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Abstract 
 
Pancreatic Neuroendocrine Neoplasms (PanNENs) comprise a rare and heterogeneous 

group of tumors derived from neuroendocrine cells of the pancreas. Despite recent 

genetic and epigenetic characterization, biomarkers for improved patient stratification and 

personalized therapy are sparse and targeted therapies, including the mTOR inhibitor 

Everolimus, have shown limited success. To better define PanNENs tumors we 

performed multi-omic analyses on 59 tumors with varying grades (NET G1, NET G2, NET 

G3 and NEC), combining mutational profiling with epigenetic analysis and targeted 

proteomics. An unsupervised approach using DNA methylation profiles uncovered two 

major subgroups in PanNENs resembling α-like and β-like cells. DNA copy number 

analysis further divided the α-like subgroup into two distinct groups, indicating differential 

mechanisms of tumorigenesis from α-cells. β-like tumors however showed two distinct 

groups at the epigenetic level and suggest NET G3/NEC samples are of β-cell origin. 

DNA mutation profiling clearly separated α and β-cell derived PanNENs, whereby only α-

like tumors had mutations within MEN1/DAXX/ATRX tumor suppressor genes. Targeted 

proteomic analysis further indicated overexpression of distinct components of the mTOR 

pathway. Our data provide further insights into the potential mechanisms behind PanNEN 

heterogeneity and form a basis for future diagnostic and therapy relevant patient 

stratification.  
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Introduction 
 
Pancreatic Neuroendocrine Neoplasms (PanNENs) are rare tumors, with an incidence of 

approximately 0.5 in 100,000 cases they represent less than 3% of all pancreatic 

neoplasms 1. PanNENs originate from the islets of Langerhans, which are composed of 

five hormone-producing cells; alpha (α), beta (β), delta (δ), epsilon(ε) and pancreas 

polypeptide (PP) cells. Functional PanNENs produce hormones which trigger medical 

conditions leading to the initial tumor diagnosis. However, the majority of PanNENs are 

non-functional; these tumors often remain undetected until their growth causes other 

symptoms2. PanNENs are classified as either well-differentiated Neuroendocrine Tumors 

(PanNETs) or poorly-differentiated Neuroendocrine Carcinomas (PanNECs PanNENs)3. 

PanNETs are graded by their proliferative index into G1, G2 or G3 tumors with an 

increasingly malignant nature. PanNECs are by default G3, since they have a high 

proliferation rate combined with de-differentiation of the cells, resulting in an aggressive 

phenotype and poor prognosis3.  

The mainstay for PanNEC systemic treatment is platinum-based chemotherapy4,5, while 

additional targeted therapies have been approved for the well-differentiated PanNETs. 

These comprise Sunitinib, a multi-tyrosine kinase receptor inhibitor 6–8 and Everolimus, 

an inhibitor of the mammalian/mechanistic Target Of Rapamycin Complex 1 (mTORC1) 
9,10. Upregulation of the mTOR pathway has also been identified at the genetic and 

expression level in PanNENs, yet no biomarker for patient stratification has been 

implemented until now 11,12. Clinical trials employing either Sunitinib or Everolimus often 

showed disease stabilization resulting in increased progression-free survival 13–15. 

However, both therapy regimens do not result in complete remission, and secondary 

resistance and relapse inevitably arise in patients. 

In general, PanNENs are characterized by few recurring driver mutations. The most 

frequent alterations are missense variants and large base-pair deletions detected within 

MEN1, encoding the Menin protein  (37%) 12,16,17. MEN1 is  a tumor suppressor involved 

in chromatin remodeling, but also regulating mTOR signaling, and DNA damage repair 
18–20. Additionally, PanNEN mutations are detected in DAXX and ATRX (25% and 18%, 
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respectively) 21,22, encoding a multifunctional protein and an ATPase/helicase, 

respectively. Both proteins maintain genomic stability by repressing telomeric 

lengthening. Furthermore, genes involved in mTOR/PI3K/AKT signaling axes such as 

PTEN and TSC2 have been implicated in PanNET tumorigenesis12,16. In contrast, 

PanNECs are characterized by mutations in KRAS, TP53, and RB 4,23.  

In addition to driver mutations affecting individual genes, copy number aberrations (CNA) 

have been used to characterize these tumors16,24–26. Recent work has revealed four 

distinct subtypes based on chromosome arm length CNA patterns: i) recurring copy 

number losses of specific chromosomes, ii) limited copy number events with mostly loss 

of chromosome 11, iii) polyploidy tumors and iv) aneuploidy tumors 16. In addition, the first 

two groups harbor MEN1 mutations in combination with loss of chromosome 11, resulting 

in a bi-allelic inactivation of this tumor suppressor gene24. The aneuploid tumors also 

show frequent DAXX/ATRX loss of expression along with an alternative telomerase 

lengthening phenotype 25. 

Comparison of PanNEN MEN1/DAXX/ATRX-mutated and -wildtype subgroups by whole 

transcriptome profiling revealed a gene expression signature similar to α-cells of the Islets 

of Langerhans only in the mutant group27. The specific signature showed a strong 

expression of the well-established α-cell-specific transcription factor ARX. Classification 

of non-functional PanNENs into two major subgroups resembling islet α- and β-cells was 

further confirmed by histone modification-based epigenetic stratification and gene 

expression28. Active enhancer marks in combination with expression of the ARX gene 

specifically characterized α-cell-like samples, while PDX1 exhibited similar epigenetic 

and expression profile in a subgroup characterizing β-cell-like samples. In addition to this 

subgrouping resembling distinct cell types of the Islets of Langerhans, it also became 

clear that α-like samples have a higher relapse rate and a worse prognosis28. 

