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Abstract—High-resolution electron microscopy (EM) of nervous systems en-
ables the reconstruction of neural circuits at the level of individual synaptic
connections. However, for invertebrates, such as Drosophila melanogaster, it
has so far been unclear whether the phenotype of neurons or synapses alone
is sufficient to predict specific functional properties such as neurotransmitter
identity. Here, we show that in Drosophila melanogaster artificial convolutional
neural networks can confidently predict the type of neurotransmitter released at
a synaptic site from EM images alone. The network successfully discriminates
between six types of neurotransmitters (GABA, glutamate, acetylcholine, sero-
tonin, dopamine, and octopamine) with an average accuracy of 87% for individual
synapses and 94% for entire neurons, assuming each neuron expresses only
one neurotransmitter. This result is surprising as there are often no obvious
cues in the EM images that human observers can use to predict neurotrans-
mitter identity. We apply the proposed method to quantify whether, similar to the
ventral nervous system (VNS), all hemilineages in the Drosophila melanogaster
brain express only one fast acting transmitter within their neurons. To test this
principle, we predict the neurotransmitter identity of all identified synapses in 89
hemilineages in the Drosophila melanogaster adult brain. While the majority of
our predictions show homogeneity of fast-acting neurotransmitter identity within a
single hemilineage, we identify a set of hemilineages that express two fast-acting
neurotransmitters with high statistical significance. As a result, our predictions
are inconsistent with the hypothesis that all neurons within a hemilineage express
the same fast-acting neurotransmitter in the brain of Drosophila melanogaster.

1 Introduction
In recent years, advances in imaging technology enabled high
resolution electron microscopy (EM) imaging of whole brain data
sets (Zheng et al., 2018; Ryan et al., 2016; Cook et al., 2019;
Ohyama et al., 2015), opening up the possibility of generating
cellular level wiring diagrams (connectomes) of nervous systems.
Generating a connectome entails identifying all neurons and the
synapses that connect them. Due to the size of these data sets
manual tracing of all neurons and synapses is not feasible even for
comparitively small organisms such as Drosophila melanogaster.
However, recent advances in automated methods for segmenting
neurons (Funke et al., 2018; Januszewski et al., 2018; Lee et al.,
2019) and detecting synapses (Kreshuk et al., 2015; Staffler et al.,
2017; Buhmann et al., 2019) greatly reduce the time of human
involvement in these tasks and have just recently been applied

to generate the connectome for a large part of the Drosophila
melanogaster brain (Xu et al., 2020).

However, EM data does not directly give us information
about gene expression and as a result quantities such as
neurotransmitter identity, while crucial to determine the function
of any given synapse, are unknown for a majority of the cells
in the connectome of Drosophila melanogaster. The action
a neuron has on its downstream targets is determined by the
neurotransmitters it releases into the extracellular space. Before
release, neurotransmitters are packaged into different types of
vesicles at synaptic sites. The so-called ’classical’, fast-acting
transmitters GABA, acetylcholine and glutamate are contained
in small, clear vesicles, while monoamines such as dopamine,
norepinephrine, octopamine and serotonin are packaged into
pleomorphic clear-core or small dense-core vesicles (Goyal and
Chaudhury, 2013). The large number of various neuropeptides
such as cholecystokinin, galanin, neurokinin and oxytocin are
contained in large dense-core vesicles. In mammals it is generally
possible for humans to distinguish between different clear-core
and dense-core vesicles and thus identify the neurotransmitter
of any given synaptic site (Goyal and Chaudhury, 2013). In
invertebrates such as Drosophila melanogaster it is so far
unknown whether synaptic phenotype, as seen in EM, is sufficient
to consistently determine neurotransmitter identity, especially
different varieties of clear-core vesicles.

As a result, adding neurotransmitter identities to connectomic
data requires light microscopy (LM) pipelines, in which gene
transcripts or proteins involved in the pathway of interest have
been made visible using fluorescent probes. Common methods
for neurotransmitter detection include sequencing transcriptomics
(RNAseq) (Henry et al., 2012; Konstantinides et al., 2015; Davie
et al., 2018; Davis et al., 2020), immunolabeling (Hyatt and
Wise, 2001) and fluorescent in situ hybridization (FISH) (Long
et al., 2017; Meissner et al., 2019). Subsequent morphological
matching of these neurons to reconstructed neurons in the EM
data can then be performed using NBLAST (Costa et al., 2016),
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providing neurotransmitter identity to connectome data (Bates
et al., 2019b,a).

However, this approach is very difficult to scale to an
entire connectome of Drosophila melanogaster comprising
~150,000 cells. Although imaging expression patterns for
multiple neurotransmitters on a brain scale can be done
in a matter of minutes to days depending on the required
resolution1 (Meissner et al., 2019), bridging the gap between LM
and EM remains challenging: In addition to imaging expression
patterns of neurotransmitter related proteins, it requires a well-
characterized, sparse genetic driver line in order to perform
accurate morphological matching to EM tracings using tools such
as NBLAST (Costa et al., 2016). As a result, transmitter identity
is known for only a few hundred types of neurons (Bates et al.,
2019a).

Here, we show that it is possible to determine the primary
neurotransmitter of a given neuron in the Drosophila melanogaster
brain from the phenotype of its synaptic sites in EM alone.
For that, we train a deep learning classifier to predict the
neurotransmitter of a 640 × 640 × 640nm3 3D EM volume
with a synaptic site at the center. We find that this method
is able to classify the neurotransmitter of any given synapse
with 87% accuracy on average. Furthermore, we show on a
large test set that the classifier generalizes across neurons with
different developmental histories (i.e., that derive from different
’hemilineages’) and brain regions, indicating that the influence
of the neurotransmitter on the phenotype of a synaptic site is
largely conserved across cells. We use our method to predict the
neurotransmitter identity of over 1000 neurons in 89 hemilineages
with so far unknown neurotransmitter identities in the Drosophila
melanogaster brain. In contrast to recent findings in the ventral
nervous system (VNS) (Lacin et al., 2019), our results suggest
that the neurotransmitter identity of neurons within hemilineages
in the brain is not limited to one fast-acting transmitter.

