populations compared to previous metrics based on epitope73

mutations alone. We also find that composite models based on phenotypic measures of antigenic74
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drift and genotypic measures of functional constraint consistently outperform any fitness models75

based on individual genotypic or phenotypic metrics.76

Results77

A distance-based model of seasonal influenza evolution78

We developed a framework to forecast seasonal influenza evolution inspired by the Malthusian79

growth fitness model of  Luksza and Lässig [7]. As with this original model, we forecasted80

the frequencies of viral populations one year in advance by applying to each virus strain an81

exponential growth factor scaled by an estimate of the strain’s fitness (Fig. 1 and Eq. 1). We82

estimated the frequency of virus strains every six months using kernel density estimation (KDE).83

We estimated viral fitness with biologically-informed metrics including those originally defined by84

 Luksza and Lässig [7] of epitope antigenic novelty and mutational load (non-epitope mutations) as85

well as four more recent metrics including hemagglutination inhibition (HI) antigenic novelty [10],86

deep mutational scanning (DMS) mutational effects [11], local branching index (LBI) [9], and87

change in clade frequency over time (delta frequency). All of these metrics except for HI antigenic88

novelty and DMS mutational effects rely only on HA sequences. The antigenic novelty metrics89

estimate how antigenically distinct each strain at time t is from previously circulating strains90

based on either genetic distance at epitope sites or log2 titer distance from HI measurements.91

Increased antigenic drift relative to previously circulating strains is expected to correspond to92

increased viral fitness. Mutational load estimates functional constraint by measuring the number93

of putatively deleterious mutations that have accumulated in each strain since their ancestor in94

the previous season. DMS mutational effects provide a more comprehensive biophysical model95

of functional constraint by measuring the beneficial or deleterious effect of each possible single96

amino acid mutation in HA from the background of a previous vaccine strain, A/Perth/16/2009.97

The growth metrics estimate how successful populations of strains have been in the last six98

months based on either rapid branching in the phylogeny (LBI) or the change in clade frequencies99

over time (delta frequency).100

We fit models for individual fitness metrics and combinations of metrics that we anticipated101

would be mutually beneficial. For each model, we learned coefficient(s) that minimized the earth102

mover’s distance between HA amino acid sequences from the observed population one year in103

the future and the estimated population produced by the fitness model (Fig. 1 and Eq. 2). We104

evaluated model performance with time-series cross-validation such that better models reduced105

the earth mover’s distance to the future on validation or test data (Supplemental Figs S1 and106

S8). The earth mover’s distance to the future can never be zero, because each model makes107

predictions based on sequences available at the time of prediction and cannot account for new108

mutations that occur during the prediction interval. We calculated the lower bound for each109

model’s performance as the optimal distance to the future possible given the current sequences110

at each timepoint. As an additional reference, we evaluated the performance of a “naive” model111

that predicted the future population would be identical to the current population. We expected112
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Figure 1. Schematic representation of the fitness model for simulated H3N2-like populations wherein
the fitness of strains at timepoint t determines the estimated frequency of strains with similar sequences
one year in the future at timepoint u. Strains are colored by their amino acid sequence composition
such that genetically similar strains have similar colors (Methods). A) Strains at timepoint t, x(t), are
shown in their phylogenetic context and sized by their frequency at that timepoint. The estimated
future population at timepoint u, x̂(u), is projected to the right with strains scaled in size by their
projected frequency based on the known fitness of each simulated strain. B) The frequency trajectories
of strains at timepoint t to u represent the predicted the growth of the dark blue strains to the detriment
of the pink strains. C) Strains at timepoint u, x(u), are shown in the corresponding phylogeny for that
timepoint and scaled by their frequency at that time. D) The observed frequency trajectories of strains
at timepoint u broadly recapitulate the model’s forecasts while also revealing increased diversity of
sequences at the future timepoint that the model could not anticipate, e.g. the emergence of the light
blue cluster from within the successful dark blue cluster. Model coefficients minimize the earth mover’s
distance between amino acid sequences in the observed, x(u), and estimated, x̂(u), future populations
across all training windows.

that the best models would consistently outperform the naive model and perform as close as113

possible to the lower bound.114
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Models accurately forecast evolution of simulated H3N2-like viruses115

The long-term evolution of influenza H3N2 hemagglutinin has been previously described as a116

balance between positive selection for substitutions that enable escape from adaptive immunity117

by modifying existing epitopes and purifying selection on domains that are required to maintain118

the protein’s primary functions of binding and membrane fusion [7,17–19]. To test the ability119

of our models to accurately detect these evolutionary patterns under controlled conditions, we120

simulated the long-term evolution of H3N2-like viruses under positive and purifying selection for121

40 years (Methods, Supplemental Fig. S1). These selective constraints produced phylogenetic122

structures and accumulation of epitope and non-epitope mutations that were consistent with123

phylogenies of natural H3N2 HA (Supplemental Fig. S2, Supplemental Tables S1 and S2). We124

fit models to these simulated populations using all sequence-only fitness metrics. As a positive125

control for our model framework, we also fit a model based on the true fitness of each strain as126

measured by the simulator.127
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Figure 2. Simulated population model coefficients and distances between projected and observed
future populations as measured in amino acids (AAs). A) Coefficients are shown per validation
timepoint (solid circles, N=33) with the mean ± standard deviation in the top-left corner. For model
testing, coefficients were fixed to their mean values from training/validation and applied to out-of-
sample test data (open circles, N=18). B) Distances between projected and observed populations are
shown per validation timepoint (solid black circles) or test timepoint (open black circles). The mean
± standard deviation of distances per validation timepoint are shown in the top-left of each panel.
Corresponding values per test timepoint are in the top-right. The naive model’s distances to the future
for validation and test timepoints (light gray) were 8.97 ± 1.35 AAs and 9.07 ± 1.70 AAs, respectively.
The corresponding lower bounds on the estimated distance to the future (dark gray) were 4.57 ± 0.61
AAs and 4.85 ± 0.82 AAs.

We hypothesized that fitness metrics associated with viral success such as true fitness, epitope128

antigenic novelty, LBI, and delta frequency would be assigned positive coefficients, while metrics129

associated with fitness penalties, like mutational load, would receive negative coefficients. We130

reasoned that both LBI and delta frequency would individually outperform the mechanistic131

metrics as both of these growth metrics estimate recent clade success regardless of the mechanistic132

basis for that success. Correspondingly, we expected that a composite model of epitope antigenic133

novelty and mutational load would perform as well as or better than the growth metrics, as this134

model would include both primary fitness constraints acting on our simulated populations.135

As expected, the true fitness model outperformed all other models, estimating a future population136
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Distance to future (AAs) Model > naive
Model Coefficients Validation Test Validation Test

true fitness 9.37 +/- 0.92 6.82 +/- 1.52* 7.38 +/- 1.89* 32 (97%) 16 (89%)
LBI 1.31 +/- 0.33 7.24 +/- 1.66* 7.10 +/- 1.19* 32 (97%) 18 (100%)

+ mutational load -1.77 +/- 0.49
LBI 2.26 +/- 1.06 7.57 +/- 1.85* 7.51 +/- 1.20* 29 (88%) 17 (94%)
delta frequency 1.46 +/- 0.44 8.13 +/- 1.44* 8.65 +/- 1.99* 26 (79%) 13 (72%)
epitope ancestor 0.35 +/- 0.07 8.20 +/- 1.39* 8.17 +/- 1.52* 29 (88%) 17 (94%)

+ mutational load -1.57 +/- 0.13
mutational load -1.49 +/- 0.12 8.27 +/- 1.35* 8.20 +/- 1.50* 29 (88%) 17 (94%)
epitope antigenic novelty 0.03 +/- 0.19 8.33 +/- 1.35* 8.22 +/- 1.51* 28 (85%) 17 (94%)

+ mutational load -1.38 +/- 0.39
epitope ancestor 0.14 +/- 0.11 8.96 +/- 1.35 9.03 +/- 1.68* 20 (61%) 13 (72%)
naive 0.00 +/- 0.00 8.97 +/- 1.35 9.07 +/- 1.70 0 (0%) 0 (0%)
epitope antigenic novelty -0.03 +/- 0.19 9.03 +/- 1.37 9.07 +/- 1.69 14 (42%) 7 (39%)

Table 1. Simulated population model coefficients and performance on validation and test data ordered
from best to worst by distance to the future in the validation analysis. Coefficients are the mean ±
standard deviation for each metric in a given model across 33 training windows. Distance to the future
(mean ± standard deviation) measures the distance in amino acids between estimated and observed
future populations. Distances annotated with asterisks (*) were significantly closer to the future than
the naive model as measured by bootstrap tests (see Methods and Supplemental Fig. S4). The number
of times (and percentage of total times) each model outperformed the naive model measures the benefit
of each model over a model than estimates no change between current and future populations. Test
results are based on 18 timepoints not observed during model training and validation.

within 6.82 ± 1.52 amino acids (AAs) of the observed future and surpassing the naive model in137

32 (97%) of 33 timepoints (Fig. 2, Table 1). Although the true fitness model performed better138

than the naive model’s average distance of 8.97 ± 1.35 AAs, it did not reach the closest possible139

distance between populations of 4.57 ± 0.61 AAs. With the exception of epitope antigenic140

novelty, all biologically-informed models consistently outperformed the naive model (Fig. 3,141