Despite the growing body of information about PanNENs on multi-genomic (mutations 

and CNA) and epigenetic levels, these layers have not yet been considered in an 

integrated manner. Such an approach is challenging, because PanNENs represent a 

heterogeneous group in terms of prognosis and response to specific therapies. Here, we 

conducted a multi-genomic approach to provide a comprehensive characterization of 
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PanNENs. Additionally, and for the first time in the context of PanNENs, we also 

conducted a multi-protein study using patient samples. We identified α-like and β-like 

subgroups that strongly stratify patients at the multi-omics levels. Alpha-like tumors were 

PDX1 hypermethylated and IRX2 hypomethylated, harbored MEN1/ATRX/DAXX 

mutations and often exhibited an amplification-rich CNA signature. Beta-like tumors 

appeared more heterogeneous, displaying a PDX1 hypomethylated and IRX2 

hypermethylated profile. Furthermore, NEC and NET G3 samples clustered within the β-

like group and carried additional hypermethylation of various transcription factors involved 

in differentiation and maintenance of islet cells.   
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Results 
 

Sample characteristics 
 
To characterize and classify PanNEN tumors we performed methylation analysis, DNA 

sequencing and protein level analysis from 59 tumors in total. Samples used for each 

assay and their characteristics are shown in Figure 1a, further details are depicted in 

Supplementary Table 1. The cohort includes tumors of grades NET G1 (27) and NET G2 

(25) NET G3 (4), and NEC (3), 45 samples were primary PanNENs and 14 were 

metastases (8 liver, 6 lymph nodes). As healthy control we used matched adjacent 

healthy (24) or distant healthy tissue (27) or blood (4) from the same patient. 

 
DNA methylation classification identifies two PanNEN groups 
 
To determine PanNEN subtypes we analyzed the methylome of 36 tumors from our 

cohort using the EPIC 850K bead chip array. We utilized a previously published method 

to first determine groups within the cohort by clustering probes found in close proximity 

together29 (Supplementary Figure 1a). We used the 8000 most variable probe clusters to 

perform unsupervised class discovery (Supplementary Figure 1b and methods for 

details). The 8000 most variable probe clusters defined two main subgroups at the 

methylation level; group A and group B (Figure 1b, Supplementary Figure 1c). Methylation 

beta values from the 8000 probe clusters revealed notable distinction between group A 

and group B (Figure 1c). Group A had both hypermethylated and hypomethylated 

patterns, while group B carried hypermethylated features across all variable probe 

clusters. The single sample that formed group C showed overall hypomethylation across 

the probe clusters; this sample was considered an outlier and removed from further 

analysis. A principal component analysis (PCA) of the 8000 probe cluster methylation β 

values further highlights the distinction between group A and group B (Figure 1c). Next, 

differentially methylated probe (DMP) analysis of the two groups led to discovery of more 

than 50,000 probes distinguishing the groups (Supplementary Table 2). Hierarchical 

clustering of samples using DMPs reconstructed the groups defined by the probe clusters 
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(Supplementary Figure 1d). PCA of DMP confirmed two discrete clusters based upon the 

identified groups, with 40.71% variation described by PC1 (Supplementary Figure 1e). 

The majority of the DMPs were associated with gene body and intergenic gene regional 

probes located in open sea CpG positions of the genome (Supplementary Figure 1f). 

Pearson correlation analysis revealed strong correlation between samples within group 

A and, albeit to a lesser extent, samples within group B (Supplementary Figure 1g).  

We next examined pathways of genes associated with DMPs. Reactome pathway 

analysis identified 22 significantly enriched pathways (padj < 0.05) (Figure 1d), the most 

significant was transcription factor AP-2 alpha (TFAP2) regulating receptors and ligands. 

A closer look at the genes belonging to this pathway identified several genes strongly 

different between group A and group B (mean abs(Δβ) ≥ 0.2) (Figure 1e, Supplementary 

Figure 1h). These are epidermal growth factor family receptors and ligands (EGFR, 

ERBB2, TGFA) and Glycoprotein Hormones, Alpha Polypeptide (CGA) as well as 

tyrosine-protein kinase KIT and vascular endothelial growth factor A (VEGFA). Probes 

within the identified genes were found predominantly hypomethylated in group A and 

strongly hypermethylated in group B. With the exception of ERBB2 and CGA, the majority 

of probes that showed differential methylation were located in gene bodies (Figure 1e). 

In summary, using differential methylation analysis of PanNENs we identified two clear 

subgroups of tumors. The tumor samples in group A and group B differed strongly from 

each other in methylation patterns, particularly by key regulators in growth factors 

involved in tumor growth and angiogenesis. 

 

PanNEN groups show distinct cell-of-origin methylation features belonging 
to α and β pancreatic islet cells  
 
We next sought to identify and characterize PanNENs belonging to the identified 

subgroups using the imprinted cell-of-origin pattern persistent in the tumor entity. We first 

explored recently published single-cell sequencing data and Gene Ontology database to 

identify islet cell associated marker genes30–32 (marker list in Supplementary Table 3). We 

investigated markers which define islet cell differentiation and maintenance at the 

expression level and which are both early and late islet cell differentiation markers. In 
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total, we identified 63 markers from which we detected 44 markers associated with the 

DMPs from our analysis (Figure 2a) (Supplementary Table 4). The DMPs associated with 

the cell differentiation markers showed enrichment in gene bodies (Supplementary Figure 

2a). Genes with differentially methylated regions (mean abs(Δβ) > 0.15) (Supplementary 

Figure 2b) and those represented in more than one publication/database (in total 15 

genes) were further evaluated in our cohort (Figure 2b). The resulting distribution of probe 

beta values between group A and group B within these 15 genes showed 

hypermethylation in group B in the majority of genes except PDX1, ETV1 and BMP5, 

which were hypermethylated in group A. 

Methylated gene probes in PDX1, encoding a β-cell maintenance marker, showed the 

largest difference between group A and group B tumors (mean abs(Δβ) = 0.34) (Figure 

2b). PDX1 is found hypermethylated within group A tumors, with the exception of 3 cases, 

PNET52, PNET25 and PNET91, which are the only known insulinomas of the cohort 

(Figure 2c). These samples showed gene body hypermethylation of HHEX, a d-cell 

maintenance factor. HHEX maintained hypomethylated state in the remaining group A 

sample set. The known β-cell marker MEG3 was found with patterns of hypomethylation 

in a subset of group A (Figure 2c). In contrast, IRX2, an α-specific transcription factor, is 

largely hypermethylated in tumors belonging to group B (mean abs(Δβ) = 0.26) (Figure 

2b). Based on this pattern of differentially methylated lineage-specific genes in group A 

and B, and the exclusive expression pattern of the aforementioned genes by α- and β-

cells of the pancreas, we conclude that group A and group B profiles resemble α- and β-

cells, respectively.  