Given that the relation of synaptic phenotype and neurotransmitter
identity is not fully understood in Drosophila melanogaster, it is
an exciting research question whether we are able to extract the set
of rules and features the classifier uses to predict neurotransmitter
identity. However, due to the blackbox nature of deep neural
network classifiers and the complexity of synaptic sites, this is a
challenging problem and beyond the scope of this paper. We plan
to investigate this question in future work.

In summary, our method circumvents a major bottleneck in
neurotransmitter identification, matching LM expression patterns
to EM tracings, and is able to assign neurotransmitter identity
to individually traced neurons in a matter of seconds. Combined
with automated synapse detection methods (Buhmann et al.,
2018; Kreshuk et al., 2015; Staffler et al., 2017; Buhmann
et al., 2019), this opens up the possibility of generating a
comprehensive neurotransmitter atlas for the connectome of
Drosophila melanogaster.

1. Throughput estimated at around one neuron per minute at sufficient spatial
resolution for colocalization with single cell labeling - personal communication
with authors.
2. See Footnote 5

2 Methods
We learn a mapping 5 : G → H, where x is a local 3D EM volume
with a synaptic site at the center and y the neurotransmitter of the
corresponding neuron (see Fig. 1). To this end, we need to generate
a training dataset of pairs (x,y). This involves light microscopy
of genetically tagged neurons to determine their neurotransmitter
expression, neuron tracing and synapse annotation in the corre-
sponding EM dataset and matching of the LM neuron morphology
to a traced neuron in EM.

2.1 Data Acquisition
We acquire the majority of neurotransmitter to neuron assignments
used for training and evaluation from published reconstructions
in the full adult fly brain (FAFB) dataset (Bates et al., 2020;
Dolan et al., 2018; Felsenberg et al., 2018; Frechter et al., 2019;
Huoviala et al., 2018; Dolan et al., 2019; Marin et al., 2020; Sayin
et al., 2019; Turner-Evans et al., 2019; Zheng et al., 2018), as well
as unpublished but identified neuron reconstructions offered by
the FAFB community (see acknowledgements). In these studies,
the authors had already linked some of their reconstructed cell
types to immunohistochemical data (Aso et al., 2014; Bräcker
et al., 2013; Busch et al., 2009; Davis et al., 2018; Dolan et al.,
2019; Ito et al., 2013; Lai et al., 2008; Okada et al., 2009;
Shinomiya et al., 2015; Tanaka et al., 2012; Wilson and Laurent,
2005). Stainings were typically performed on neurons visualized
by GFP expression in a GAL4/split-GAL4 line. Dissected
brains are incubated with primary antibodies (e.g., anti-VGlut,
anti-GABA, anti-ChAT), followed by secondary antibodies which
have a fluorescent tag to visualise the primary antibody. The
transcripts/proteins related to certain transmitter expressions are
thus labelled across the brain and if they colocalize with the GFP
signal for the GAL4/split-GAL4 line of interest, those neurons
are considered to express that transmitter3. For RNA transcripts,
usually the neuron’s soma is examined. Other methods involve
RNA sequencing and include TAPIN-seq (Davis et al., 2018).
Note that individual studies often only test single transmitters and
do not show negative staining. As a result, there is limited data for
cotransmission of multiple neurotransmitters in a single neuron
and we therefore assume no cotransmission of neurotransmitters
within one neuron.

We use manually reconstructed neuron annotations from the
FAFB community CATMAID4 (Saalfeld et al., 2009; Schneider-
Mizell et al., 2016) database5. Synapses were annotated at
presynaptic sites, defined by T-bars, vesicles and a thick dark
active zone by a synaptic cleft (Prokop and Meinertzhagen, 2006).
In total, the assembled dataset contains 153,593 cholinergic
synapses (679 neurons), 33881 GABAergic synapses (181
neurons), 7953 glutamatergic synapses (49 neurons), 9526
dopaminergic synapses (89 neurons), 2924 octopaminergic
synapses (7 neurons) and 4732 serotonergic synapses (5 neurons).

2.2 Train and Test Datasets
For each neurotransmitter y ∈ {GABA, ACh, GLUT, SER, OCT,
DOP}, we divide the data in test, train and validation set by

3. A commonly used, full step-by-step protocol can be found at https://www.
janelia.org/project-team/flylight/protocols.
4. http://www.catmaid.org
5. https://neuropil.janelia.org/tracing/fafb
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Figure 1: Method Overview. We assemble a dataset of neurons with known neurotransmitter in the Drosophila whole brain EM dataset
(FAFB) (Zheng et al., 2018) from the literature and retrieve corresponding synaptic locations from the subset of skeletons that have been
annotated in the CATMAID (Saalfeld et al., 2009; Schneider-Mizell et al., 2016) FAFB collaboration database2. (a) Typically, neurons
are genetically tagged to identify their neurotransmitter identity and to reconstruct their coarse morphology using light microscopy. (b)
Light microscopy tracings of neurons are then matched to corresponding neuron traces in the FAFB dataset, and synaptic locations
are annotated, resulting in a data set of EM volumes of synaptic sites with known neurotransmitter identity. (c) We use the resulting
pair (G, H), with G a 3D EM volume of a synaptic site and H ∈ {GABA, ACh, GLUT, SER, OCT, DOP}, the neurotransmitter of that
synaptic site, to train a 3D VGG-style (Simonyan and Zisserman, 2014) deep neural network to assign a given synaptic site G to one of
the six considered neurotransmitters. We use the trained network to predict the neurotransmitter identity of synapses from neurons with
so far unknown neurotransmitter identity in the Drosophila FAFB dataset. C, D, and F denote convolution, downsampling, and fully
connected layers respectively.
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Neuron split Hemilineage split Brain Region split
Train 140,565 140,868 138,982
Test 40,104 40,703 39,715