Table 1). LBI was the best of these models, with a distance to the future of 7.57 ± 1.85 AAs.142

This result is consistent with the fact that the LBI is a correlate of fitness in models of rapidly143

adapting populations [9]. Indeed, both growth-based models received positive coefficients and144

outperformed the mechanistic models. The mutational load metric received a consistently145

negative coefficient with an average distance of 8.27 ± 1.35 AAs.146

Surprisingly, the composite model of epitope antigenic novelty and mutational load did not147

perform better than the individual mutational load model (Supplemental Fig. S3). The antigenic148

novelty fitness metric assumes that antigenic drift is driven by nonlinear effects of previous149

host exposure [7] that are not explicitly present in our simulations. To understand whether150

positive selection at epitope sites might be better represented by a linear model, we fit an151

additional model based on an “epitope ancestor” metric that counted the number of epitope152

mutations since each strain’s ancestor in the previous season. This linear fitness metric slightly153

outperformed the antigenic novelty metric (Table 1). Importantly, a composite model of the154
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Figure 3. Simulated population model coefficients and distances to the future for individual biologically-
informed fitness metrics and the best composite model. A) Coefficients and B) distances are shown per
validation and test timepoint as in Fig. 2.

epitope ancestor and mutational load metrics outperformed all other epitope-based models and155

the individual mutational load model (Supplemental Fig. S3). From these results, we concluded156

that our method can accurately estimate the evolution of simulated populations, but that the157

fitness of simulated strains was dominated by purifying selection and only weakly affected by a158

linear effect of positive selection at epitope sites.159

We hypothesized that a composite model of mutually beneficial metrics could better approximate160

the true fitness of simulated viruses than models based on individual metrics. To this end, we fit161

an additional model including the best metrics from the mechanistic and clade growth categories:162

mutational load and LBI. This composite model outperformed both of its corresponding163

individual metric models with an average distance to the future of 7.24 ± 1.66 AAs and164

outperformed the naive model as often as the true fitness metric (Fig. 3, Table 1, Supplemental165
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Table S4). The coefficients for mutational load and LBI remained relatively consistent across all166

validation timepoints, indicating that these fitness metrics were stable approximations of the167

simulator’s underlying evolutionary processes. This small gain supports our hypothesis that168

multiple complementary metrics can produce more accurate models.169

We validated the best performing model (true fitness) using two metrics that are relevant for170

practical influenza forecasting and vaccine design efforts. First, we measured the ability of the171

true fitness model to accurately estimate dynamics of large clades (initial frequency > 15%) by172

comparing observed fold change in clade frequencies, log10
x(t+∆t)

x(t)
and estimated fold change,173

log10
x̂(t+∆t)

x(t)
. The model’s estimated fold changes correlated well with observed fold changes174

(Pearson’s R2 = 0.52, Supplemental Fig. S5A). The model also accurately predicted the growth175

of 87% of growing clades and the decline of 58% of declining clades. Model forecasts were176

increasingly more accurate with increasing initial clade frequencies (Supplemental Fig. S5C).177

Next, we counted how often the estimated closest strain to the future population at any given178

timepoint ranked among the observed top closest strains to the future. The estimated best strain179

was in the top first percentile of observed closest strains for half of the validation timepoints180

and in the top 20th percentile for 100% of timepoints (Supplemental Fig. S5B). Percentile ranks181

per strain based on their observed and estimated distances to the future correlated strongly182

across all strains and timepoints (Spearman’s ρ2 = 0.87, Supplemental Fig. S5D).183

Finally, we tested all of our models on out-of-sample data. Specifically, we fixed the coefficients184

of each model to the average values across the validation period and applied the resulting185

models to the next 9 years of previously unobserved simulated data. A standard expectation186

from machine learning is that models will perform worse on test data due to overfitting to187

training data. Despite this expectation, we found that all models except for the individual188

epitope mutation models consistently outperformed the naive model across the out-of-sample189

data (Fig. 2, Fig. 3, Supplemental Fig. S3, Table 1). The composite model of mutational load190

and LBI appeared to outperform the true fitness metric with average distance to the future191

of 7.10 ± 1.19 compared to 7.38 ± 1.89, respectively. However, we did not find a significant192

difference between these models by bootstrap testing (Supplemental Table S4) and could not193

rule out fluctuations in model performance across a relatively small number of data points.194

As with our validation dataset, we tested the true fitness model’s ability to recapitulate clade195

dynamics and select optimal individual strains from the test data. While observed and estimated196

clade frequency fold changes correlated more weakly for test data (Pearson’s R2 = 0.14), the197

accuracies of clade growth and decline predictions remained similar at 82% and 53%, respectively198

(Fig. 4A). We observed higher absolute forecast errors in the test data with higher errors for clades199

between 40% and 60% initial frequencies (Supplemental Fig. 4C). The estimated best strain was200

higher than the top first percentile of observed closest strains for half of the test timepoints and in201

the top 20th percentile for 16 (89%) of 18 of timepoints (Fig. 4B). Observed and estimated strain202

ranks remained strongly correlated across all strains and timepoints (Spearman’s ρ2 = 0.80,203

Fig. 4D). These results confirm that our approach of minimizing the distance between yearly204

populations can simultaneously capture clade-level dynamics of simulated influenza populations205

and identify individual strains that are most representative of future populations.206
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Figure 4. Test of best model for simulated populations (true fitness) using 9 years previously
unobserved test data and fixed model coefficients. A) The correlation of log estimated clade frequency

fold change, log10
x̂(t+∆t)

x(t) , and log observed clade frequency fold change, log10
x(t+∆t)

x(t) , shows the model’s

ability to capture clade-level dynamics without explicitly optimizing for clade frequency targets. B)
The rank of the estimated best strain based on its distance to the future in the best model was in
the top 20th percentile for 89% of 18 timepoints, confirming that the model makes a good choice
when forced to select a single representative strain for the future population. C) Absolute forecast
error for clades shown in A by their initial frequency with a mean LOESS fit (solid black line) and
95% confidence intervals (gray shading) based on 100 bootstraps. D) The correlation of all strains
at all timepoints by the percentile rank of their observed and estimated distances to the future. The
corresponding results for the naive model are shown in Supplemental Fig. S7.
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Models reflect historical patterns of H3N2 evolution207

Distance to future (AAs) Model > naive
Model Coefficients Validation Test Validation Test

mutational load -0.68 +/- 0.34 5.44 +/- 1.80* 7.70 +/- 3.53 18 (78%) 4 (50%)
+ LBI 1.03 +/- 0.40

LBI 1.12 +/- 0.51 5.68 +/- 1.91* 8.40 +/- 3.97 17 (74%) 2 (25%)
HI antigenic novelty 0.89 +/- 0.23 5.82 +/- 1.50* 5.97 +/- 1.47* 17 (74%) 6 (75%)

+ mutational load -1.01 +/- 0.42
HI antigenic novelty 0.90 +/- 0.23 5.84 +/- 1.51* 5.99 +/- 1.46* 16 (70%) 6 (75%)

+ mutational load -1.00 +/- 0.44
+ LBI -0.04 +/- 0.09

HI antigenic novelty 0.83 +/- 0.20 6.01 +/- 1.50* 6.21 +/- 1.44* 16 (70%) 7 (88%)
delta frequency 0.79 +/- 0.47 6.13 +/- 1.71* 6.90 +/- 2.30 16 (70%) 5 (62%)
mutational load -0.99 +/- 0.30 6.14 +/- 1.37* 6.53 +/- 1.39 17 (74%) 6 (75%)
naive 0.00 +/- 0.00 6.40 +/- 1.36 6.82 +/- 1.74 0 (0%) 0 (0%)
DMS mutational effects 1.25 +/- 0.84 6.75 +/- 1.95 7.80 +/- 2.97 11 (48%) 4 (50%)
epitope antigenic novelty 0.52 +/- 0.73 7.13 +/- 1.47 6.70 +/- 1.51 7 (30%) 5 (62%)

Table 2. Natural population model coefficients and performance on validation and test data ordered
from best to worst by distance to the future in the validation analysis, as in Table 1. Distances
annotated with asterisks (*) were significantly closer to the future than the naive model as measured by
bootstrap tests (see Methods and Supplemental Fig. S10). Validation results are based on 23 timepoints.
Test results are based on eight timepoints not observed during model training and validation.