Eight additional genes harboring DMPs included further islet cell-type specific markers 

(also representing δ-cells, and PP-cells) as well as pan-endocrine markers of various 

developmental stages of islet formation (NKX6-1, SIX3, MEIS1, MEIS2, ID4, NKX2-2, 

MAFB, PAX6 and NEUROD1). Interestingly, these markers further subdivided group B 

into hypo- and hypermethylated subclasses. In general, NET G2, NET G3 and NEC 

samples clustered within the hypermethylation subclass of group B, while G1 grade 

samples were hypomethylated for these markers.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.12.146811doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.12.146811
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

In conclusion, we have identified epigenetic patterns related to α-cell differentiation in 

tumors of group A and patterns related to β-cell differentiation in tumors of group B. We 

find high grade PanNET and PanNEC tumors, in addition to maintaining a β-cell 

signature, to be further distinguished by global hypermethylation of islet cell lineage 

markers.  

 
MEN1/DAXX/ATRX mutations were an exclusive feature of group A 
subgroup  
 
To link differential methylation profiles of PanNENs with gene mutations we designed a 

custom panel targeting 47 PanNEN-specific genes (Supplementary Table 5; details of 

panel design in material and methods). Additionally, a sample harboring no mutation in 

PanNEN panel genes was sequenced using the Comprehensive Cancer Panel (CCP). In 

total, 35 samples harbored alterations among the targeted genes (Supplementary Figure 

3a). Among the samples which were analyzed at both the DNA and methylation level, we 

find 62% (n=22) of samples with DNA mutations belonged to either group A or B (Figure 

3). The most frequently altered gene in our cohort was MEN1 (34%) followed by DAXX 

(14%) and ATRX (7%) (Supplementary Figure 3a shows 59 samples investigated by DNA 

sequencing). Alteration in these tumor suppressor genes were overrepresented in group 

A while the majority of group B samples did not show known driver mutations associated 

with PanNENs (Figure 3). TSC2 alterations were also present in three samples, of which 

two belonged to group A. The third case was a NEC, which explains its clustering to group 

B. In total, 24 samples contained no known driver mutations (Supplementary Figure 3a) 

(note all mutations discussed are non-synonymous, deletions or indels, for intronic and 

synonymous mutations; see original data). With the exception of five variants, all identified 

driver alterations had an allele frequency above 10% (Supplementary Figure 3b; list of all 

mutations and allele frequencies in Supplementary Table 6). 

 
DNA copy number analysis identified three signatures in PanNENs 
 
To explore copy number alterations (CNAs) in PanNENs we first inferred signal intensities 

from methylation log2 ratios. Next, in order to identify CNA signatures, we generated a 
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cumulative chromosomal aberration score (C-CAS), which is the sum of log2 ratios of the 

chromosomal intensities per patient (see method for details). Based on the C-CAS values, 

the samples in our cohort were divided into amplification-rich CNA (𝐶 − 𝐶𝐴𝑆	 > 	1), 

deletion-rich CNA (𝐶 − 𝐶𝐴𝑆	 < 	0) and low-CNA (0 ≤ 𝐶 − 𝐶𝐴𝑆	 < 1	) groups (Figure 4a). 

Euclidean hierarchical clustering of the data with no prior knowledge of C-CAS values 

generated clustering of samples similar to C-CAS directed clustering (Supplementary 

Figure 4b). Using CNA profiles, we found NET G1 samples were enriched in the low-CNA 

signature group (Figure 4a). The amplification-rich CNA signature predominantly 

harbored recurring copy number gain in multiple chromosomes, where gain in 

chromosomes 5, 7 and 14 was found in 90% of samples, and gain in chromosomes 18, 

4 and 9 was found in 72- 63% of the samples. The tumors within the amplification-rich 

CNA signature group predominantly belonged to group A. The deletion-rich signature 

group harbored losses in multiple chromosomes, with recurring loss seen mainly in 

chromosome 11, 21 and 16. Loss of chromosome 11 was present in 69% of the deletion-

rich CNA group, followed by loss of chromosome 21 and 16, each occurring in 46% of the 

deletion-rich CNA samples. Tumor suppressor gene mutations combined with CNA loss 

in the corresponding chromosome was a predominant feature of the deletion-rich 

signature. This was evident in MEN1, DAXX, TSC2, VHL and TP53 together with loss in 

chromosome 11, 6, 16, 3, and 17 respectively (Figure 4a, mutation status panel). Tumors 

in low-CNA and deletion-rich signatures harbored samples from both groups A and group 

B. 

We performed fluorescent in situ hybridization (FISH) analysis on 18 samples to validate 

CNA results. We studied CNA gains using FISH probes for RICTOR and TGFBR1 for 

chromosome 5 and 9, respectively. CNA loss in chromosome 11 was investigated with a 

MEN1 FISH probe for chromosome 11 (Figure 4b). Signal counts per cell from FISH and 

log2 ratio from CNA analysis were correlated and show a regression coefficient of R2 

0.6531 and p=6.243 x 107 (Figure 4c). Representative images are displayed in Figure 4d. 

Taken together, we have identified three distinct CNA signatures based on overall copy 

number changes. Amplification-rich CNA samples, with predominant gains were mainly 

in group A. Deletion-rich CNA samples with predominant chromosome losses and a tumor 
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suppressor inactivation phenotype were seen both in group A and B.  Low-CNA samples 

with few copy number aberrations were found specifically in low grade samples belonging 

to both group A and B. 

 

Proteomic analysis revealed differences in mTOR pathway component levels 
in the PanNEN groups.  
 

To further characterize the PanNEN tumor groups identified by methylome analysis, we 

investigated cellular signaling in 14 tumor samples with matched normal tissues (nine 

tumors from group A and five from group B). We utilized DigiWest, a high-throughput 

western blot approach, to quantify proteins and to test differential abundance between α-

like (group A) and β-like (group B) PanNEN tumors.  