Validation 20,084 19,182 19,858
Avg. Synapse Accuracy 87% 75% 88%
Avg. Neuron Accuracy 94% 92% 95%

Table 1: Overview of the three data splits used for evaluation of the
classifier. Shown are the number of synapses for training, testing
and validation as well as average synapse and neuron classification
accuracy on the test set for each data split.

randomly assigning entire neurons, each containing multiple
synapses. We refer to this split as Neuron split in the following.
We use 70% of neurons for training, 10% for validation and the
remaining 20% for testing. Splitting the dataset by entire neurons,
instead of randomly sampling synapses, mirrors the real world use
case in which we typically know the neurotransmitter of an entire
neuron and are interested in the neurotransmitter of an entirely
different neuron.

In order to test how well the proposed methods generalizes
across morphologically distinct cells and regions, and to exclude
potentially confounding variables, we also generate two additional
splits that separate the data by hemilineage (Hemilineage split -
neurons in a hemilineage are lineally related, see section 4 for
further details) and brain region (Brain Region split) respectively.
To this end, we find the optimal split between entire hemilineages
and brain regions, such that the fraction of synapses for every
neurotransmitter in the train set is close to 80% of all synapses of
that neurotransmitter. We further use randomly selected 12.5% of
the training synapses (10% of the entire dataset) for validation.

2.3 Network Architecture and Training
We use a 3D VGG-style (Simonyan and Zisserman, 2014) network
to predict the neurotransmitter identity from a 3D EM input
cube of edge length 640 nm with a synaptic site at its center.
The network consists of four functional blocks, each consisting
of two 3D convolution operations, batch normalization, ReLU
non-linearities and subsequent max pooling with a downsample
factor of (z=1, y=2, x=2) for the first three blocks and (z=2, y=2,
x=2) for the last block and is followed by three fully connected
layers with dropout (p=0.5) applied after the first two. We train
the network to minimize cross entropy loss over the six classes
(GABA, ACh, GLUT, SER, OCT and DOP), using the Adam
optimizer (Kingma and Ba, 2014). We train for a total of 500,000
iterations in batches of size eight and select the iteration with
highest validation accuracy for testing. A full specification of
the network architecture and training pipeline, including data
augmentations, can be found in the appendix. For an illustration
of the used network architecture see Fig. 1c.

3 Classifier accuracy
We tested the classifier on our held out test sets. For the Neuron
split, the test set consists of a total of 40,104 synapses from
185 neurons that the network was not trained on. We achieve an
average, per transmitter accuracy of 87% for the neurotransmitter
prediction of individual synapses. Since we assume that each
neuron expresses the same neurotransmitters at its synaptic sites
we can additionally quantify the per neuron accuracy of the
presented method. To this end we assign each neuron with more

Figure 2: Illustration of (a) the progression of a Type I neuroblast
from third-instar (L3) larva into the adult, GMC, ganglion mother
cell and (b) breakdown of a single secondary lineage, LHl2
(also known as DPLal2) into its two hemilineages. Neuronal
reconstruction data from the FAFB project shown, which covers
half the neurons in this lineage.

than 30 synapses in the test set a neurotransmitter by majority
vote of its synapses, leading to an average accuracy of 94% for the
neurotransmitter prediction per neuron. For the Hemilineage split,
we find an accuracy of 75% for individual synapses and 92% for
entire neurons. The Brain Region split evaluates to 88% synapse
classification accuracy and 95% neuron classification accuracy. A
per class overview can be seen in Fig. 3, for a summary of the
results and data splits see Table 1.

4 Transmitter prediction for hemilineages
Similar to neurons, which release the same set of neurotransmitters
at their synaptic sites (Eccles, 1976; Dale, 1934), it has been found
that sets of lineally related neurons in theDrosophila melanogaster
ventral nervous system (VNS), so-called hemilineages, also show
homogeneous neurotransmitter expression patterns (Lacin et al.,
2019). If a similar principle holds for the Drosophila melanogaster
brain, it would enable us to assign neurotransmitter identity to
large groups of neurons simultaneously. With the presented
method we are able to verify to what extent such a principle holds.

The about 45,000 neurons of the central brain of Drosophila
melanogaster (Croset et al., 2018) are generated by a set of stem
cells known as neuroblasts. During division neuroblasts generate
two cells, one additional stem cell and one cell that further
divides into two sibling neurons. In only one of these siblings
the so called Notch pathway is activated, leading to two different
“hemilineages” of neurons within the lineage (Kumar et al., 2009;
Sen, 2019; Lacin et al., 2019). Lacin et al. (2019) showed that
each hemilineage in the VNS expresses just one of the fast-acting
transmitters acetylcholine, glutamate and GABA, even though
mRNA transcripts for combinations of these can appear in the
nucleus (Lacin et al., 2019). This raises the question whether the
same holds true in the adult brain. Using the presented classifier,
we predict the neurotransmitter identity of all identified neurons
within 89 out of a total of ~150 identified hemilineages in the
Drosophila melanogaster brain. The majority of our predictions
show homogeneity of neurotransmitter identity within a single
hemilineage, in line with findings in the VNS. However, we
identify a set of hemilineages which express two fast acting
neurotransmitters with high statistical significance. We find no
hemilineage that expresses all three. As a result, our predictions
are inconsistent with the hypothesis that all hemilineages express
the same fast-acting neurotransmitter.
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Figure 3: Illustration of the spatial distribution of synapses in the considered data splits (left column) and corresponding confusion
matrices for synapses (middle column) and entire neurons (right column). Datasets: For each split we visualize the synaptic locations
used for training (top) and for testing (bottom). Synapse locations are color coded according to their z-depth (perpendicular to viewing
plane). Confusion Matrices: Rows show labels and columns the predicted neurotransmitter. The total number of test set ground truth
synapses and neurons respectively are shown next to each row. In order to be able to have a meaningful majority vote we only consider
neurons with more than 30 synapses for the neuron confusion matrices. Note that for the hemilineage split it was not possible to generate
a fully balanced split and as a result there are no SER and OCT neurons in the test set, as indicated by grayed out rows.
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4.1 Hemilineage assignments in Drosophila