Next, we trained and validated models for individual fitness predictors using 25 years of natural208

H3N2 populations spanning from October 1, 1990 to October 1, 2015. We held out strains209

collected after October 1, 2015 up through October 1, 2019 for model testing (Supplemental210

Fig. S8). In addition to the sequence-only models we tested on simulated populations, we also211

fit models for our new fitness metrics based on experimental phenotypes including HI antigenic212

novelty and DMS mutational effects. We hypothesized that both HI and DMS metrics would be213

assigned positive coefficients, as they estimate increased antigenic drift and beneficial mutations,214

respectively. As antigenic drift is generally considered to be the primary evolutionary pressure215

on natural H3N2 populations [7, 20, 21], we expected that epitope and HI antigenic novelty216

would be individually more predictive than mutational load or DMS mutational effects. Previous217

research [9] and our simulation results also led us to expect that LBI and delta frequency would218

outperform other individual mechanistic metrics. As the earliest measurements from focus219

reduction assays (FRAs) date back to 2012, we could not train, validate, and test FRA antigenic220

novelty models in parallel with the HI antigenic novelty models.221

Biologically-informed metrics generally performed better than the naive model with the excep-222

tions of the epitope antigenic novelty and DMS mutational effects (Fig. 5 and Table 2). The223

naive model estimated an average distance between natural H3N2 populations of 6.40 ± 1.36224

AAs. The lower bound for how well any model could perform, 2.60 ± 0.89 AAs, was considerably225

lower than the corresponding bounds for simulated populations. The average improvement of226

the sequence-only models over the naive model was consistently lower than the same models in227
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Figure 5. Natural population model coefficients and distances to the future for individual biologically-
informed fitness metrics. A) Coefficients and B) distances are shown per validation timepoint (N=23)
and test timepoint (N=8) as in Fig. 2. The naive model’s distance to the future (light gray) was 6.40
± 1.36 AAs for validation timepoints and 6.82 ± 1.74 AAs for test timepoints. The corresponding
lower bounds on the estimated distance to the future (dark gray) were 2.60 ± 0.89 AAs and 2.28 ±
0.61 AAs.

simulated populations. This reduced performance may have been caused by both the relatively228

reduced diversity between years in natural populations and the fact that our simple models do229

not capture all drivers of evolution in natural H3N2 populations.230

Of the two metrics for antigenic drift, HI antigenic novelty consistently outperformed epitope231

antigenic novelty (Table 2). HI antigenic novelty estimated an average distance to the future232

of 6.01 ± 1.50 AAs and outperformed the naive model at 16 of 23 timepoints (70%). The233

coefficient for HI antigenic novelty remained stable across all timepoints (Fig. 5). In contrast,234

epitope antigenic novelty estimated a distance of 7.13 ± 1.47 AAs and only outperformed the235
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naive model at seven timepoints (30%). Epitope antigenic novelty was also the only metric236

whose coefficient started at a positive value (1.17 ± 0.03 on average prior to October 2009)237

and transitioned to a negative value through the validation period (-0.19 ± 0.34 on average for238

October 2009 and after). This strong coefficient for the first half of training windows indicated239

that, unlike the results for simulated populations, the nonlinear antigenic novelty metric was240

historically an effective measure of antigenic drift. The historical importance of the epitope sites241

used for this metric was further supported by the relative enrichment of mutations at these242

sites for the most successful “trunk” lineages of natural populations compared to side branch243

lineages (Supplemental Table S2).244

These results led us to hypothesize that the contribution of these specific epitope sites to245

antigenic drift has weakened over time. Importantly, these 49 epitope sites were originally246

selected by  Luksza and Lässig [7] from a previous historical survey of sites with beneficial247

mutations between 1968–2005 [22]. If the beneficial effects of mutations at these sites were due248

to historical contingency rather than a constant contribution to antigenic drift, we would expect249

models based on these sites to perform well until 2005 and then overfit relative to future data.250

Indeed, the epitope antigenic novelty model outperforms the naive model for the first three251

validation timepoints until it has to predict to April 2006. To test this hypothesis, we identified252

a new set of beneficial sites across our entire validation period of October 1990 through October253

2015. Inspired by the original approach of Shih et al. [22], we identified 25 sites in HA1 where254

mutations rapidly swept through the global population, including 12 that were also present255

in the original set of 49 sites. We fit an antigenic novelty model to these 25 sites across the256

complete validation period and dubbed this the “oracle antigenic novelty” model, as it benefited257

from knowledge of the future in its forecasts. The oracle model produced a consistently positive258

coefficient across all training windows (0.80 ± 0.21) and consistently outperformed the original259

epitope model with an average distance to the future of 5.71 ± 1.27 AAs (Supplemental Fig. S9).260

These results support our hypothesis that the fitness benefit of mutations at the original 49 sites261

was due to historical contingency and that the success of previous epitope models based on these262

sites was partly due to “borrowing from the future”. We suspect that our HI antigenic novelty263

model benefits from its ability to constantly update its antigenic model at each timepoint with264

recent experimental phenotypes, while the epitope antigenic novelty metric is forced to give a265

constant weight to the same 49 sites throughout time.266

Of the two metrics for functional constraint, mutational load outperformed DMS mutational267

effects, with an average distance to the future of 6.14 ± 1.37 AAs compared to 6.75 ± 1.95 AAs,268

respectively. In contrast to the original  Luksza and Lässig [7] model, where the coefficient of the269

mutational load metric was fixed at -0.5, our model learned a consistently stronger coefficient of270

-0.99 ± 0.30. Notably, the best performance of the DMS mutational effects model was forecasting271

from April 2007 to April 2008 when the major clade containing A/Perth/16/2009 was first272

emerging. This result is consistent with the DMS model overfitting to the evolutionary history273

of the background strain used to perform the DMS experiments. Alternate implementations274

of less background-dependent DMS metrics never performed better than the mutational load275

metric (Supplemental Table S3, Methods). Thus, we find that a simple model where any276

mutation at non-epitope sites is deleterious is more predictive of global viral success than a277

more comprehensive biophysical model based on measured mutational effects of a single strain.278
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LBI was the best individual metric by average distance to the future (Fig. 5) and tied mutational279

load by outperforming the naive model at 17 (74%) timepoints (Table 2). Delta frequency280

performed worse than LBI and HI antigenic novelty and was comparable to mutational load.281

While delta frequency should, in principle, measure the same aspect of viral fitness as LBI, these282

results show that the current implementations of these metrics represent qualitatively different283

fitness components. The LBI and mutational load might also be predictive for reasons other284

than correlation with fitness, see Discussion.285
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Figure 6. Natural population model coefficients and distances to the future for composite fitness
metrics. A) Coefficients and B) distances are shown per validation timepoint (N=23) and test timepoint
(N=8) as in Fig. 2.

To test whether composite models could outperform individual fitness metrics for natural286

populations, we fit models based on combinations of best individual metrics representing287

antigenic drift, functional constraint, and clade growth. Specifically, we fit models based on HI288

antigenic novelty and mutational load, mutational load and LBI, and all three of these metrics289

together. We anticipated that if these metrics all represented distinct, mutually beneficial290

components of viral fitness, these composite models should perform better than individual291

models with consistent coefficients for each metric.292

Both two-metric composite models modestly outperformed their corresponding individual models293

(Table 2, Fig. 6, and Supplemental Table S4). The composite of mutational load and LBI294

performed the best overall with an average distance to the future of 5.44 ± 1.80 AAs. The295

relative stability of the coefficients for the metrics in the two-metric models suggested that these296

metrics represented complementary components of viral fitness. In contrast, the three-metric297
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model strongly preferred the HI antigenic novelty and mutational load metrics over LBI for the298

entire validation period, producing an average LBI coefficient of -0.04 ± 0.09. Overall, the gain299

by combining multiple predictors was limited and the sensitivity of coefficients to the set of300

metrics included in the model suggests that there is substantial overlap in predictive value of301

different metrics.302

As with the simulated populations, we validated the performance of the best model for natural303

populations using estimated and observed clade frequency fold changes and the ranking of304

estimated best strains compared to the observed closest strains to future populations. The305

composite model of mutational load and LBI effectively captured clade dynamics with a fold306

change correlation of R2 = 0.35 and growth and decline accuracies of 87% and 89%, respectively307

(Supplemental Fig. S11A). Absolute forecasting error declined noticeably for clades with initial308

frequencies above 60%, but generally this error remained below 20% on average (Supplemental309

Fig. S11C). The estimated best strain from this model was in the top first percentile of observed310

closest strains for half of the validation timepoints and in the top 20th percentile for 20 (87%)311

of 23 timepoints (Supplemental Fig. S11B). This pattern held across all strains and timepoints312

with a strong correlation between observed and estimated strain ranks (Spearman’s ρ2 = 0.66,313

Supplemental Fig. S11D).314

Finally, we tested the performance of all models on out-of-sample data collected from October315

1, 2015 through October 1, 2019. We anticipated that most models would perform worse on316

truly out-of-sample data than on validation data. Correspondingly, only the three models with317

the HI antigenic novelty metric significantly outperformed the naive model on the test data318

(Table 2). The composite of HI antigenic novelty and mutational load performed modestly,319

although not significantly, better than the individual HI antigenic novelty model (Supplemental320

Table S4). Surprisingly, the best model for the validation data – mutational load and LBI –321

was one of the worst models for the test data with an average distance to the future of 7.70 ±322

3.53 AAs. The individual LBI model was the worst model, while mutational load continued to323

perform well with test data. LBI performed especially poorly in the last two test timepoints of324

April and October 2018 (Fig. 5). These timepoints correspond to the dominance and sudden325

decline of a reassortant clade named A2/re [23]. By April 2018, the A2/re clade had risen to a326

global frequency over 50% from less than 15% the previous year, despite an absence of antigenic327

drift. By October 2018, this clade had declined in frequency to approximately 30% and, by328