Initially, 86 analytes were tested with our cohort using the DigiWest analysis tool 

(Supplementary Table 7)33. We extracted 49 analytes which displayed less than 10% 

background (Supplementary Table 8 and see methods for details). Hierarchical clustering 

of fold change of these 49 analytes clustered group A and group B (Figure 5a). Differential 

expression analysis of group A and group B tumors identified 8 candidate proteins (padj 

< 0.05) (Figure 5b). Tumors in group A showed a significantly increased level of GSK3β 

and elF4E, both members of the mTOR pathway, as compared to group B (>2.5 fold 

increase in group A). In addition, ILK1, an integrin-linked kinase upstream of GSK3ß and 

AKT, showed significant abundance in group A compared to group B. Total proteins levels 

of the Hippo pathway component RASSF2 as well as the apoptosis regulator MCL-1 were 

also increased in group A compared to group B. Thus, our proteomic analysis identified 

differential protein abundance between α-like (group A) and β-like (group B) PanNEN 

tumors. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.12.146811doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.12.146811
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

Discussion 
 

Our study presents novel subgroups within PanNENs and highlights that inter-patient 

heterogeneity is evident at multiple biological levels. Methylation-based identification of 

cell-of-origin has proven to be the method of choice for cancer subtyping in the past 

years34,35. Using genome-wide methylation profiling we identified two main cell-of-origin 

based tumor subtypes: α-like tumors, with a low inter-patient heterogeneity and beta (β)-

like tumors displaying a stronger heterogeneity.  

To gain insight into the islet cell type underlying PanNEN samples, information from single 

cell sequencing approaches was employed to identify highly expressed marker genes for 

individual islet cells30–32,36. Cross referencing the list with differentially methylated probes 

indicated gene body and promoter methylation of these marker genes (Figure 2). Single 

cell analysis of Islets of Langerhans has shown that expression of PDX1 and ARX/IRX2 

is exclusive to β-cells and α-cells, respectively. PDX1 drives differentiation of the early 

pancreatic epithelium and maintains the hormone-secreting phenotype of β-cells37,38. Our 

data showed hypomethylation within promoter and gene-body of PDX1 in the β-like 

samples, while maintaining a hypermethylated state in α-like samples. In contrast, IRX2, 

a target gene of the α-cell maintenance transcription factor ARX39, reveals 

hypomethylation within the α-like subgroup, but hypermethylation within the β-like 

samples. The differential methylation within the IRX2 gene between the groups was 

predominant in gene-body as compared to the promoter probes of IRX2. Interestingly, 

differential gene body methylation was previously characterized as a mechanism of 

lineage-specific gene regulation for insulin, glucagon and a large number of additional 

genes in α- and β-cell of the pancreas40. It is currently unclear why DNA methylation 

within gene body enhancers is decisive for islet cell-specific gene expression. This effect 

was suggested to contribute to  high plasticity in cellular reprogramming within pancreatic 

islets and potentially expands to lineage specific markers within the remaining islet cell 

types (δ- and PP-cells)40. Nevertheless, the methylation pattern of these master 

transcriptional regulators previously identified by single cell sequencing and genetic 

analysis defined islet cell type-specific subgroups of PanNENs within our cohort. Similar 
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subgrouping of PanNEN has been established at the histone modification level, wherein, 

one subgroup of samples showed enrichment of the “super” enhancer mark H3K27ac at 

the ARX and IRX2 locus, while the second subgroup showed enrichment in the PDX1 

locus28. 

DNA methylation patterns characterizing α- or β-cell lineage of our PanNEN samples 

were rather consistent for PDX1 and IRX2. Genes encoding other cell type markers, such 

as the homeobox factors MEIS1 and NKX2-2, as well as the paired box transcription 

factor PAX6, displayed a differential methylation profile within the β-like samples. All three 

of them exhibited hypomethylation in β-like NET G1, in contrast to the high-grade tumors 

in this group, which showed a hypermethylated feature. The distinct methylation pattern 

within the aforementioned genes indicates an epigenetic branching of low and high-grade 

PanNENs with a β-cell history. Apart from this, other cell markers critical for islet cell 

maintenance were also seen hypermethylated in NET G3 and NEC and further expanded 

to the β-like NET G2 and NET G1 at varying rates. This could suggest that NET G1/G2 

samples, albeit currently of a low-grade phenotype, are amassing features of aggressive 

tumors at the methylation level.  

Beyond the lineage-specific gene methylation patterns, Reactome pathway analysis 

uncovered differential methylation profiles within a small group of growth factor receptor 

and ligand genes between these groups. Among those, VEGFA and cKIT genes exhibited 

strong gene-body hypermethylation in β-like tumors, contrasted by hypomethylation in 

the α-like group. Regulation of the VEGFA gene via DNA methylation in the promoter 

region has been described and was correlated with invasive properties of transition cell 

carcinomas41. To what extent the differential gene body methylation detected in our 

samples correlates with differential expression of VEGFA and other genes needs to be 

determined.  

In addition to the two main islet-cell specific epigenetic profiles of PanNEN, these groups 

also differ with respect to tumor suppressor gene mutations, copy number alterations 

(CNV) and oncogenic pathway activation. Mutational signatures detected by targeted 

sequencing were similar to previously reported alterations in PanNENs16,42,43, and 

identified two subgroups within α-like samples: one group is characterized by MEN1, and 
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DAXX or ATRX mutations, the second group is devoid of any PanNEN-specific mutations 

detected by this approach. In contrast to these two α-like mutation signatures, β-like 

samples had few and variable mutations and MEN1/DAXX/ATRX alterations were 

completely absent (Figure 3). 

A strong indicator of different tumorigenic mechanisms both within α-like PanNEN 

subgroups and between α- and β-like PanNENs became apparent within the CNV 

signatures. An amplification-rich signature targeting several chromosomes together with 

MEN1/DAXX/ATRX mutations defines one α-like subgroup. The signature is 

characterized by co-occurring gains in chromosomes 5, 7, 14, 18 and 19 identified as 

synchronous events with a single peak in amplification44. This signature is identified as a 

late event in PanNENs following mutations in the core tumor suppressor genes 

associated with PanNEN44. Thus, it is likely that the mutations in MEN1/DAXX/ATRX 

preceded whole chromosome amplifications in the amplification-rich α-like subgroup. 

Within the deletion-rich CNV group of PanNENs, we found both α- and β-like samples. 