Cell body fiber tracts for identified hemilineages had previously
been identified using TrakEM2 (Cardona et al., 2012) in a light-
level atlas for a Drosophila melanogaster brain, stained with an
antibody against neurotactin (BP104) (Lovick et al., 2013). We
extracted these expertly identified tracts and registered them into
a common template brain, JFRC2, using CMTK (Rohlfing and
Maurer, 2003), and then into FAFB space (Bates et al., 2019b).
We could now identify cell body fibre tracts in this ssTEM dataset
in the vicinity of the transformed hemilineage tracts.

4.2 Predictions

We retrain the classifier on 90% of the entire dataset and use the
remaining 10% to select the best performing iteration. We predict
the neurotransmitter identity of 180,675 synapses within 1,164
neurons with so far unknown neurotransmitter identity. These
neurons come from a total of 89 hemilineages, of which 20 have
more than one neuron with genetically identified neurotransmitter.
Fig. 4 shows ground truth neurotransmitter annotations for the
subset of neurons #ℎgt that have known neurotransmitters and our
predictions for the remaining neurons #ℎpred (#ℎgt ∩ #ℎpred = ∅) in
the hemilineage for five selected hemilineages. In the following,
we analyse the results by quantifying how neurotransmitter
predictions are distributed over neurons and synapses within
hemilineages.

4.2.1 Neuron Level Entropy

In order to quantify multimodality of neurotransmitter predictions
on neuron level within a hemilineage we calculate the entropy �
of the neurotransmitter distribution over neurons in the following
way: Let = ∈ #ℎ be a neuron in hemilineage ℎ and Ĥ= ∈ . =

{GABA, ACh, GLUT, SER, OCT, DOP} the predicted neurotrans-
mitter of neuron =. Then

� (#ℎ) = −
∑
H∈.

?ℎ (H) log6 ?ℎ (H) , with (1)

?ℎ (H) = 1
|#ℎ |

∑
=∈#ℎ

X( Ĥ= = H) (2)

A value of � (#ℎ) = 0 (minimal entropy) then means that all
neurons within hemilineage ℎ have the same predicted neurotrans-
mitter, while a value of � (#ℎ) = 1 (maximal entropy) means that
within hemilineage ℎ all predicted neurotransmitters are equally
common.

4.2.2 Synapse Level Entropy

Similarly we can quantify the average multimodality over synapses
within neurons of a given hemilineage: Let B ∈ (= be the synapses
in neuron = ∈ #ℎ of hemilineage ℎ and ĤB the predicted neuro-
transmitter. The entropy of predicted synaptic neurotransmitters
� (B=) in neuron n is then given by:

� ((=) = −
∑
H∈.

?= (H) log6 ?= (H) , with (3)

?= (H) = 1
|(= |

∑
B∈(=

X( ĤB = H) (4)

With this, the average synaptic entropy over all neurons within
hemilineage ℎ is given by:

� ((ℎ) = 1
|#ℎ |

∑
=∈#ℎ

� ((=) (5)

A value of � ((ℎ) = 0 (minimal entropy) then means that all
synapses of all neurons in hemilineage h have the same predicted
neurotransmitter, while a value of � ((ℎ) = 1 (maximal entropy)
means that in all neurons within hemilineage h all synaptic
neurotransmitter predictions are equally common. Fig. 5 shows
the distribution of � (#ℎ) and � ((ℎ) of all predicted hemilineages
with more than ten neurons that have more than 30 synapses each.

On the population level we find relatively lower values of
� ((ℎ) (Synapse level entropy) than � (#ℎ) (Neuron level
entropy). 75% of hemilineages show a synapse level entropy
below @75 (� ((ℎ)) = 0.19 as compared to @75 (� (#ℎ)) = 0.34.
This is reassuring as it suggests less variation of neurotransmitter
identity predictions within individual neurons compared to
variations of neurotransmitter identity of neurons within a
hemilineage. However, we also find cases with a high level
of synaptic entropy, such as hemilineage 16 and 30. For these
hemilineages it is unclear whether neuron level multimodality is
only an artifact of uncertain, multimodal predictions on synapse
level of individual neurons. In contrast to 16 and 30 hemilineages
29, 27 and 42 show high neuron level entropy � (#ℎ) ≥ @75 but
low synapse level entropy � ((ℎ) ≤ @25, suggesting clear neuron
level segregation of predicted neurotransmitters within those
hemilineages. Hemilineages such as 24 and 40 with � ((ℎ) < @25
and � ((=) < @25 appear homogeneous within each neuron and
within the entire hemilineage.

4.3 Number of distinct, fast-acting neurotransmitters in hemi-
lineages of the Drosophila melanogaster adult brain
We can now ask the question how likely it is to observe a
given prediction of neurotransmitters in a hemilineage under some
error rate given by the confusion matrix on the test set, and the
assumption that all neurons in the hemilineage have the same
underlying neurotransmitter. We can then compare this likelihood
to the alternative hypothesis that a hemilineage consists of neurons
with more than one neurotransmitter. Out of 26 investigated hemi-
lineages with a sufficient number of predicted neurotransmitters,
up to five show strong evidence for expressing two distinct, fast-
acting neurotransmitters (Bayes factor  ≥ 102, decisive). We find
none that expresses all three.