October 2019, it had gone extinct. That LBI incorrectly predicted the success of this reassortant329

clade highlights a major limitation of growth-based fitness metrics and a corresponding benefit330

of more mechanistic metrics that explicitly measure antigenic drift and functional constraint.331

However, we cannot rule out the alternate possibility that the LBI model was overfit to the332

training data.333

After identifying the composite HI antigenic novelty and mutational load model as the best334

model on out-of-sample data, we tested this model’s ability to detect clade dynamics and select335

individual best strains for vaccine composition. The composite model partially captured clade336

dynamics with a Pearson’s correlation of R2 = 0.46 between observed and estimated growth337

ratios and growth and decline accuracies of 52% and 58%, respectively (Fig. 7A). The mean338

absolute forecasting error with this model was consistently less than 20%, regardless of the339
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Figure 7. Test of best model for natural populations of H3N2 viruses, the composite model of HI
antigenic novelty and mutational load. A) The correlation of estimated and observed clade frequency
fold changes shows the model’s ability to capture clade-level dynamics without explicitly optimizing for
clade frequency targets. B) The rank of the estimated best strain based on its distance to the future for
eight timepoints. The estimated best strain was in the top 20th percentile of observed closest strains
for 100% of timepoints. C) Absolute forecast error for clades shown in A by their initial frequency
with a mean LOESS fit (solid black line) and 95% confidence intervals (gray shading) based on 100
bootstraps. D) The correlation of all strains at all timepoints by the percentile rank of their observed
and estimated distances to the future. The corresponding results for the naive model are shown in
Supplemental Fig. S13.
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initial clade frequency (Fig. 7C). The estimated best strain from this model was in the top first340

percentile of observed closest strains for half of the validation timepoints and in the top 20th341

percentile for 100% of timepoints (Fig. 7B). Similarly, the observed and estimated strain ranks342

strongly correlated (Spearman’s ρ2 = 0.72) across all strains and test timepoints (Fig. 7D).343
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Figure 8. Observed distance to natural H3N2 populations one year into the future for each vaccine
strain (green) and the observed (blue) and estimated closest strains to the future by the mutational
load and LBI model (orange) and the HI antigenic novelty and mutational load model (purple). Vaccine
strains were assigned to the validation or test timepoint closest to the date they were selected by
the WHO. The weighted distance to the future for each strain was calculated from their amino acid
sequences and the frequencies and sequences of the corresponding population one year in the future.

We further evaluated our models’ ability to estimate the closest strain to the next season’s H3N2344

population by comparing our best models’ selections to the WHO’s vaccine strain selection. For345

each season when the WHO selected a new vaccine strain and one year of future data existed in346

our validation or test periods, we measured the observed distance of that strain’s sequence to347

the future and the corresponding distances to the future for the observed closest strains. We348

compared these distances to those of the closest strains to the future as estimated by our best349

models for the validation period (mutational load and LBI) and the test period (HI antigenic350

novelty and mutational load). The mutational load and LBI model selected strains that were as351

close or closer to the future than the corresponding vaccine strain for 10 (83%) of the 12 seasons352

with vaccine updates (Fig. 8). For the two seasons that the model selected more distant strains353

than the vaccine strain, the mean distance relative to the vaccine strain was 1.58 AAs. The HI354

antigenic novelty and mutational load model performed similarly by identifying strains as close355

or closer to the future for 11 (92%) seasons. For the one season that the model selected a more356

distant strain, that selected strain was 0.75 AAs farther from the future than the vaccine strain.357
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Historically-trained models enable real-time, actionable forecasts358

To enable real-time forecasts, we integrated our forecasting framework into our existing open359

source pathogen surveillance application, Nextstrain [24]. Prior to finalizing our model coefficients360

for use in Nextstrain, we tested whether our three best composite models could be improved361

by learning new coefficients per timepoint from the test data. Additionally, we evaluated a362

composite of FRA antigenic novelty and mutational load. Since the earliest FRA data were from363

2012, we anticipated that there were enough measurements to fit a model across the test data364

time interval. If modern H3N2 strains continue to perform poorly in HI assays, the FRA-based365

assay will be critical for future forecasting efforts.366

Two of three models performed worse after refitting coefficients to the test data than their367

original fixed coefficient implementations (Supplemental Fig. S14). While, the mutational load368

and LBI model improved considerably over its original performance, it still performed worse369

than the naive model on average. These results confirmed that the coefficients for our selected370

best model would be most accurate for live forecasts. Interestingly, the FRA antigenic novelty371

metric received a consistently positive coefficient of 1.40 ± 0.24 in its composite with mutational372

load. Unfortunately, this model performed considerably worse than the corresponding HI-based373

model. These results suggest that we may need more FRA data across a longer historical374

timespan to train a model that could replace the HI-based model.375

After confirming the coefficients for our best model of HI antigenic novelty and mutational376

load, we inspected forecasts of H3N2 clades using all data available up through June 6, 2020.377

Consistent with an average two-month lag between data collection and submission, the most378

recent data were collected up to April 1, 2020 and made our forecasts from this timepoint to379

April 1, 2021. Of the five major currently circulating clades, our model predicted growth of the380

clades 3c3.A and A1b/94N and decline of clades A1b/135K, A1b/137F, and A1b/197R (Fig. 9).381

To aid with identification of potential vaccine candidates for the next season, we annotated382

strains in the phylogeny by their estimated distance to the future based on our best model383

(Fig. 10).384

Figure 9. Snapshot of live forecasts on nextstrain.org from our best model (HI antigenic novelty and
mutational load) for April 1, 2021. The observed frequency trajectories for currently circulating clades
are shown up to April 1, 2020. Our model forecasts growth of the clades 3c3.A and A1b/94N and
decline of all other major clades.

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2020. ; https://doi.org/10.1101/2020.06.12.145151doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.12.145151
http://creativecommons.org/licenses/by/4.0/


Figure 10. Snapshot of the last two years of seasonal influenza H3N2 evolution on nextstrain.org
showing the estimated distance per strain to the future population. Distance to the future is calculated
for each strain as the Hamming distance of HA amino acid sequences to all other circulating strains
weighted by the other strain’s projected frequencies under the best fitness model (HI antigenic novelty
and mutational load).

Discussion385

We have developed and rigorously tested a novel, open source framework for forecasting the386

long-term evolution of seasonal influenza H3N2 by estimating the sequence composition of387

future populations. A key innovation of this framework is its ability to directly compare388

viral populations between seasons using the earth mover’s distance metric [25] and eliminate389

unavoidably stochastic clade definitions from phylogenies. The best models from this framework390

still effectively capture clade dynamics and accurately identify optimal vaccine candidates391

from simulated and natural H3N2 populations without relying on clades as model targets. We392

have further introduced novel fitness metrics based on experimental measurements of antigenic393

drift and functional constraint. We demonstrated that the integration of these phenotypic394

metrics with previously published sequence-only metrics produces more accurate forecasts than395

sequence-only models. We have added this framework as a component of seasonal influenza396

analyses on nextstrain.org where it provides real-time forecasts for influenza researchers, decision397

makers, and the public.398
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Integration of genotypic and phenotypic metrics minimizes overfitting399

Our evaluation of models by time-series cross-validation and true out-of-sample forecasts400

revealed substantial potential for model overfitting. We observed overfitting to both specific401

genetic backgrounds and general historical contexts. A clear example of the former was the402

poor performance of our DMS-based fitness metric compared to a simpler mutational load403

metric. Although the DMS experiments provided detailed estimates of which amino acids404

were preferred at which positions in HA, these measurements were specific to a single strain,405

A/Perth/16/2009 [11]. When we applied these measurements to predict the success of global406

populations, they were less informative on average than the naive model. To benefit from the407

more comprehensive fitness costs measured by DMS data, future models will need to synthesize408

DMS measurements across multiple H3N2 strains from distinct genetic contexts. We anticipate409

that these measurements could be used to define and continually update a modern set of sites410

contributing to mutational load in natural populations. This set of sites could replace the411

statically defined set of “non-epitope” sites we use to estimate mutational load here.412

We observed overfitting to historical context in sequence-based models of antigenic drift. The413

fitness benefit of mutations that led to antigenic drift in H3N2 in the past is well-documented414

[20,26–28]. Although the antigenic importance of seven specific sites in HA were experimentally415

validated by Koel et al. 2013 [28], these sites do not explain all antigenic drift observed in416

natural populations [10]. Other attempts to define these so-called “epitope sites” have relied on417

either aggregation of results from antigenic escape assays [27] or retrospective computational418

analyses of sites with beneficial mutations [7, 22]. We found that models based on all of these419

definitions except for the seven Koel epitope sites overfit to the historical context from which420

they were identified (Supplemental Table S3). These results suggest that the set of sites that421

contribute to antigenic drift at any given time may depend on both the fitness landscape of422

currently circulating strains and the immune landscape of the hosts these strains need to infect.423