These tumors are characterized by a deletion-rich signature showing loss of 

chromosomes 6, 11, 16 and 22 combined with mutations in MEN1, DAXX, VHL and TSC2 

tumor suppressor genes. The key features of deletion-rich CNA signature are early events 

during PanNEN evolution44. Consequently, the deletion-rich α-and β-like PanNENs are 

likely to separate early. Chromosomal losses harboring tumor suppressor genes including 

MEN1 (Chr11), TSC2 (Chr 16), VHL (Chr 3) and DAXX (Chr 6) may therefore act as early 

driver events in these tumors. While deletion-rich and amplification-rich subgroups harbor 

the majority of NET G2 samples, 8 out of the 14 NET G1 samples are characterized by 

the absence of large CNV alterations. Considering the frequent benign nature of NET G1, 

its association with small tumor size and very few alterations, a low-CNA signature is 

plausible. The novel distribution of these genetic alterations within the specific α- and β-

like PanNEN subgroups illustrate different mechanism of tumorigenesis likely acting 

within α- and β-like PanNENs.  

To take molecular characterization of the PanNEN subgroups one step further, we looked 

at the protein levels of major players in key biological processes known to play a role in 

tumor development. This analysis revealed increased levels of mTOR signaling 
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components including GSK3β, eIF4E, in α-like PanNENs. Upon clustering the samples, 

additional components of the mTOR pathway including AKT, p70S6K and NPM1, 

involved in ribosome biogenesis, appeared higher expressed in α-like samples. However, 

due the heterogeneous expression and the low samples size they did not appear 

significant between the two groups. This observation, nevertheless, indicates a distinct 

mTOR phenotype in α-like PanNENs, which is largely independent of mutations. MTOR 

pathway activation can occur in PanNENs via deletions and mutations in PTEN and TSC2 

genes, respectively, yet these are rather low frequency events12,16,42,43. Based on these 

observations, the mTOR inhibitor Everolimus has been approved for well-differentiated 

PanNENs and has shown efficacy in several clinical trials45. Despite positive responses 

in terms of mainly stable disease, the fraction of patients with a long-term response is 

low. Increased activation of the mTOR pathway has been suggested by several groups 

as a valuable biomarker for Everolimus response in pancreatic and other 

gastroenteropatic NETs, and was suggested as an indicator of shorter disease-free 

survival11,46,47. At the same time, patients with increased levels of phospho-mTOR/S6K 

are likely to show a better response towards Everolimus compared to patients without 

mTOR pathway activity. Our data indicate that stratification of patient groups in terms of 

α- and β-like PanNEN subgroups is likely to provide results that are more concise in 

regard to pathway activation and treatment response.  

Taken together our multi-level approach uncovered at least two main subgroups within 

PanNENs (Figure 6). Distinct tumor progression trajectories within α-like subgroups were 

apparent at the genetic level, where samples carrying low-CNA or deletion-rich CNA 

phenotype are within the early stages of tumor development, while a subset of α-like 

tumors harboring an amplification-rich CNA phenotype are in a much later stage. The 

development trajectories of β-like tumors were evident at the epigenetic level. The 

aggressive G3 tumors are characterized by global hypermethylation of genes playing a 

fundamental role in islet cell differentiation. Less aggressive tumors of the β-like 

subgroup, although likely harboring the same cell-of-origin, maintain a hypomethylated 

state within these differentiation-associated genes. Based on our protein analysis, we 

have gained first indications that a differential mTOR signature, which we could not 
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deduce from epigenomic and genomic analyses, characterizes α-like PanNENs. This 

clearly needs to be confirmed by more detailed investigations. In the future, this could be 

a starting point for an improved stratification of PanNEN patients prior to pathway-directed 

therapy.   
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Materials and Methods 

Patient Cohort and experimental representation 

PanNEN samples were collected from 58 patients. For one patient, both primary and 

metastasis was obtained. The sample cohort was provided by the Institute of Pathology 

at Charité Universitätsmedizin, Berlin and the Medical University of Graz. Four lymph 

node metastases of PanNEN origin used for this project have been provided by Biobank 

Graz, Austria. The cohort carried well-differentiated tumors of grades G1, G2 and G3 

grades as well as poorly differentiated G3 tumors. Both genders were equally represented 

within the cohort (table 1). Primary tumors consisted of 76% of the cohort, followed by 

liver metastasis and lymph node metastasis, at 14% and 10%, respectively. The primary 

tumors were resected 36% from the head, 31% from the tail and 7% from the body of the 

pancreas. Two samples had lesions in multiple sections of the pancreas. Clinical report 

on the tumor was collected and is presented in Supplementary table 1. All samples were 

collected as formaldehyde fixed paraffin embedded (FFPE) blocks, and normal control 

for the respective patients were collected for all patients with the exception of 5 cases 

(Figure 1a). Normal tissue sections were obtained as either tissue adjacent to the tumor 

(as per the pathologist’s examination) (normal adjacent n= 24), or as a completely 

separate block harboring only normal tissue (normal distant n= 27). Normal blood 

samples were available in 4 cases.  

All patients provided a signed consent as part of the clinical documentation protocol of 

the Charité Universitätsmedizin, Berlin and the Medical University of Graz. 
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Table 1. Cohort characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
  

feature variables n (%) 

Gender 
female 27 (46) 
male 27 (46) 
unknown 5 (8) 

Tumor type 
liver metastasis 8 (14) 
lymph node 6 (10) 
primary 45 (76) 

Grade 

NET G1 27 (46) 
NET G2 24(41) 
NET G3 4(7) 
NEC 3(5) 

unknown 1(2) 

location 

Head 21 (36) 
Body 4 (7) 

tail 18 (31) 
Multiple pancreatic 
sites 2 (3) 

liver 7 (12) 
lymph node 6 (10) 
unknown 1 (2) 
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PanNEN panel design  

We designed a custom panel targeting PanNEN relevant genes, covering all mutations 

associated with PanNENs. To make the panel, we first performed a text mining approach 

to extract high quality information regarding genes associated with PanNENs from 

GeneView48, the Catalogue of Somatic Mutations in Cancer (COSMIC)49 and mutations 

collected from PanNEN publications12,50–52. From this list, 47 PanNEN likely driver genes 

were then extracted with further focus on MAPK and mTOR pathways. Amplicon design 

was then performed via Ion AmpliSeq Designer tool (Life Technologies) under the criteria 

“DNA Gene design (multi-pool)” with GRCh37 genome. The panel was designed to 

generate primers targeting 125-bp stretches of exon regions of the selected genes. The 

complete panel included 1175 amplicons, divided into four pools. 