4.3.1 Probability to observe neurotransmitter predictions Ĥ
Given a neuron has true neurotransmitter H ∈ . , the probability
that we predict neurotransmitter Ĥ ∈ . (assuming that each
prediction is independent and identically distributed) is given by
the categorical distribution

?( Ĥ |H) = �H,Ĥ (6)

where � is the neuron confusion matrix obtained on the test data
set (see Fig. 3).

Let < be the number of different neurotransmitters in hemilineage
ℎ. We model the probability ?(ŷ|<) of observing neurotransmitter
predictions ŷ = {Ĥ0, Ĥ1, ..., Ĥ=} under the assumption that
hemilineage ℎ contains < different neurotransmitters. Here, Ĥ 9
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Hemilineage Known Neurotransmitters Predicted Neurotransmitters

Figure 4: Neurotransmitter barcode plots and corresponding renderings of skeletons and synapses (color coded according to their
neurotransmitter identity) of five selected hemilineages, for which a subset of neurons #ℎgt have genetically determined, known
neurotransmitters (left) and our predictions on the remaining neurons #ℎpred in the same hemilineage (right). Each column in the
neurotransmitter barcode represents one neuron. For each neuron (column), the relative number of synapses with neurotransmitter
H, Ĥ ∈ . ={GABA, ACh, GLUT, SER, OCT, DOP} is represented by the color intensity of the respective row. The total number of
synapses in each neuron is shown above each row. Note that #ℎgt ∩ #ℎpred = ∅. Neuron classes, shown above the inset, are given for the
most numerous cells in our training data, for each hemilineage that we show (Dolan et al., 2019; Otto et al., 2020; Aso et al., 2014).
For an overview of all hemilineages that have partially known neurotransmitter identities and our associated predictions, see Fig. 10.
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Figure 5: (a) Neuron level entropy vs average synapse level entropy for all predicted hemilineages with more than 10 neurons and more
than 30 synapses per neuron. @25 (� (#ℎ)) = 0.07, @25 (� ((ℎ)) = 0.08 and @75 (� (#ℎ)) = 0.34, @75 (� ((ℎ)) = 0.19 are indicating 25%
and 75% percentiles respectively. Highlighted hemilineages show the extreme points of the entropy distribution: (b) Hemilineage 40
shows low neuron level entropy � (#ℎ) and low synapse level entropy � ((ℎ), caused by a unimodal distribution of neurotransmitters on
synapse and neuron level in this hemilineage. (c) Hemilineage 42 shows high neuron level entropy � (#ℎ) but low synapse level entropy
� ((ℎ), caused by neurotransmitter predictions that are unimodal within each neuron but multimodal across neurons. (d) Hemilineage 16
shows high neuron level entropy � (#ℎ) and high synapse level entropy � ((ℎ), as a result of a bimodal distribution of neurotransmitter
predictions within most neurons of this hemilineage. For a mapping of hemilineage ID to hemilineage name see Table 2.

is the predicted neurotransmitter of neuron 9 in hemilineage ℎ
with = neurons total. Let P2 (. ) be the set of subsets of true
neurotransmitters . with cardinality 2, then:

?(ŷ|<) =
∑

(∈P< (. )
?(ŷ|() · ?(( |<), (7)

where ?(ŷ|() is the probability to observe predictions ŷ if the
hemilineage has true underlying neurotransmitters H ∈ ( and
?(( |<) is the probability for the set of true neurotransmitters
( given the hemilineage contains < different neurotransmitters.
Since we assume i.i.d. predictions ŷ, ?(ŷ|() factorizes as follows:

?(ŷ|() =
∏
9

?( Ĥ 9 |() (8)

and marginalizing over H ∈ ( yields:

?(ŷ|() =
∏
9

∑
H∈(

?( Ĥ 9 |H) · ?(H |() (9)

=
∏
9

∑
H∈(

�H,Ĥ 9 · ?(H |() (10)

Regarding ?(( |<) and ?(H |() we assume a flat prior, i.e.:

?(( |<) =
(|. |
<

)−1
(11)

?(H |() = 1
|( | =

1
<

(12)

With this, the probability of observing predictions ŷ given <
different neurotransmitters becomes:

?(ŷ|<) =
( |. |
<

)−1 ∑
(∈P< (. )

©­«
∏
9

∑
H∈(

�H,Ĥ 9 ·
1
|( |

ª®¬ (13)

4.3.2 Bayes Factor
With this formalism in place, we can compare hypotheses about
the number of true neurotransmitters < in a given hemilineage by
using the Bayes Factor  =

? (� |"1)
? (� |"2) , where D is our observed data

(predicted neurotransmitters) and "1, "2 are two models about
the underlying true neurotransmitters that we wish to compare.
The Bayes factor for a model "1 with <1 true neurotransmitters
per hemilineage and model "2 with <2 different neurotransmitters
is given by:

 =
?(ŷ|<1)
?(ŷ|<2) (14)

=

( |. |
<1

)−1 ∑
(∈P<1 (. )

(∏
9

∑
H∈( �H,Ĥ 9 · 1

<1

)
( |. |
<2

)−1 ∑
(∈P<2 (. )

(∏
9

∑
H∈( �H,Ĥ 9 · 1

<2

) (15)

So far, we assumed that ?( Ĥ 9 |H) = �H,Ĥ 9 , i.e., we estimate this
distribution on the test dataset. However, because our test set is
finite we can not expect that the estimated error rates perfectly
transfer to other datasets. In order to relax our assumptions about
this distribution we simulate additional errors, by incorporating
additive smoothing on the counts of neurons #H,Ĥ that have true
neurotransmitter H and were predicted as neurotransmitter Ĥ, i.e.:

�̃H,Ĥ =
#H,Ĥ + V∑
Ĥ #H,Ĥ + 6V

, (16)

where V ∈ N0 is the smoothing parameter. With �H,Ĥ =
#H,Ĥ∑
Ĥ #H,Ĥ

we then have

�̃H,Ĥ =
�H,Ĥ + V∑

Ĥ #H,Ĥ

1 + 6 V∑
Ĥ #H,Ĥ

=
�H,Ĥ + U
1 + 6U

(17)
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and U ∈ R≥0 the count normalized smoothing parameter. In the
limit of U → ∞, �̃H,Ĥ approaches the uniform distribution with
probability 1/6 for each neurotransmitter, whereas a value of U = 0
means we recover the observed confusion matrix �. With this,
our distributions are now parametrized by U and the bayes factor
becomes:

 =

∫
U
?(ŷ, U |<1)?(U)3U∫

U
?(ŷ, U |<2)?(U)3U

(18)

=
?̃(ŷ|<1)
?̃(ŷ|<2) (19)

(20)

where ?̃(ŷ|<) is as defined in (13) but with �H,Ĥ 9 replaced with
its expected value E? (U) [�̃H,Ĥ 9 ].

The prior distribution on U, ?(U), allows us to encode our
prior knowledge about U and use it to weight the likelihood of
the corresponding model. Given the data, a value of U = n with
epsilon small (0 < n � 1), should be most probable, while the
probability of values U > n should monotonically decrease as we
deviate more from the observed confusion matrix. Values of U < n
should have probability zero, because they correspond to the
unsmoothed confusion matrix with zero entries, i.e., a probability
of zero for missclassification of certain neurotransmitters. While
these probabilities may be small, they are likely greater than zero
and an artifact caused by the finite test set. Many distributions
fulfill these criteria, in particular the family of exponential
distributions with rate parameter _:

?(U) =
{
_4−_(U−n ) U ≥ n
0 U < n

Thus, _ controls the weight for smoothing parameter U in the
integral E? (U |" ) [�̃ (U)H,Ĥ 9 ] =

∫
U
�̃H,Ĥ 9 ?(U)3U. For _ → 0,

the expected confusion matrix approaches the unweighted av-
erage of all � (U) in the integration range. For _ → ∞, the
expected confusion matrix approaches the n-smoothed confu-
sion matrix �̃H,Ĥ =

�H,Ĥ+n
1+6n . The rate parameter _ can also be

understood via its influence on the expected average accuracy
2̃exp = 1

6
∑
8 E? (U |" ) [�̃]8,8 . For values of _ → 0, the expected

accuracy approaches chance level while for values of _ → ∞, the
expected accuracy approaches the n-smoothed, observed accuracy
on the test set.

4.3.3 Evidence for two fast acting transmitters in a single hemilin-
eage
We calculate the bayes factor  2,1 =

? ( Ĥ |<=2)
? ( Ĥ |<=1) and  3,2 =

? ( Ĥ |<=3)
? ( Ĥ |<=2)

for the set of three classical neurotransmitters .cl = {GABA, ACh,
GLUT} for those hemilineages that have more than ten annotated
neurons and 30 annotated synapses each with neurotransmitter
predictions in the set .cl. For this analysis, we ignore all other
neurons with predicted neurotransmitter identity Ĥ ∉ .cl. Fig. 6
shows  2,1 and  3,2 for a range of rate parameters _ and
corresponding expected average accuracy 2̃exp. For hemilineages
30, 16, 27, 20, and 42 there is decisive evidence ( 2,1 ≥ 102)
for the presence of two distinct fast acting neurotransmitters for
a large range of expected accuracies 2̃exp. However, note that
hemilineage 30 and 16 show high synaptic entropy � ((ℎ) (see
Fig. 5), indicating that individual neurons within the hemilin-
eage already show bimodal neurotransmitter predictions. As such,
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Figure 6: Bayes factor  over a range of expected average predictor
accuracy 2̃exp. Shown are hemilineages with more than ten neurons
that have more than 30 synapses each and more than one predicted,
fast-acting neurotransmitter. Stars indicate regions of evidence for
model "1 (K>1) or model "2 (K < 1), respectively: * - substantial,
** - strong, *** - very strong, **** - decisive (Jeffreys, 1998).
Top: "1: <1 = 2 and "2: <2 = 1. Bottom: "1: <1 = 3 and "2:
<2 = 2. For a mapping of hemilineage ID to hemilineage name
see Table 2.

strong bimodality on neuron level is at least partially explained
by uncertain predictions on individual synaptic level. This is in
contrast to hemilineage 27 and 42, who show synaptic entropies
below the 25% percentile. In these hemilineages, large Bayes
factor values  2,1 directly stem from neuron level segregation
of the predicted neurotransmitters within the hemilineage. See
Fig. 7 for a rendering of the neurotransmitter predictions of
these hemilineages and corresponding NBLAST dendrograms,
indicating that the two fast acting neurotransmitters in some of
these hemilineages are divided between morphologically distinct
neurons. The remaining 13 hemilineages show no strong evidence
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Figure 7: Renderings of neurotransmitter predictions of all neurons within two selected hemilineages that show a high bayes factor  2,1
(see Fig. 6) in addition to low synaptic entropy � ((ℎ) (see Fig. 5) (a), and corresponding NBLAST dendrograms (b). Y-axis shows
the morphological dissimilarity between clusters, based on Ward’s method. Each neuron is color coded according to its predicted,
majority vote neurotransmitter. The dendrograms show that neurotranmsitter predictions correlate strongly with neuron morphology for
hemilineage 27 and to a lesser degree for hemilineage 42. For renderings of all hemilineages and corresponding barcode plots see Fig. 9
and Fig. 8.

for either hypothesis ( 2,1 ≈ 1, n=5) or favor the hypothesis of
expressing only one fast acting neurotransmitter ( 2,3 ≤ 10−2,
n=8). No hemilineage shows evidence for expressing all three fast
acting neurotransmitters ( 2,3 < 10−2).