Recent experimental mapping of antigenic escape mutations in H3N2 HA with human sera show424

that the specific sites that confer antigenic escape can vary dramatically between individuals425

based on their exposure history [29]. In contrast to models based on predefined “epitope sites”,426

our model based on experimental measurements of antigenic drift did not suffer from overfitting427

in the validation or test periods. We suspect that this model was able to minimize overfitting by428

continuously updating its antigenic model with recent experimental data and assigning antigenic429

weight to branches of a phylogeny rather than specific positions in HA.430

Even the most accurate models with few parameters will sometimes fail due to the probabilistic431

nature of evolution. For example, the model with the best performance across our validation data432

– mutational load and LBI – was also one of the worst models across our test data. Specifically,433

we found that this model failed to predict the sudden decline of a dominant reassortant clade,434

A2/re, in 2019. Despite this model’s excellent performance historically, it was unable to account435

for rare yet important events such as reassortment.436

Finally, we observed that composite models of multiple orthogonal fitness metrics often out-437

performed models based on their individual components. These results are consistent with438

previous work that found improved performance by integrating components of antigenic drift,439
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functional constraint, and clade growth [7]. However, the effective elimination of LBI from440

our three-metric model during the validation period (Fig. 6) reveals the limitations of our441

current additive approach to composite models. The recent success of weighted ensembles for442

short-term influenza forecasting [30] suggests that long-term forecasting may benefit from a443

similar approach.444

Forecasting framework aids practical forecasts445

By forecasting the composition of future H3N2 populations with biologically-informed fitness446

metrics, our best models consistently outperformed a naive model (Table 2). While this447

performance confirms previously demonstrated potential for long-term influenza forecasting [7],448

the average gain from these models over the naive model appears low at 0.96 AAs per year for449

validation data and 0.85 AAs per year for test data. However, these results are consistent with450

the observed dynamics of H3N2. First, the one-year forecast horizon is a fraction of the average451

coalescence time for H3N2 populations of about 3–8 years [31]. Hence, we expect the diversity452

of circulating strains to persist between seasons. Second, H3N2 hemagglutinin accumulates 3.6453

amino acid changes per year [20]. This accumulation of amino acid substitutions contributes454

to the distance between annual populations observed by the naive model. In this context, our455

model gains of 0.96 and 0.85 AAs per year correspond to an explanation of 27% and 24% of the456

expected additional distance between annual populations, respectively.457

Several clear opportunities to improve forecasts still remain. Integration of more recent experi-458

mental data may improve estimates of antigenic drift. Despite the weak performance of our FRA459

antigenic novelty model on recent data, continued accumulation of FRA measurements over460

time should eventually enable models as accurate as the current HI-based models. In addition461

to these FRA data based on ferret antisera, recent high-throughput antigenic escape assays462

with human sera promise to improve existing definitions of epitope sites [29]. These assays463

reveal the specific sites and residues that confer antigenic escape from polyclonal sera obtained464

from individual humans. A sufficiently broad geographic and temporal sample of human sera465

with these assays could reveal consistent patterns of the immune landscape H3N2 strains must466

navigate to be globally successful. Models should also integrate information from multiple467

segments of the influenza genome and will need to balance the fitness benefits of evolution in468

genes such as neuraminidase [32] with the costs of reassortment [33]. Finally, forecasting models469

need to account for the geographic distribution of viruses and the vastly different sampling470

intensities across the globe. Most influenza sequence data come from highly developed countries471

that account for a small fraction of the global population, while globally successful clades of472

influenza H3N2 often emerge in less well-sampled regions [31,34,35]. Explicitly accounting for473

these sampling biases and the associated migration dynamics would allow models to weight474

forecasts based on both viral fitness and transmission.475
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The nature of the predictive power of individual metrics remains476

unclear477

Prediction of future influenza virus populations is intrinsically limited by the small number of478

data points available to train and test models. Increasingly more complex models are therefore479

prone to overfitting. Across the validation and test periods, we found that antigenic drift and480

mutational load were the most robust predictors of future success for seasonal influenza H3N2481

populations.482

Several metrics like the rate of frequency change or epitope mutations are naively expected to483

have predictive power but do not. Others metrics like the mutational load are not expected to484

measure adaptation but are predictive. These results point to one aspect that often overlooked485

when comparing the genetic make-up of an asexual population at two time points: the future486

population is unlikely to descend from any of the sampled tips but ancestral lineages of the future487

population merge with those of the present population in the past. Optimal representatives of488

the future therefore tend to be tips in the present that tend to be basal and less evolved. The489

LBI and the mutational load metric have the tendency to assign low fitness to evolved tips. The490

LBI in particular assigns high fitness to the base of large clades. Much of the predictive power,491

in the sense of a reduced distance between the predicted and observed populations, might be492

due to putting more weight on less evolved strains rather than bona fide prediction of fitness.493

In a companion manuscript, Barrat-Charlaix et al. show that LBI has little predictive power for494

fixation probabilities of mutations in H3N2.495

Our framework enables real-time practical forecasts of these populations by leveraging historical496

and modern experimental assays and gene sequences. By releasing our framework as an open497

source tool based on modern data science standards like tidy data frames, we hope to encourage498

continued development of this tool by the influenza research community. We additionally499

anticipate that the ability to forecast the sequence composition of populations with earth500

mover’s distance will enable future forecasting research with pathogens whose genomes cannot501

be analyzed by traditional phylogenetic methods including recombinant viruses, bacteria, and502

fungi.503

Model sharing and extensions504

The entire workflow for our analyses was implemented with Snakemake [36]. We have provided505

all source code, configuration files, and datasets at https://github.com/blab/flu-forecasting.506
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Materials and methods507

Simulation of influenza H3N2-like populations508

We simulated the long-term evolution of H3N2-like viruses with SANTA-SIM [37] for 10,000509

generations or 50 years where 200 generations was equivalent to 1 year. We discarded the first510

10 years as a burn-in period, selected the next 30 years for model fitting and validation, and held511

out the last 9 years as out-of-sample data for model testing. Each simulated population was512

seeded with the full length HA from A/Beijing/32/1992 (NCBI accession: U26830.1) such that513

all simulated sequences contained signal peptide, HA1, and HA2 domains. We defined purifying514

selection across all three domains, allowing the preferred amino acid at each site to change at a515

fixed rate over time. We additionally defined exposure-dependent selection for 49 putative epitope516

sites in HA1 [7] to impose an effect of antigenic novelty that would allow mutations at those sites517

to increase viral fitness despite underlying purifying selection. We modified the SANTA-SIM518

source code to enable the inclusion of true fitness values for each strain in the FASTA header of519

the sampled sequences from each generation. This modified implementation has been integrated520

into the official SANTA-SIM code repository at https://github.com/santa-dev/santa-sim521

as of commit e2b3ea3. For our full analysis of model performance, we sampled 90 viruses per522

month to match the sampling density of natural populations. For tuning of hyperparameters,523

we sampled 10 viruses per month to enable rapid exploration of hyperparameter space.524

Hyperparameter tuning with simulated populations525

To avoid overfitting our models to the relatively limited data from natural populations, we used526

simulated H3N2-like populations to tune hyperparameters including the KDE bandwidth for527

frequency estimates and the L1 penalty for model coefficients. We simulated populations, as528

described above, and fit models for each parameter value using the true fitness of strains from529

the simulator.530

We identified the optimal KDE bandwidth for frequencies as the value that minimized the531

difference between the mean distances to the future from the true fitness model and the naive532

model. We set the L1 lambda penalty to zero, to reduce variables in the analysis and avoid533

interactions between the coefficients and the KDE bandwidths. Higher bandwidths completely534

wash out dynamics of populations by making all strains appear to exist for long time periods.535

This flattening of frequency trajectories means that as bandwidths increase, the naive model536

gets more accurate and less informative. Given this behavior, we found the bandwidth that537

produced the minimum difference between distances to the future for the true fitness and naive538

models instead of the bandwidth that produced the minimum mean model distance. Based on539

this analysis, we identified an optimal bandwidth of 2
12

or the equivalent of 2-months for floating540

point dates. Next, we identified an L1 penalty of 0.1 for model coefficients that minimized the541

mean distance to the future for the true fitness model.542
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Antigenic data543

Hemagglutination inhibition (HI) measurements were provided by WHO Global Influenza544

Surveillance and Response System (GISRS) Collaborating Centers in London, Melbourne,545

Atlanta and Tokyo. We converted these raw two-fold dilution measurements to log2 titer drops546

normalized by the corresponding log2 autologous measurements as previously described [10].547

Strain selection for natural populations548

Prior to our analyses, we downloaded all HA sequences and metadata from GISAID [16]. For549

model training and validation, we selected 15,583 HA sequences ≥900 nucleotides that were550

sampled between October 1, 1990 and October 1, 2015. To account for known variation in551

sequence availability by region, we subsampled the selected sequences to a representative set552

of 90 viruses per month with even sampling across 10 global regions including Africa, Europe,553

North America, China, South Asia, Japan and Korea, Oceania, South America, Southeast Asia,554

and West Asia. We excluded all egg-passaged strains and all strains with ambiguous year,555

month, and day annotations. We prioritized strains with more available HI titer measurements.556