DNA isolation  
DNA from all samples was isolated from tissue that had been formalin-fixed and 

embedded in paraffin (FFPE). Tissue samples were sectioned and stained with 

Hematoxylin and Eosin (H&E). Pathologists demarcated tumor and healthy tissue areas 

in the H&E slides and depending on the size of the marked area, 12 sections of 5µm each 

were used for DNA isolation from tumor samples and 6 section of 5µm for control normal 

tissue. The tissue was macro-dissected from the slides and DNA was prepared using the 

GeneRead DNA FFPE kit (Qiagen, Netherlands). Quality and quantity of DNA was 

determined by RNAse P quantification (Thermo Fisher Scientific, USA). Microsatellite 

instability was identified using a mononucleotide marker panel (MSI Analysis System, 

Promega, Germany). 

DNA Sequencing 
We used 20ng of DNA for library preparation using Ion Ampliseq Library kit (Thermo 

Fisher Scientific). Regions were targeted by primers distributed into 2 amplicon pools per 

DNA sample. Upon ligation to Ion Xpress Barcode Adapters (Thermo Fisher Scientific) 

and purification using Agencourt AMPure beads (Beckman Coulter), two samples were 

mixed at equal ratio on 318v2 sequencing chip. Using the Ion Torrent PGM (Thermo 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.12.146811doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.12.146811
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

Fisher Scientific), the samples were sequenced at an average read depth of 1158 reads 

in order to generate the raw intensity data.  

 
Sanger Sequencing 
To validate results from targeted massive parallel sequencing we performed Sanger 

sequencing on specific mutations which we found required validation, for example, sub-

optimal amplicon performance or location within long nucleotide repeat area. 

(Supplementary Table 6).  

 
Fluorescence in-situ hybridization (FISH) 
Fluorescence in situ hybridization (FISH) was performed on 3μm tumor sections from 23 

samples. We used commercially available, standardized probes for detecting 

chromosome 5 with a RICTOR gene probe, chromosome 9 with TGFBR1 gene, and 

chromosome 11 with MEN1 (Empire Genomics, USA). Hybridization was performed 

according to manufacturer’s instructions. Where possible, we scored 40 cells per sample 

using an Olympus microscope. Analysis was conducted using ‘BioView solo’ (Abbott 

Molecular). 

 
DNA methylation 
 
DNA methylation profiling of all samples was performed with 200–500 ng of DNA using 

the Infinium MethylationEPIC BeadChip array (850 k; Illumina, Inc., San Diego, CA, USA) 

according to the protocols provided by the manufacturer. 

 

High throughput proteomics 
 
The DigiWest technology is a bead-based microarray platform that combines gel-based 

protein separation followed by immobilization on microspheres in order to semi-

quantitatively analyze via Luminex technology hundreds of specific proteins and protein 

modifications in a given sample. Tumor sections of selected patients were marked by a 

pathologist for tumor and normal tissue and 6x of 5 µm section were macro dissected for 
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tumor and normal tissue of each patient. To extract proteins, the Qproteome FFPE tissue 

kit (Qiagen, Venlo, NLD) was used. Deparaffinization was performed using Heptane and 

incubation took place for 1h at 23°C. Protein extraction was performed according to 

manufacturer’s protocol. Protein precipitation was performed using the 2D Clean-Up kit 

(GE Healthcare, Chicago, IL, USA) and proteins were resuspended in 20 µl of loading 

buffer (Life Technologies, Carlsbad, USA). DigiWest was performed as described 

previously33. Briefly, the NuPAGE system (Life Technologies, Carlsbad, USA) with a 4-

12% Bis-Tris gel was used for gel electrophoresis and Western blotting onto PVDF 

membranes. After washing with PBST, proteins were biotinylated by adding 50 µM NHS-

PEG12-Biotin in PBST for 1 h to the Membrane. After washing in PBST Membranes were 

dried overnight. Each Western-Blot lane was cut into 96 stripes of 0.5 mm each. Strips of 

one Western blot lane were sorted into a 96-Well plate (Greiner Bio-One, Frickenhausen, 

GER) according to their molecular weight. Protein elution was performed using 10 µl of 

elution buffer (8 M urea, 1% Triton-X100 in 100 mM Tris-HCl pH 9.5). Neutravidin coated 

MagPlex beads (Luminex, Austin, TX, USA) of a distinct color ID were added to the 

proteins of a distinct molecular weight fraction and coupling was performed overnight. 

Leftover binding sites were blocked by adding 500 µM deactivated NHS-PEG12-Biotin for 

1 h. To reconstruct the original Western blot lane, the beads were pooled, at which the 

color IDs represent the molecular weight fraction of the proteins. 

For antibody incubation 5 µl of the DigiWest Bead mixes were added to 50 µl assay buffer 

(Blocking Reagent for ELISA (Roche, Rotkreuz, Switzerland) supplemented with 0.2% 

milk powder, 0.05% Tween-20 and 0.02% sodium azide) in a 96 Well plate. Assay buffer 

was discarded and 30 µl of primary antibody diluted in assay buffer was added per Well. 

Primary antibodies were incubated overnight at 15 °C on a shaker. Subsequently, primary 

antibodies were discarded, and beads were washed twice with PBST. After washing, 30 

µl of species specific-secondary antibody diluted in assay buffer labeled with 

Phycoerithrin was added and incubation took place for 1 h at 23°C. Before the readout 

on a Luminex FlexMAP 3D beads were washed twice with PBST. 
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Data processing and analysis 

Mutational analysis 

The raw reads were first aligned to GRCh37 sequence using the Torrent Mapping and 

Alignment Program (TMAP; Life Technologies), placing a cut off of > 50 nucleotides in 

aligned reads and a mapping quality of > 4 using an in-house python script. The 

processed bam files were then utilized for variant calling using TS Variant Caller plugin 

under the “strict” setting per Ion Suite (Ion Torrent platform) parameter profiles. The 

generated variant call format (VCF) files of the tumor-normal pair per patient was merged 

and reference and alteration read count for all variants within the two VCF files were 

extracted to determine the representation of the variants in both cases. The merged VCF 

file was then annotated using the annotation framework SoFIA53. Downstream filtering 

included removing variants that were positive for the following set of parameters: 

intronic and synonymous variants, 1000Genome variants with frequency greater than 

1% in the population, variants within homopolymer regions > 4 nucleotides and finally, 

variants that were represented at comparable allelic frequencies in the matched normal 

tissue.  