5 Discussion
5.1 Results
We presented a classifier which is able to predict the neurotrans-
mitter identity of a synapse from a local 3D EM volume with high
accuracy. We showed that the method generalizes across neurons,
brain regions and hemilineages. Furthermore we predicted the
neurotransmitter identity of 180,675 synapses within 1,164 neu-
rons from 89 hemilineages with so far unknown neurotransmitter
identity. We analyzed the neurotransmitter distribution of 26 hemi-
lineages that have a sufficient amount of annotated neurons and
synapses and showed that most of them homogeneously express
one fast acting neurotransmitter. However, we also identified a

set of five hemilineages that, according to our predictions, express
two distinct fast-acting neurotransmitters with high statistical sign-
ficance. Two of those five, 27 and 42, also show low synaptic
entropy � ((ℎ), indicating that the observed effect is a result of
neuron-level neurotransmitter segregation within the hemilineage.

5.2 Limitations

A potential source of neurotransmitter missclassification is
the possibility that a given neuron releases more than one
neurotransmitter at its synaptic sites. Due to a lack of known
and annotated neurons with cotransmission of the considered
neurotransmitters our current model ignores this possibility.
However, single cell transcriptomic data of the Drosophila
melanogaster brain shows that neurotransmitter gene expression is
largely exclusive for the fast acting transmitters ACh, GABA and
GLUT (Croset et al., 2018), excluding widespread cotransmission
of these transmitters. For the considered monoamines (SER, OCT,
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and DOP), coexpression with another fast acting transmitter is
more probable. In particular Croset et al. (2018) suggests that a
large fraction of octopaminergic neurons likely corelease GLUT,
while SER and DOP show less evidence for coexpression with
fast acting transmitters. If a particular neuron in the dataset
were to corelease a fast acting transmitter and a monoamine the
presented classifier would predict only one of the two. However,
this is not a fundamental limitation of the presented approach and
could be remedied if coexpression training data becomes available.

Another current limitation is the fact that we only consider
the set of six neurotransmitters {GABA, ACh, GLUT, DOP,
OCT, SER} and due to our use of a softmax normalization at
the network output layer, the model is forced to select one of
the six classes, even if there is no evidence for either of them.
As a result, the current model is not able to identify synapses
or neurons that are not part of the considered neurotransmitters,
noteably histamine (Nässel, 1999), tyramine and a vast number
of neuropeptides (Croset et al., 2018). Similar to coexpression,
we expect an extension to further neurotransmitters to be possible
with available training data.

Regarding our analysis of the number of distinct fast-acting
neurotransmitters in a hemilineage, a potential source of error
is misassignments of neurons to hemilineages. If neurons
are erroneously assigned to a particular hemilineage any
observed effect of multimodal neurotransmitter distributions
on neuron-level within a hemilineage could be an artifact.
Furthermore, for hemilineages 16 and 30 the high synaptic
entropy � ((ℎ) suggests that the phenotype of synapses is
ambiguous in these hemilineages. Although coexpression of
fast-acting neurotransmitters is unlikely (Croset et al., 2018),
the neurotransmitter distribution would be consistent with
cotransmission of GABA and glutamate in the neurons of these
hemilineages.

5.3 Generalization
We showed that our network is able to generalize across brain
regions and hemilineages. However, although the performance on
the brain region split (88% average accuracy) outperforms even
the baseline neuron split (87% average accuracy), the hemilineage
split suffers a performance decrease of more than 10% (75%
average accuracy), suggesting that the influence of the neuro-
transmitter on the phenotype of a synaptic site is influenced by
its hemilineage. This is partially remedied when averaging over
multiple synapses: Neuron-level neurotransmitter classification for
the hemilineage split is robust with an average accuracy of 92%.
Note that the presented data splits already exclude neuron identity,
hemilineage identity and brain region as potential confounding
variables for the prediction of neurotransmitter identity as perfor-
mance is far above chance level.

5.4 Interpretability
Given that in invertebrates humans can not generally distinguish
different neurotransmitter containing vesicles from EM alone,
an interesting question is which features the classifier relies on.
However, despite the fact that we have complete information about
the artificial neural system that is able to assign images of synaptic
sites to neurotransmitters, it is difficult to extract the rules under
which it operates. It is, for example, possible to visualise areas of

importance for the neural network via use of various attribution
methods (for an overview see Ancona et al. (2018)), but often the
masked input image still contains a large amount of complexity
that varies for each image of a given class (data not shown). We
aim to explore this question in more depth in future work.
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Figure 8: Neurotransmitter barcode plots of our predictions for all hemilineages that have more than 10 neurons with more than 30
synapses each. Each column represents one neuron. The relative number of synapses predicted as neurotransmitter Ĥ ∈ . ={GABA,
ACh, GLUT, SER, OCT, DOP} is represented by the color intensity of the respective row. Corresponding renderings of neurons and
predicted neurotransmitters are shown in Fig. 9. For a mapping of hemilineage ID to hemilineage name see Table 2
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Figure 9: Renderings of neurotransmitter predictions for all neurons within hemilineages that have more than 10 neurons with more than
30 synapses each. Corresponding neurotransmitter barcode plots are shown in Fig. 8. For a mapping of hemilineage ID to hemilineage
name see Table 2
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Known Predicted Known Predicted Known Predicted

3: 5: 7:

8: 12: 16:
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Figure 10: Neurotransmitter barcode plots of all hemilineages, for which a subset of neurons #ℎgt have genetically determined, known
neurotransmitters (Known) and our predictions (Predicted) on the remaining neurons #ℎpred in the same hemilineage. Each column in
the neurotransmitter barcode represents one neuron. The relative number of synapses with neurotransmitter H, Ĥ ∈ . ={GABA, ACh,
GLUT, SER, OCT, DOP} is represented by the color intensity of the respective row. Note that #ℎgt ∩ #ℎpred = ∅. For a mapping of
hemilineage ID to hemilineage name see Table 2
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Hemilineage ID ItoLee Name Hartenstein Name
1 ALad1 BAmv3
2 AOTUv1 DALcm2
3 ALl1 dorsal BAlc dorsal
4 SLPav1 lateral BLAl lateral
5 ALlv1 BAlp4
6 ALl1 ventral BAlc ventral
7 unnamed unnamed
8 VPNp and v1 posterior BLP1 posterior
9 LHl4 posterior BLD1 posterior
10 VLPd1 DPLam
11 FLAa3 BAmas2
12 DL1 dorsal CP2 dorsal
13 unnamed BLP3 ventral
14 DM1 DPMm1
15 LALv1 BAmv1
16 LHl1 lateral BLD4 lateral
17 ALv1 BAla1
18 LHd1 DPLd
19 SLPal2 ventral DPLal3 ventral
20 CREa1 ventral BAmd1 ventral
21 CREa2 DALcm1
22 DL2 dorsal CP3 dorsal
23 SMPpv1 DPMpl1
24 SIPp1 DPMpl2
25 DL1 ventral CP2 ventral
26 SLPal1 DPLal1
27 VLPd and p1 posterior DPLl2 posterior
28 SMPpv2 CP1
29 unnamed unnamed
30 LHl4 lateral BLD1 lateral
31 LHp1 BLP4
32 WEDa1 ventral BAlv
33 SLPad1 anterior DPLl3 anterior
34 FLAa2 BAmas1
35 VLPp and l1 dorsal DPLpv dorsal
36 EBa1 DALv2
37 SMPad2 DAMd2/3
38 SLPpm1 DPLm1
39 SLPal2 dorsal DPLal3 dorsal
40 WEDd1 DALd
41 SLPp and v1 posterior DPLp2 posterior
42 LHa1 medial BLAd1 medial
43 LHd2 dorsal DPLm2 dorsal
44 VPNl and d1 dorsal BLAvm2 dorsal

Hemilineage ID ItoLee Name Hartenstein Name
45 LHa3 BLVa2
46 LHp2 medial DPLp1 medial
47 VLPl2 dorsal BLAv2 dorsal
48 SLPad1 posterior DPLl3 posterior
49 VLPl2 ventral BLAv2 ventral
50 SLPav3 BLVa2a
51 LHl2 lateral DPLal2 lateral
52 VESa1 BAla3
53 SMPpd1 DPLc1
54 SLPal3 dorsal BLAd3 dorsal
55 VLPl1 BLVa3/4
56 VLPl and p1 posterior BLVp2 posterior
57 SIPa1 ventral BLAd2 ventral
58 LHa2 ventral BLVa1 ventral
59 WEDa2 BAlp3
60 SIPa1 dorsal BLAd2 dorsal
61 SLPav2 dorsal BLD2 dorsal
62 VLPl and p2 posterior BLVp1 posterior
63 SLPpl1 DPLl1
64 LHp2 lateral DPLp1 lateral
65 SLPpl3 lateral unnamed
66 VLPl and d1 lateral BLAv1 lateral
67 LHl2 medial DPLal2 medial
68 VLPl and p1 anterior BLVp2 anterior
69 VLPl and d1 dorsal BLAv1 dorsal
70 AOTUv2 DALl1
71 AOTUv3 dorsal DALcl1 dorsal
72 VLPp and l1 ventral DPLpv ventral
73 VPNd1 BLD6
74 WEDa1 dorsal BAlv
75 VLPd and p1 anterior DPLl2 anterior
76 unnamed unnamed
77 VLPp1 BLP2
78 PSa1 BAlp1
79 Primary Primary
80 VPNp1 posterior BLD5 posterior
81 unnamed unnamed
82 DL2 ventral CP3 ventral
83 LHa2 dorsal BLVa1 dorsal
84 SLPpl3 posterior unnamed
85 PSp3 DPMl1/2
86 SLPa and l1 lateral BLAl lateral
87 SLPa and l1 anterior BLAvm1 anterior
88 AOTUv3 ventral DALcl1 ventral
89 CLp1 DPLc2/4

Table 2: Mapping of hemilineage ids to ItoLee and Hartenstein hemilineage names.
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Operation Size Feature Maps
Conv (1) (3,3,3) 8
BatchNorm 8
ReLU 8
Conv (2) (3,3,3) 8
BatchNorm 8
MaxPool (1,2,2) 8
Conv (3) (3,3,3) 16
BatchNorm 16
ReLU 16
Conv (4) (3,3,3) 16
BatchNorm 16
MaxPool (1,2,2) 16
Conv (5) (3,3,3) 32
BatchNorm 32
ReLU 32
Conv (6) (3,3,3) 32
BatchNorm 32
MaxPool (1,2,2) 32
Conv (7) (3,3,3) 64
BatchNorm 64
ReLU 64
Conv (8) (3,3,3) 64
BatchNorm 64
MaxPool (1,2,2) 64
Linear 4096 1
ReLU 1
Dropout 1
Linear 4096 1
ReLU 1
Dropout 1
Linear 6 1

Table 3: Best performing 3D-VGG-type architecture used.

Parameter Value
Input Shape (16, 160, 160)
Loss CrossEntropy
Optimizer Adam
Learning Rate 1E-04
V1 0.95
V2 0.999
Iterations 315,000

Augmentation Parameter Value
Elastic control point spacing (4,40,40)

jitter sigma (0, 2, 2)
subsample 8

Rotation axis z
angle in [0, c2 ]

Section Defects slip probability 0.05
shift probability 0.05
max misalign 10

Mirror n/a
Transpose axes x, y
Intensity scale in [0.9, 1.1]

shift in [−0.1, 0.1]

Table 4: Training parameters for best performing model. Augmentations from http://funkey.science/gunpowder.
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