For model testing, we selected an additional 7,171 HA sequences corresponding to 90 viruses per557

month sampled between October 1, 2015 and October 1, 2019. We used these test sequences558

to evaluate the out-of-sample error of fixed model parameters learned during training and559

validation. Supplemental File S1 describes contributing laboratories for all 22,754 validation560

and test strains.561

Phylogenetic inference562

For each timepoint in model training, validation, and testing, we selected the subsampled HA563

sequences with collection dates up to that timepoint. We aligned sequences with the augur564

align command [24] and MAFFT v7.407 [38]. We inferred initial phylogenies for HA sequences565

at each timepoint with IQ-TREE v1.6.10 [39]. To reconstruct time-resolved phylogenies, we566

applied TreeTime v0.5.6 [40] with the augur refine command.567

Frequency estimation568

To account for uncertainty in collection date and sampling error, we applied a kernel density569

estimation (KDE) approach to calculate global strain frequencies. Specifically, we constructed a570

Gaussian kernel for each strain with the mean at the reported collection date and a variance571

(or KDE bandwidth) of two months. The bandwidth was identified by cross-validation, as572

described above. This bandwidth also roughly corresponds to the median lag time between573

strain collection and submission to the GISAID database. We estimated the frequency of each574

strain at each timepoint by calculating the probability density function of each KDE at that575

23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2020. ; https://doi.org/10.1101/2020.06.12.145151doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.12.145151
http://creativecommons.org/licenses/by/4.0/


timepoint and normalizing the resulting values to sum to one. We implemented this frequency576

estimation logic in the augur frequencies command.577

Model fitting and evaluation578

Fitness model579

We assumed that the evolution seasonal influenza H3N2 populations can be represented by a580

Malthusian growth fitness model, as previously described [7]. Under this model, we estimated581

the future frequency, x̂i(t+ ∆t), of each strain i from the strain’s current frequency, xi(t), and582

fitness, fi(t), as follows where the resulting future frequencies were normalized to one by 1
Z(t)

.583

x̂i(t+ ∆t) =
1

Z(t)
xi(t) exp(fi(t)∆t) (1)

We defined the fitness of each strain at time t as the additive combination of one or more fitness584

metrics, fi,m, scaled by fitness coefficients, βm. For example, Equation 2 estimates fitness per585

strain by mutational load (ml) and local branching index (lbi).586

fi(t) = βnefi,ml(t) + βlbifi,lbi(t) (2)

Model target587

For a model based on any given combination of fitness metrics, we found the fitness coefficients588

that minimized the earth mover’s distance (EMD) [25,41] between amino acid sequences from589

the observed future population at time u = t+ ∆t and the estimated future population created590

by projecting frequencies of strains at time t by their estimated fitnesses. Solving for EMD591

identifies the minimum about of “earth” that must be moved from a source population to a592

sink population to make those populations as similar as possible. This solution requires both a593

“ground distance” between pairs of strains from both populations and weights assigned to each594

strain that determine how much that strain contributes to the overall distance.595

For each timepoint t and corresponding timepoint u = t+ 1, we defined the ground distance596

as the Hamming distance between HA amino acid sequences for all pairs of strains between597

timepoints. For strains with less than full length nucleotide sequences, we inferred missing598

nucleotides through TreeTime’s ancestral sequence reconstruction analysis. We defined weights599

for strains at timepoint t based on their projected future frequencies. We defined weights600

for strains at timepoint u based on their observed frequencies. We then identified the fitness601

coefficients that provided projected future frequencies that minimized the EMD between the602

estimated and observed future populations. With this metric, a perfect estimate of the future’s603

strain sequence composition and frequencies would produce a distance of zero. However, the604

inevitable accumulation of substitutions between the two populations prevents this outcome.605
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We calculated EMD with the Python bindings for the OpenCV 3.4.1 implementation [42]. We606

applied the Nelder-Mead minimization algorithm as implemented in SciPy [43] to learn fitness607

coefficients that minimize the average of this distance metric over all timepoints in a given608

training window.609

Lower bound on earth mover’s distance610

The minimum distance to the future between any two timepoints cannot be zero due to the611

accumulation of mutations between populations. We estimated the lower bound on earth mover’s612

distance between timepoints using the following greedy solution to the optimal transport problem.613

For each timepoint t, we initialized the optimal frequency of each current strain to zero. For614

each strain in the future timepoint u, we identified the closest strain in the current timepoint by615

Hamming distance and added the frequency of the future strain to the optimal frequency of the616

corresponding current strain. This approach allows each strain from timepoint t to accumulate617

frequencies from multiple strains at timepoint u. We calculated the minimum distance between618

populations as the earth mover’s distance between the resulting optimal frequencies for current619

strains, the observed frequencies of future strains, and the original distance matrix between620

those two populations.621

Strain-specific distance to the future622

We calculated the weighted Hamming distance to the future of each strain from the strain’s HA623

amino acid sequence and the frequencies and sequences of the corresponding population one624

year in the future. Specifically, the distance between any strain i from timepoint t to the future625

timepoint u was the Hamming distance, h, between strain i’s amino acid sequence, si, each626

future strain j’s amino acid sequence, sj, and the frequency of strain j in the future timepoint,627

xj(u).628

di(u) =
∑

j∈s(u)

xj(u)h(si, sj) (3)

We calculated the estimated distance to the future for live forecasts with the same approach,629

replacing the observed future population frequencies and sequences with the estimated population630

based on our models.631

di(û) =
∑

j∈s(û)

xj(û)h(si, sj) (4)

Time-series cross-validation632

To obtain unbiased estimates for the out-of-sample errors of our models, we adopted the standard633

cross-validation strategy of training, validation, and testing. We divided our available data into634
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an initial training and validation set spanning October 1990 to October 2015 and an additional635

testing set spanning October 2015 to October 2019. We partitioned our training and validation636

data into six month seasons corresponding to winter in the Northern Hemisphere (October–April)637

and the Southern Hemisphere (April–October) and trained models to estimate frequencies of638

populations one year into the future from each season in six-year sliding windows. To calculate639

validation error for each training window, we applied the resulting model coefficients to estimate640

the future frequencies for the year after the last timepoint in the training window. These641

validation errors informed our tuning of hyperparameters. Finally, we fixed the coefficients for642

each model at the mean values across all training windows and applied these fixed models to643

the test data to estimate the true forecasting accuracy of each model on previously unobserved644

data.645

Model comparison by bootstrap tests646

We compared the performance of different pairs of models using bootstrap tests. For each647

timepoint, we calculated the difference between one model’s earth mover’s distance to the future648

and the other model’s distance. Values less than zero in the resulting empirical distribution649

represent when the first model outperformed the second model. To determine whether the650

first model generally outperformed the second model, we bootstrapped the empirical difference651

distributions for n=10,000 samples and calculated the mean difference of each bootstrap sample.652

We calculated an empirical p value for the first model as the proportion of bootstrap samples653

with mean values greater than or equal to zero. This p value represents how likely the mean654

difference between the models’ distances to the future is to be zero or greater. We measured655

the effect size of each comparison as the mean ± the standard deviation of the bootstrap656

distributions. We performed pairwise model comparisons for all biologically-informed models657

against the naive model (Supplemental Figs. S4 and S10). We also compared a subset of658

composite models to their respective individual models (Supplemental Table S4).659

Fitness metrics660

We defined the following fitness metrics per strain and timepoint.661

Antigenic drift662

We estimated antigenic drift for each strain using either genetic or HI data. To estimate663

antigenic drift with genetic data, we implemented an antigenic novelty metric based on the664

“cross-immunity” metric originally defined by  Luksza and Lässig [7]. Briefly, for each pair of665

strains in adjacent seasons, we counted the number of amino acid differences between the strains’666

HA sequences at 49 epitope sites. The one-based coordinates of these sites relative to the start667

of the HA1 segment were 50, 53, 54, 121, 122, 124, 126, 131, 133, 135, 137, 142, 143, 144,668

145, 146, 155, 156, 157, 158, 159, 160, 163, 164, 172, 173, 174, 186, 188, 189, 190, 192, 193,669

196, 197, 201, 207, 213, 217, 226, 227, 242, 244, 248, 275, 276, 278, 299, and 307. We limited670
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pairwise comparisons to all strains sampled within the last five years from each timepoint.671

For each individual strain i at each timepoint t, we estimated that strain’s ability to escape672

cross-immunity by summing the exponentially-scaled epitope distances between previously673

circulating strains and the given strain as in Equation 5. We defined the constant D0 = 14,674

as in the original definition of cross-immunity [7]. To compare these epitope sites with other675

previously published sites, we fit epitope antigenic novelty models based on sites defined by676

Wolf et al. 2006 [27] and Koel et al. 2013 [28].677

fi,ep(t) =
∑

j:tj<ti

−max(xj) exp (−Dep(ai, aj)/D0) (5)

To test the historical contingency of the epitope sites defined above, we additionally identified a678

new set of sites with beneficial mutations across the training/validation period of October 1990679

through October 2015. Following the general approach of Shih et al. [22], we manually identified680

25 sites in HA1 where mutations rapidly swept through the global population. We required681

mutations to emerge from below 5% global frequency and reach >90% frequency. Although we682

did not require sweeps to complete within a fixed amount of time, we observed that they required683

no longer than one to three years to complete. To minimize false positives, we eliminated any684

sites where one or more mutations rose above 20% frequency and subsequently died out. If685

two or more sites had redundant sweep dynamics (mutations emerging and fixing at the same686

times), we retained the site with the most mutational sweeps. Based on this requirements, we687

defined our final collection of “oracle” sites in HA1 coordinates as 3, 45, 48, 50, 75, 140, 145,688