 
DNA methylation preprocessing 

Raw idat files were preprocessed using subset-quantile within array normalization 

(SWAN) provided through the minif package54 55. Probes performing poorly in the analysis 

were further filtered out. The failed probes were identified if their detection p value was > 

0.01 in at least one sample. We also filtered out probes showing cross reactivity to 

multiple sites in the genome56. We removed sex chromosome probes and probes 

containing SNPs with allele frequency ≥ 0.01. Both features were identified via minfi 

package.  
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Unsupervised class discovery 

Probe clusters were determined using the boundedClusterMaker function of the R 

package “minfi”. A maximum cluster width of 1500bp and a maximum gap of 500bp was 

applied. Using the 8000 most variable probe-clusters identified by determining row 

(probe) variance (σ2), DNA methylation-based classes of PanNEN were identified with 

ConsensusClusterPlus package under the following parameters: maxK = 12, reps=1000, 

pItem=0.8 and pFeature=1. The function performed agglomerative hierarchical clustering 

after performing 1-Pearson correlation distance and consensus matrix carrying pairwise 

consensus values is generated for 12 clusters. Most stable number of clusters was 

determined based on the cumulative distribution score curve (CDF) that reached 

approximate maximum (k=3). The third cluster identified was formed from one sample 

and was removed from further analysis. Hierarchical clustering of 8000 variable probe 

clusters was done by first obtaining dissimilarity matrix using Euclidean algorithm and 

then performing the clustering using complete linkage. PCA for the data was also 

performed. Both analyses were done using R package “Stats”. 

Differentially methylated probes (DMP) and associated analysis 

Upon extracting and assigning the samples to the identified stable clusters group A and 

group B, differentially methylated probes (DMP) were identified out of all the CpG sites 

(upon the aforementioned preprocessing) using CHAMP package function champ.DMP 

under the following parameters: adjPVal = 0.05, and adjust.method = "BH". Principal 

component analysis (PCA) was performed to determine the variance between group A 

and group B samples. Hierarchical clustering using the beta values of DMP was done by 

first obtaining dissimilarity matrix using Euclidean algorithm and then performing the 

clustering using complete linkage. Both analyses were done using R package “Stats”. 

Pearson correlation of the DMP beta values was done using Hmisc package.  

Genes associated with DMPs were evaluated for Reactome pathway57 term enrichment 

using ReactomePA, clusterprofiler R packages. The analysis was done under the 

following parameters: pAdjustMethod = “BH” (Benjamini and Hochberg), pvalueCutoff = 
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0.05, qvalueCutoff = 0.2, minGSSize = 10, and maxGGSize = 500. All genes represented 

in the Illumina EPIC array was used as background. Final set of terms was curated by 

filtering only those that showed an adjusted p-value less than 0.05 and fold enrichment 

of greater than 1.5. Probes within genes associated with top Reactome terms were further 

evaluated. Highly differentially methylated gene set in the top enriched Reactome 

pathway term was determined accordingly. First, the absolute value differences between 

group A and group B per probe was determined. Mean of absolute difference in beta 

value across all probe per gene was calculated. Highly differentially methylated genes 

were then defined by the mean | delta beta value | greater than 0.20.  

Islet cell marker were curated from recently published four single cell sequencing 

publications of islet cell30–32,36 as well as from Gene Ontology database 

(http://geneontology.org). Gene Ontology terms used included “pancreatic A cell 

differentiation”,” “type B cell differentiation”, “pancreatic D cell differentiation”, and 

“pancreatic PP cell differentiation”. DMP associated genes that overlapped with curated 

Islet cell markers were filtered. Final lists of DMP associated Islet cell markers were 

identified if they met the follow criteria: marker mentioned more than once within the five 

references for a particular cell/cells and the mean abs(Δβ) the gene is greater than 0.15. 

To determine closely related samples within each group, hierarchical clustering with 

complete linkage was performed using beta values of the identified Islet cell markers 

associated with DMPs before visualization.  

  
Copy Number Aberrations (CNA) 

CNA was identified from EPIC array data using conumee58. Upon raw preprocessing, 

mean of all segments of autosomal regions were obtained, and a mean value per 

autosome was calculated for each sample to determine the log2 ratio of intensities across 

the chromosome. A cut-off of 𝑥 > 0.15 and 𝑥 < 0.15 was placed to limit the number of 

false positive obtained upon comparing log2 ratio values to FISH count (Supplementary 

Figure 4a). To determine the subgroups within the cohort, we generated a metrics termed 

cumulative chromosomal aberration score, which calculated the sum of intensity across 

all autosome per sample. If a sample did not harbor any detectable aberration, a score of 
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0 was given for this patient. 𝑥 > 1 represented amplification-rich CNA samples, 𝑥 <

0	were deletion-rich CNA samples and 0 ≤ 𝑥 < 1	 represents low-CNA subgroup. 

Euclidean hierarchical clustering was also performed on the data.  

 

Proteome data analysis  

 
The DigiWest analysis tool described by Treindl et. al.33, was used to identify antigen-

specific peaks. Average fluorescence intensity (AFI) values were calculated by integration 

of peak areas. For comparative analysis, AFI values were normalized to the total protein 

per Western blot lane. In order to determine outlier samples, we evaluated the distribution 

of signal intensities across all samples. If the median of a sample was close to the 

population standard deviation, then the sample was eliminated. This resulted in 

elimination of one sample pair (PNET14) from further analysis In order to eliminate poorly 

performing analytes, we looked at the noise level of the analytes across the sample set. 

The value 33 was the threshold signal at which background noise was established. After 

identifying the percentage of samples carrying ≤ background noise value per analyte, a 

10% cut off was placed to eliminate false positive analyte data. This resulted in 49 

analytes with less than 10% or no background signal across all samples (both tumor and 

normal), which were utilized for downstream analysis. Tumor specific protein quantity was 

identified upon normalizing to the respective normal protein quantity per patient. 

Differentially expressed proteins between the groups were identified using student t-test 

and was corrected using Benjamini and Hochberg (BH) test in R. The identified 

candidates had an adjusted p-value < 0.05.  