156, 158, 159, 173, 186, 189, 193, 198, 202, 212, 222, 223, 225, 226, 227, 278, 311, and 312.689

To estimate antigenic drift with HI data, we first applied the titer tree model to the phylogeny690

at a given timepoint and the corresponding HI data for its strains, as previously described by691

Neher et al. 2016 [10]. This method effectively estimates the antigenic drift per branch in units692

of log2 titer change. We selected all strains with nonzero frequencies in the last six months693

as “current strains” and all strains sampled five years prior to that threshold as “past strains”.694

Next, we calculated the pairwise antigenic distance between all current and past strains as the695

sum of antigenic drift weights per branch on the phylogenetic path between each pair of strains.696

Finally, we calculated each strain’s ability to escape cross-immunity using Equation 5 with the697

pairwise distances between epitope sequences replaced with pairwise antigenic distance from HI698

data. As with the original epitope antigenic novelty described above, this HI antigenic novelty699

metric produces higher values for strains that are more antigenically distinct from previously700

circulating strains.701

Functional constraint702

We estimated functional constraint for each strain using either genetic or deep mutational703

scanning (DMS) data. To estimate functional constraint with genetic data, we implemented the704

non-epitope mutation metric originally defined by  Luksza and Lässig [7]. This metric counts705

the number of amino acid differences at 517 non-epitope sites in HA sequences between each706
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strain i at timepoint t and that strain’s most recent inferred ancestral sequence in the previous707

season (t− 1).708

We estimated functional constraint using mutational preferences from DMS data as previously709

defined [11]. Briefly, mutational effects were defined as the log ratio of DMS preferences, π, at710

site r for the derived amino acid, ai, and the ancestral amino acid, aj. As with the non-epitope711

mutation metric above, we considered only substitutions in HA between each strain i and that712

strain’s most recent inferred ancestral sequence in the previous season. We calculated the total713

effect of these substitutions as the sum of the mutational preferences for each substitution, as in714

Equation 6.715

fi,DMS(t) =
∑

r∈r,ai!=r,aj

log2

πr,ai
πr,aj

(6)

To determine whether DMS preferences could be used to define fitness metrics that were less716

dependent on the historical context of the background strain, we implemented two additional717

DMS-based metrics: “DMS entropy” and “DMS mutational load”. For both metrics, we718

calculated the distance between HA amino acid sequences of each strain and its ancestral719

sequence in the previous season, to enable comparison of these metrics with the DMS mutational720

effects and mutational load metrics. For the “DMS entropy” metric, we calculated the distance721

between sequences such that each mismatch was weighted by the inverse entropy of DMS722

preferences at the site of the mismatch. We expected this metric to produce a negative723

coefficient similar to the mutational load metric, as higher values will result from mutations at724

sites with lower entropy and, thus, lower tolerance for mutations. For the “DMS mutational725

load” metric, we defined a novel set of non-epitope sites corresponding to each position in726

HA with a standardized entropy less than zero. With this metric, we sought to identify more727

highly conserved sites without weighting any one site differently from others. We anticipated728

that this lack of site-specific weighting would make the DMS mutational load metric even less729

background-dependent than the DMS entropy and DMS mutational effect metrics.730

Clade growth731

We estimated clade growth for each strain using local branching index (LBI) and the change in732

frequency over time (delta frequency). To calculate LBI for each strain at each timepoint, we733

applied the LBI heuristic algorithm as originally described [9] to the phylogenetic tree constructed734

at each timepoint. We set the neighborhood parameter, τ , to 0.3 and only considered viruses735

sampled in the last 6 months of each phylogeny as contributing to recent clade growth.736

We estimated the change in frequency over time by calculating clade frequencies under a737

Brownian motion diffusion process as previously described [11]. These frequency calculations738

allowed us to assign a partial clade frequency to each strain within nested clades. We calculated739

the delta frequency as the change in frequency for each strain between the most recent timepoint740

in a given phylogeny and six months prior to that timepoint divided by 0.5 years.741
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Clustering of amino acid sequences for visualization742

For the purpose of visualizing related amino acid sequences in Fig. 1, we applied dimensionality743

reduction to pairwise amino acid distances followed by hierarchical clustering. Specifically, we744

selected a representative tree from our simulated population of viruses at month 10 of year745

30. From this tree, we selected all strains with a collection date in the previous two years. We746

calculated the pairwise Hamming distance between the full-length HA amino acid sequences for747

all selected strains and applied t-SNE dimensionality reduction [44] to the resulting distance748

matrix (n=2 components, perplexity=30.0, and learning rate=400). We assigned each strain to749

a cluster based on its two-dimensional t-SNE embedding using DBSCAN [45] with a maximum750

neighborhood distance of 10 AAs and a minimum of 20 strains per cluster. Despite known751

limitations of applying hierarchical clustering to manifold projections that do not preserve752

sample density, this approach allowed us to effectively assign strains to qualitative genetic753

clusters for the purposes of visualization.754

Data and software availability755

All source code, configuration files, and datasets are available at https://github.com/blab/flu-756

forecasting.757
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Supplemental Material916

Supplemental Figures917

20 25 30 35 40 45 50
Date

Training
Validation
Test

Figure S1. Time-series cross-validation scheme for simulated populations. Models were trained in six-
year sliding windows (gray lines) and validated on out-of-sample data from validation timepoints (filled
circles). Validation results from 30 years of data were used to iteratively tune model hyperparameters.
After fixing hyperparameters, model coefficients were fixed at the mean values across all training
windows. Fixed coefficients were applied to 9 years of new out-of-sample test data (open circles) to
estimate true forecast errors.
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Figure S2. Phylogeny of H3N2-like HA sequences sampled between the 24th and 30th years of
simulated evolution. The phylogenetic structure and rate of accumulated epitope and non-epitope
mutations match patterns observed in phylogenies of natural sequences. Sample dates were annotated
as the generation in the simulation divided by 200 and added to 2000, to acquire realistic date ranges
that were compatible with our modeling machinery.
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Figure S3. Composite model coefficients and distances to the future for models fit to simulated
populations. A) Coefficients and B) distances are shown per validation timepoint and test timepoint
as in Fig. 2.
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Figure S4. Bootstrap distributions of the mean difference of distances to the future between
biologically-informed and naive models for simulated populations. Empirical differences in distances to
the future were sampled with replacement and mean values for each bootstrap sample were calculated
across n=10,000 bootstrap iterations. The horizontal gray line indicates a difference of zero between a
given model and its corresponding naive model. Each model is annotated by the mean ± the standard
deviation of the bootstrap distribution. Models are also annotated by the p-value representing the
proportion of bootstrap samples with values less than zero (see Methods).
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Figure S5. Validation of best model for simulated populations of H3N2-like viruses. A) The correlation
of estimated and observed clade frequency fold changes shows the model’s ability to capture clade-level
dynamics without explicitly optimizing for clade frequency targets. B) The rank of the estimated best
strain based on its distance to the future for 33 timepoints. The estimated best strain was in the top
20th percentile of observed closest strains for 100% of timepoints, confirming that the model makes a
good choice when forced to select a single representative strain for the future population. C) Absolute
forecast error for clades shown in A by their initial frequency with a mean LOESS fit (solid black line)
and 95% confidence intervals (gray shading) based on 100 bootstraps. D) The correlation of all strains
at all timepoints by the percentile rank of their observed and estimated distances to the future. The
corresponding results for the naive model are shown in Supplemental Fig. S6.
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Figure S6. Validation of naive model for simulated populations of H3N2-like viruses as in Supplemental
Fig. S5. Note that the naive model sets future frequencies to current frequencies such that there is no
estimated fold change in frequencies for the first panel.
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Figure S7. Test of naive model for simulated populations of H3N2-like viruses as in Supplemental
Fig. S5. Note that the naive model sets future frequencies to current frequencies such that there is no
estimated fold change in frequencies for the first panel.
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2000 2005 2010 2015
Date

Training
Validation
Test

Figure S8. Time-series cross-validation scheme for natural populations. Models were trained in six-
year sliding windows (gray lines) and validated on out-of-sample data from validation timepoints (filled
circles). Validation results from 25 years of data were used to iteratively tune model hyperparameters.
After fixing hyperparameters, model coefficients were fixed at the mean values across all training
windows. Fixed coefficients were applied to four years of new out-of-sample test data (open circles) to
estimate true forecast errors.
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Figure S9. Model coefficients and distances to the future for antigenic novelty models fit to natural
populations. A) Coefficients and B) distances are shown per validation timepoint and test timepoint
as in Fig. 2. The epitope antigenic novelty model relies on previously published epitope sites [7]. The
“oracle” antigenic novelty model relies on sites of beneficial mutations that were manually identified
from the entire training and validation time period (Methods). The improved performance of the
“oracle” model indicates that the sequence-based antigenic novelty metric can be effective when sites of
beneficial mutations are known prior to forecasting.
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Figure S10. Bootstrap distributions of the mean difference of distances to the future between
biologically-informed and naive models for natural populations. Empirical differences in distances to
the future were sampled with replacement and mean values for each bootstrap sample were calculated
across n=10,000 bootstrap iterations. The horizontal gray line indicates a difference of zero between a
given model and its corresponding naive model. Each model is annotated by the mean ± the standard
deviation of the bootstrap distribution. Models are also annotated by the p-value representing the
proportion of bootstrap samples with values less than zero (see Methods).

44

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2020. ; https://doi.org/10.1101/2020.06.12.145151doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.12.145151
http://creativecommons.org/licenses/by/4.0/


2 1 0 1
Observed log10 fold change

2

1

0

1
Es

tim
at

ed
 lo

g 1
0 f

ol
d 

ch
an

ge

Growth accuracy = 0.87
Decline accuracy = 0.89
Pearson R2 = 0.35
N = 209

  0%  20%  40%  60%  80% 100%
Percentile rank by distance
for estimated best strain

0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f t
im

ep
oi

nt
s

median = 1%

  0%  20%  40%  60%  80% 100%
Initial clade frequency

  0%

 20%

 40%

 60%

 80%

100%

Ab
so

lu
te

 fo
re

ca
st

 e
rro

r

  0%  20%  40%  60%  80% 100%
Observed percentile rank

  0%

 20%

 40%

 60%

 80%

100%

Es
tim

at
ed

 p
er

ce
nt

ile
 ra

nk

Spearman 2 = 0.66

A B

C D

Figure S11. Validation of best model for natural populations of H3N2 viruses, the composite model
of mutational load and LBI. A) The correlation of estimated and observed clade frequency fold changes
shows the model’s ability to capture clade-level dynamics without explicitly optimizing for clade
frequency targets. B) The rank of the estimated best strain based on its distance to the future for
23 timepoints. The estimated best strain was in the top 20th percentile of observed closest strains
for 87% of timepoints, confirming that the model makes a good choice when forced to select a single
representative strain for the future population. C) Absolute forecast error for clades shown in A by
their initial frequency with a mean LOESS fit (solid black line) and 95% confidence intervals (gray
shading) based on 100 bootstraps. D) The correlation of all strains at all timepoints by the percentile
rank of their observed and estimated distances to the future. The corresponding results for the naive
model are shown in Supplemental Fig. S12.
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Figure S12. Validation of naive model for natural populations of H3N2 viruses as in Supplemental
Fig. S5. Note that the naive model sets future frequencies to current frequencies such that there is no
estimated fold change in frequencies for the first panel.
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Figure S13. Test of naive model for natural populations of H3N2 viruses as in Supplemental Fig. S5.
Note that the naive model sets future frequencies to current frequencies such that there is no estimated
fold change in frequencies for the first panel.
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Figure S14. Model coefficients and distances to the future for best composite models and a FRA-
based composite fit to recent data from natural populations as in Fig. 2. A) Coefficients and B)
distances are shown per test timepoint (N=8). In contrast to the results for these models based on
fixed coefficients from training/validation, these coefficients were learned for each six-year window
prior to the corresponding test timepoint. The corresponding distances reflect the model’s performance
with updated coefficients on what is effectively new validation data. The naive model’s distance to the
future was 6.82 ± 1.74 AAs for these timepoints.

Supplemental Tables918

epitope mutations non-epitope mutations epitope-to-non-epitope ratio
branch type

side branch 590 1327 0.44
trunk 23 12 1.92

Table S1. Number of epitope and non-epitope mutations per branch by trunk or side branch status
for simulated populations. Epitope sites were defined previously described [7]. Annotation of trunk
and side branch was performed as previously described [35]. Mutations were calculated for the full
validation tree for simulated sequences samples between October of years 10 and 40.
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epitope mutations non-epitope mutations epitope-to-non-epitope ratio
branch type

side branch 485 1177 0.41
trunk 50 32 1.56

Table S2. Number of epitope and non-epitope mutations per branch by trunk or side branch status
for natural populations. Epitope sites were defined previously described [7]. Annotation of trunk
and side branch was performed as previously described [35]. Mutations were calculated for the full
validation tree for natural sequences samples between 1990 and 2015.

Distance to future (AAs) Model > naive
Model Coefficients Validation Test Validation Test

mutational load -0.68 +/- 0.34 5.44 +/- 1.80* 7.70 +/- 3.53 18 (78%) 4 (50%)
+ LBI 1.03 +/- 0.40

LBI 1.12 +/- 0.51 5.68 +/- 1.91* 8.40 +/- 3.97 17 (74%) 2 (25%)
oracle antigenic novelty 0.80 +/- 0.21 5.71 +/- 1.27ˆ 8.06 +/- 2.49ˆ 18 (78%) 2 (25%)
HI antigenic novelty 0.89 +/- 0.23 5.82 +/- 1.50* 5.97 +/- 1.47* 17 (74%) 6 (75%)

+ mutational load -1.01 +/- 0.42
HI antigenic novelty 0.90 +/- 0.23 5.84 +/- 1.51* 5.99 +/- 1.46* 16 (70%) 6 (75%)

+ mutational load -1.00 +/- 0.44
+ LBI -0.04 +/- 0.09

HI antigenic novelty 0.83 +/- 0.20 6.01 +/- 1.50* 6.21 +/- 1.44* 16 (70%) 7 (88%)
delta frequency 0.79 +/- 0.47 6.13 +/- 1.71* 6.90 +/- 2.30 16 (70%) 5 (62%)
mutational load -0.99 +/- 0.30 6.14 +/- 1.37* 6.53 +/- 1.39 17 (74%) 6 (75%)
Koel epitope antigenic novelty 0.28 +/- 0.36 6.22 +/- 1.26ˆ 6.72 +/- 1.51ˆ 18 (78%) 4 (50%)
naive 0.00 +/- 0.00 6.40 +/- 1.36 6.82 +/- 1.74 0 (0%) 0 (0%)
DMS entropy -0.03 +/- 0.10 6.40 +/- 1.36ˆ 6.81 +/- 1.73ˆ 9 (39%) 6 (75%)
DMS mutational load -0.02 +/- 0.13 6.45 +/- 1.42ˆ 6.82 +/- 1.73ˆ 7 (30%) 5 (62%)
epitope ancestor 0.53 +/- 0.52 6.60 +/- 1.34 6.53 +/- 1.51 12 (52%) 4 (50%)

+ mutational load -0.77 +/- 0.32
DMS mutational effects 1.25 +/- 0.84 6.75 +/- 1.95 7.80 +/- 2.97 11 (48%) 4 (50%)
Wolf epitope antigenic novelty 0.31 +/- 0.51 6.83 +/- 1.30ˆ 6.97 +/- 1.41ˆ 4 (17%) 3 (38%)
epitope ancestor 0.23 +/- 0.51 6.89 +/- 1.39ˆ 6.82 +/- 1.67ˆ 8 (35%) 4 (50%)
epitope antigenic novelty 0.57 +/- 0.77 6.89 +/- 1.42 6.46 +/- 1.31 7 (30%) 4 (50%)

+ mutational load -0.77 +/- 0.27
epitope antigenic novelty 0.52 +/- 0.73 7.13 +/- 1.47 6.70 +/- 1.51 7 (30%) 5 (62%)

Table S3. All model coefficients and performance on validation and test data for natural populations
ordered from best to worst by distance to the future, as in Table 1. Distances annotated with
asterisks (*) were significantly closer to the future than the naive model as measured by bootstrap
tests (see Methods and Supplemental Fig. S10). Distances annotated with carets (∧) were not tested
for significance relative to the naive model. Validation results are based on 23 timepoints. Test results
are based on eight timepoints not observed during model training and validation. Model results for
additional variants of fitness metrics including those based on epitope mutations and DMS preferences
are included for reference.
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sample error type individual model composite model bootstrap mean bootstrap std p value

simulated validation true fitness mutational load + LBI 0.42 0.23 0.9644
simulated validation mutational load mutational load + LBI -1.03 0.21 <0.0001
simulated validation LBI mutational load + LBI -0.33 0.14 0.0091
simulated test true fitness mutational load + LBI -0.28 0.26 0.1392
simulated test mutational load mutational load + LBI -1.11 0.25 <0.0001
simulated test LBI mutational load + LBI -0.42 0.16 0.0001
natural validation mutational load mutational load + LBI -0.69 0.28 0.0036
natural validation LBI mutational load + LBI -0.23 0.09 0.0025
natural validation mutational load mutational load + HI antigenic novelty -0.31 0.18 0.0417
natural validation HI antigenic novelty mutational load + HI antigenic novelty -0.18 0.11 0.0513
natural test mutational load mutational load + LBI 1.19 0.79 0.9432
natural test LBI mutational load + LBI -0.70 0.24 <0.0001
natural test mutational load mutational load + HI antigenic novelty -0.56 0.33 0.0133
natural test HI antigenic novelty mutational load + HI antigenic novelty -0.24 0.18 0.0999

Table S4. Comparison of composite and individual model distances to the future by bootstrap test
(see Methods). The effect size of differences between models in amino acids is given by the mean and
standard deviation of the bootstrap distributions. The p values represent the proportion of n=10,000
bootstrap samples where the mean difference was greater than or equal to zero.
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