 

Data visualization and statistics 

 
All data visualization was performed in R (version 3.6.3) using base R plotting function, 

ggplot2 package or ComplexHeatmap package. The appropriate statistics mentioned 

above were all performed using respective R packages or base R functions. 
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Figure legends 
 
 
Fig. 1 PanNEN methylome profiles identify two distinct tumor subgroups. a. 
Summary of tumor characteristics and molecular data analyzed; DNA sequencing, 
Methylation, DNA copy number, and Proteomics. b. Consensus matrix using 8000 most 
variable probe clusters. Scale indicates the probability of cluster assignment from 0 (blue) 
to 1 (red), PanNEN group A (blue) and group B (red) and group C (black). c. Left: 
Methylation β value heatmap using 8000 most variable probe clusters. Right: Principal 
component analysis based on 8000 probe clusters separated group A and group B. d. 
Reactome Pathway analysis of DMP associated genes (fold enrichment >1.5, padj <0.05. 
P value corrected using Benjamini and Hochberg). e. Beta value heatmap of TFAP2 
family regulated transcription of growth factors and their receptors (top enriched 
Reactome pathway) grouped by PanNEN groups A and B. Displayed genes have mean 
abs(Δβ) ≥ 0.2. Probe features of DMPs are shown on the right. Tumor grades are 
annotated in the lower panel.  
 
Fig. 2 Differentially methylated islet cell markers distinguish group A and group B 
carrying α- and β-cell related features. a. Scheme of islet cell marker identification in 
the DMPs. Gene ontology and four publications were utilized to select 63 markers alpha 
(α), beta (β), delta (δ) and pancreas polypeptide cells (PP) endocrine cells. From these, 
44 markers were found within the genes associated with the DMPs of our study. Markers 
found in more than one publication and with mean abs(Δβ) ≥ 0.15 were further assessed. 
b. Distribution of probe beta values of the 15 islet cell markers identified in (a) between 
group A and group B. c. Beta value heatmap of the 15 islet cell marker probes in samples 
of group A and B. Islet cell types associated with the cell markers are graphically 
represented by circles: green = alpha, orange = beta, blue = PP, brown = delta islet cells. 
Probe features of DMPs are shown on the right. Tumor characteristics are annotated in 
the lower panel.  
 
Fig. 3 DNA mutations in MEN1, ATRX and DAXX PanNEN driver genes found in 
group A tumors. Mutations identified by panel sequencing within each individual sample 
from group A and B. Heatmap colors represent mutation type. Tumor characteristics and 
panel utilized for sequencing are annotated in the lower panel. Bar chart (top) displays 
mutation count per sample, (right) displays mutation count per gene. Only non-
synonymous mutations are displayed. 
 
Fig. 4 DNA Copy Number Alteration (CNA) profiles separate PanNEN samples into 
three subsets. a. Representation of copy number alterations from samples of group A 
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and group B. Top panel: dot plot of CCAS (cumulative chromosomal aberration score) 
values: the sum of log2 ratios intensity across all autosome per sample. Heatmap of mean 
inferred signal intensity log2 ratios (tumor/normal) per autosome across all samples from 
group A and group B. Copy number gain is displayed in red and copy number loss in blue. 
Bullets indicate mutations found in gene of the respective autosome. Tumor 
characteristics, driver mutation status and fluorescent in situ hybridization (FISH) 
validation status annotated in lower panels. b. Quantification of FISH for chromosomes 
5, 9 and 11 using probes in RICTOR, TGFBR1 and MEN1 respectively. Forty cells 
randomly selected were counted in each sample. The distribution of signals per sample 
is depicted. Mean and standard deviation represented by error bars. c. Linear regression 
analysis of EPIC log2 ratio and mean copy number from FISH analysis. Regression 
coefficient R2 = 0.6531 and p = 6.243 x10-07. d. Representative FISH for RICTOR, 
TGFBR1 and MEN1 displayed in orange and for centromeres of chromosomes 5, 9 and 
11 in green. Scale bar depicts 10 mm. 
 
Fig. 5 Protein level analysis indicates mTOR signaling in group A tumors. a. 
Heatmap representing log2 ratio of average fluorescent intensities (tumor / normal) of 
proteins from group A and group B tumors. Euclidean hierarchical clustering using 
complete linkage displayed. b. Eight proteins with significantly different levels of log2 fold 
change between group A and group B (from 12 samples) padj < 0.05. p value was BH 
corrected.  
 
Fig. 6 Schematic representation of PanNEN tumor model and genetic / epigenetic 
characteristics. Group A tumors show methylation features of alpha-cell origin with 
distinct genetic and protein characteristics, while group B displays methylation features 
of beta-cell origin. High grade PanNET and PanNECs of beta-cell origin, displayed global 
hypermethylation features various islet cell markers.  
 
Supplementary Fig. 1 a. Schematic defining probe clusters. Probes in close proximity 
are combined to generate mean Beta value per probe cluster. b. Outline of methodology 
followed for group discovery and differential methylation investigation. c. Cumulative 
distribution function (CDF) curve of the resulting cluster counts. Cluster count of ‘three’ 
resulted in the most stable number subgroups. d. Hierarchical clustering using 
differentially methylated probes (DMPs) clustered samples into two main clusters: group 
A (blue) and group B (red). e. Principal component analysis based on DMPs of samples 
f. Pie chart of localization of differentially methylated probes (DMPs) from Figure 1e. g. 
Heatmap of Pearson correlation coefficient of group A and group B samples. h. 
Distribution of mean | delta Beta value| of DMP associated genes of TFAP2 family 
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regulated transcription of growth factors and their receptors. Dotted red line indicates cut-
off used to select genes.  
 
Supplementary Fig. 2 a. Pie chart of localization of differentially methylated probes 
(DMPs) within the identified 44 islet cell makers from Figure 2a. b. Distribution of mean 
|delta Beta value| of 44 islet cell markers from Figure 2a. Dotted red line indicates cut off 
used to select genes. 
 
Supplementary Fig. 3 a. Mutations identified by PanNEN panel sequencing within each 
individual sample from the entire cohort (59 samples). Heatmap colors represent mutation 
type. Tumor characteristics are annotated in the lower panel. Bar chart (top) displays 
mutation count per sample, (right) displays mutation count per gene. b. Allele frequency 
heat map of all identified mutations from PanNEN panel sequencing (samples without 
mutations are not displayed). 
 
Supplementary Fig. 4 a. Graphical representation of mean FISH count and log2 ratios 
from EPIC. Dotted red line indicates cut off placed to discard false positives. b. Euclidean 
hierarchical clustering using complete linkage of copy number alteration data. Copy 
number gain is displayed in red and loss in blue.  
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